Initial Experimentation of a Real-Time 5G mmWave Downlink Positioning Testbed †
Abstract
:1. Introduction
2. OAI-Based 5G mmWave Network
2.1. Positioning Reference Signal
2.2. Time-of-Arrival and Power Measurements
3. Beam-Based Angle-of-Arrival Algorithm
4. HOP-5G mmWave Positioning Testbed
- mmWave front end: The Sivers EVK02001 is an evaluation kit with an analog beamformer mmWave front end (FE) able to up-convert 5G NR signals from baseband to mmWave or to down-convert from mmWave to baseband, by integrating the Sivers TRXBF02 COTS transceiver. The 16-element antenna array, i.e., non-commercial uniform rectangular array (URA) with 2 × 8 elements, enables steerable beams within the beambook upon operator commands.
- Software-defined radio: The USRP X310 is a flexible SDR, which here includes a BasicTX or BasicRX daughterboard for transmission or for reception, respectively, and a GPS disciplined oscillator (GPSDO) to increase the stability of the SDR clock. This SDR is used with a sampling rate of 92.16 Msps to stream the baseband samples of the 5G NR signals between the mmWave front end and the host computer.
- Host computer: The host computer includes the necessary software modules to establish 5G transmission, 5G reception, GNSS data collection and AoA estimation. At the transmission, the OAI gNB is used to stream the 5G PRS to the mmWave front end through the SDR in real time. At the reception, the OAI UE is used to process the 5G PRS and to obtain ToA and RSRP measurements in real time, and the AoA estimator controls the beams of the mmWave front end and computes the AoA measurements also in real time. In both nodes, the GNSS receiver manager operates and collects the GNSS position solution from the receiver in real time.
- GNSS receiver: The u-blox F9P is a multi-band high precision GNSS receiver, whose position solution is used for the ground truth of the field campaign.
- GNSS antenna: A survey multi-band GNSS antenna is used at both nodes together with a splitter to feed GNSS signals to the USRP GPSDO and to the GNSS receiver.
5. Field Campaign
5.1. Description
- The OAI UE acquires and synchronizes to the 5G NR signals transmitted from the OAI gNB.
- The GNSS receiver manager collects and disseminates the GNSS-based UE position solution in real time.
- For each beam within [−45°, −41.5°, …, 41.5°, 45°], the AoA algorithm enables the corresponding beam on the Sivers EVK, the OAI UE estimates the RSRP from the PRS subframes, and the AoA algorithm collects the RSRP measurement for the specific beam.
- The AoA algorithm performs real-time AoA estimation from the collected RSRP measurements.
- The AoA estimate is disseminated together with the latest GNSS position solution.
5.2. Maximum Coverage Distance
5.3. Impact of the Receiver Orientation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- del Peral-Rosado, J.A.; Raulefs, R.; López-Salcedo, J.A.; Seco-Granados, G. Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G. IEEE Commun. Surveys Tutor. 2018, 20, 1124–1148. [Google Scholar] [CrossRef]
- Wymeersch, H.; Seco-Granados, G.; Destino, G.; Dardari, D.; Tufvesson, F. 5G mmWave positioning for vehicular networks. IEEE Wirel. Commun. 2017, 24, 80–86. [Google Scholar] [CrossRef]
- Khatib, E.J.; Álvarez-Merino, C.S.; Luo-Chen, H.Q.; Barco-Moreno, R. Designing a 6G Testbed for Location: Use Cases, Challenges, Enablers and Requirements. IEEE Access 2023, 11, 10053–10091. [Google Scholar] [CrossRef]
- 3GPP TS 38.305. NG Radio Access Network (NG-RAN); Stage 2 Functional Specification of User Equipment (UE) Positioning in NG-RAN. Available online: https://www.3gpp.org/dynareport/38305.htm (accessed on 5 September 2024).
- 3GPP TS 38.211. NR; Physical Channels and Modulation. Available online: https://www.3gpp.org/dynareport/38211.htm (accessed on 5 September 2024).
- 3GPP TS 38.455. NG-RAN; NR Positioning Protocol A (NRPPa). Available online: https://www.3gpp.org/dynareport/38455.htm (accessed on 5 September 2024).
- 3GPP TR 38.855. Study on NR Positioning Support. Available online: https://www.3gpp.org/dynareport/38855.htm (accessed on 5 September 2024).
- Qualcomm, ZTE and China Mobile. 5G Multi-Cell Positioning: Joint Field Trial Demonstration. Available online: https://www.qualcomm.com/videos/5g-multi-cell-positioning-ota-demonstration (accessed on 5 September 2024).
- del Peral-Rosado, J.A.; Nolle, P.; Razavi, S.M.; Lindmark, G.; Shrestha, D.; Gunnarsson, F.; Kaltenberger, F.; Sirola, N.; Särkkä, O.; Roström, J.; et al. Design Considerations of Dedicated and Aerial 5G Networks for Enhanced Positioning Services. In Proceedings of the 2022 10th Workshop on Satellite Navigation Technology (NAVITEC), Noordwijk, The Netherlands, 5–7 April 2022; pp. 1–12. [Google Scholar]
- del Peral-Rosado, J.A.; Nolle, P.; Rothmaier, F.; Razavi, S.M.; Lindmark, G.; Jiang, X.; Shrestha, D.; Gunnarsson, F.; Parsawar, S.; Mundlamuri, R.; et al. Proof-of-Concept of Dedicated Aerial 5G and GNSS Testbed for Enhanced Hybrid Positioning. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022; pp. 1–15. [Google Scholar]
- del Peral-Rosado, J.A.; Yildirim, A.Y.; Klinger, N.C.; Nolle, P.; Razavi, S.M.; Parsawar, S.; Mundlamuri, R.; Kaltenberger, F.; Sirola, N.; Garlaschi, S.; et al. Preliminary Field Results of a Dedicated 5G Positioning Network for Enhanced Hybrid Positioning. Eng. Proc. 2023, 54, 6. [Google Scholar]
- del Peral-Rosado, J.A.; Yildirim, A.; Schlötzer, S.; Nolle, P.; Razavi, S.M.; Parsawa, S.; Mundlamuri, R.; Kaltenberger, F.; Sirola, N.; Garlaschi, S.; et al. First Field Trial Results of Hybrid Positioning with Dedicated 5G Terrestrial and UAV-Based Non-Terrestrial Networks. In Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), Denver, CO, USA, 19–23 September 2023; pp. 1598–1605. [Google Scholar]
- Qualcomm. MWC 2022: Expanding 5G Positioning to mmWave and Lower-Complexity IoT. Available online: https://www.youtube.com/watch?v=82zIWOa2PhI (accessed on 5 September 2024).
- Qualcomm. MWC 2023: Precise Positioning and RF Sensing. Available online: https://www.qualcomm.com/videos/precise-positioning-and-rf-sensing (accessed on 5 September 2024).
- Chen, T.; Maddala, P.; Skrimponis, P.; Kolodziejski, J.; Adhikari, A.; Hu, H.; Gao, Z.; Paidimarri, A.; Valdes-Garcia, A.; Lee, M.; et al. Open-access millimeter-wave software-defined radios in the PAWR COSMOS testbed: Design, deployment, and experimentation. Comput. Netw. 2023, 234, 109922. [Google Scholar] [CrossRef]
- TMYTEK. mmW-OAI Solution: Open-Source 5G FR2 Test Network. Available online: https://tmytek.com/solutions/mmW-OAI (accessed on 5 September 2024).
- Yammine, G.; Alawieh, M.; Ilin, G.; Momani, M.; Elkhouly, M.; Karbownik, P.; Franke, N.; Eberlein, E. Experimental Investigation of 5G Positioning Performance Using a mmWave Measurement Setup. In Proceedings of the 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021; pp. 1–8. [Google Scholar]
- Ge, Y.; Chen, H.; Jiang, F.; Zhu, M.; Khosravi, H.; Lindberg, S.; Herbertsson, H.; Eriksson, O.; Brunnegård, O.; Olsson, B.E.; et al. Experimental Validation of Single Base Station 5G mmWave Positioning: Initial Findings. In Proceedings of the 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 4–7 July 2022; pp. 1–8. [Google Scholar]
- Kaltenberger, F.; Silva, A.P.; Gosain, A.; Wang, L.; Nguyen, T.T. OpenAirInterface: Democratizing innovation in the 5G Era. Comput. Netw. 2020, 176, 107284. [Google Scholar] [CrossRef]
- Ahadi, M.; Malik, A.; Kaltenberger, F.; Thienot, C. 5G NR UL SRS TDoA Positioning by OpenAirInterface. In Proceedings of the 2023 13th International Conference on Indoor Positioning and Indoor Navigation Work-in-Progress (IPIN-WiP), Nuremberg, Germany, 25-28 September 2023; pp. 1–12. [Google Scholar]
- Li, D.; Chu, X.; Wang, L.; Lu, Z.; Zhou, S.; Wen, X. Performance Evaluation of E-CID based Positioning on OAI 5G-NR Testbed. In Proceedings of the 2022 IEEE/CIC International Conference on Communications in China (ICCC), Foshan, China, 11–13 August 2022; pp. 832–837. [Google Scholar]
- Palamà, I.; Lizarribar, Y.; Monteforte, L.M.; Santaromita, G.; Bartoletti, S.; Giustiniano, D.; Bianchi, G.; Melazzi, N.B. 5G positioning with software-defined radios. Comput. Netw. 2024, 250, 110595. [Google Scholar] [CrossRef]
- Mundlamuri, R.; Gangula, R.; Kaltenberger, F.; Knopp, R. Novel round trip time estimation in 5G NR. In Proceedings of the GLOBECOM 2024 - 2024 IEEE Global Communications Conference, Cape Town, South Africa, 08-12 December 2024; pp. 3069–3074. [Google Scholar] [CrossRef]
- Rastorgueva-Foi, E.; Kaltiokallio, O.; Ge, Y.; Turunen, M.; Talvitie, J.; Tan, B.; Keskin, M.F.; Wymeersch, H.; Valkama, M. Millimeter-Wave Radio SLAM: End-to-End Processing Methods and Experimental Validation. IEEE J. Sel. Areas Commun. 2024, 42, 2550–2567. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Peral-Rosado, J.A.; Yildirim, A.Y.; Soderini, A.; Mundlamuri, R.; Kaltenberger, F.; Rastorgueva-Foi, E.; Talvitie, J.; Lapin, I.; Flachs, D. Initial Experimentation of a Real-Time 5G mmWave Downlink Positioning Testbed. Eng. Proc. 2025, 88, 61. https://doi.org/10.3390/engproc2025088061
del Peral-Rosado JA, Yildirim AY, Soderini A, Mundlamuri R, Kaltenberger F, Rastorgueva-Foi E, Talvitie J, Lapin I, Flachs D. Initial Experimentation of a Real-Time 5G mmWave Downlink Positioning Testbed. Engineering Proceedings. 2025; 88(1):61. https://doi.org/10.3390/engproc2025088061
Chicago/Turabian Styledel Peral-Rosado, José A., Ali Y. Yildirim, Auryn Soderini, Rakesh Mundlamuri, Florian Kaltenberger, Elizaveta Rastorgueva-Foi, Jukka Talvitie, Ivan Lapin, and Detlef Flachs. 2025. "Initial Experimentation of a Real-Time 5G mmWave Downlink Positioning Testbed" Engineering Proceedings 88, no. 1: 61. https://doi.org/10.3390/engproc2025088061
APA Styledel Peral-Rosado, J. A., Yildirim, A. Y., Soderini, A., Mundlamuri, R., Kaltenberger, F., Rastorgueva-Foi, E., Talvitie, J., Lapin, I., & Flachs, D. (2025). Initial Experimentation of a Real-Time 5G mmWave Downlink Positioning Testbed. Engineering Proceedings, 88(1), 61. https://doi.org/10.3390/engproc2025088061