applsci-logo

Journal Browser

Journal Browser

Security and Communication Technologies in Internet of Things, 5G and beyond 5G: Applications and Future Directions

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Electrical, Electronics and Communications Engineering".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 7697

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Telecommunications, AGH University of Science and Technology, 30-059 Kraków, Poland
Interests: software-defined networks; network function virtualization; cloud computing; 5G core networks; emerging network services; network optimization
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Telecommunications, AGH University of Science and Technology, 30-059 Kraków, Poland
Interests: wireless networks; 5G NR-unlicensed; wireless LANs; internet of things; quality of service; threat detection; steganography
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Telecommunications, Warsaw University of Technology, 00-661 Warsaw, Poland
Interests: video streaming; business data processing; cloud computing; multimedia communication; military communication

Special Issue Information

Dear Colleagues,

The popularity and spread of Internet of Things, 5G and beyond-5G technologies are still increasing. More and more attractive, interesting and profitable use cases are designed and proposed. However, to effectively provision emerging applications, two critical obstacles must be addressed: security and communication technologies.

Due to the heterogeneity and complexity of the considered architecture problems, they are demanding and require sophisticated approaches to be effectively solved. The wide range of use cases and scenarios further complicates the problem, as such a complex environment cannot be easily modeled and simulated.

We cordially invite original contributions focused on applications and future directions in terms of security and communication technologies in IoT, 5G and B5G. Topics of interest include but are not limited to:

  • Application-aware core and backbone network design and optimization for IoT, 5G and B5G;
  • Wireless communication technologies in Internet of Things, 5G and beyond 5G;
  • Security of wireless communication in IoT, 5G and B5G networks;
  • Secure virtualization and integrity verification for the purpose of IoT, 5G and B5G deployments;
  • Network slicing communication technology;
  • Network Softwareization and Network Function Virtualization enabling IoT, 5G and B5G;
  • Security monitoring of radio and core networks in IoT, 5G and B5G;
  • Multi-technology solutions based on the integration of IoT, 5G and B5G;
  • Quality of Service and Quality of Experience of emerging applications offered through IoT, 5G and B5G networks;
  • Integration between optical networks and IoT, 5G and B5G technologies;
  • Use of AI/ML to facilitate further development of IoT, 5G and B5G technologies;
  • Future directions and challenges in terms of security and Communication Technologies in Internet of Things, 5G and beyond 5G;
  • Proof of concept presenting security and communication technologies for IoT, 5G and B5G.

Dr. Piotr Borylo
Dr. Marek Natkaniec
Dr. Andrzej Bęben
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • core and wireless network security
  • secure virtualized deployments
  • network slicing
  • network function virtualization
  • IoT, 5G and beyond-5G technologies
  • integration of heterogenous technologies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 1277 KiB  
Article
Distributed Prediction-Enhanced Beamforming Using LR/SVR Fusion and MUSIC Refinement in 5G O-RAN Systems
by Mustafa Mayyahi, Jordi Mongay Batalla, Jerzy Żurek and Piotr Krawiec
Appl. Sci. 2025, 15(13), 7428; https://doi.org/10.3390/app15137428 - 2 Jul 2025
Abstract
Low-latency and robust beamforming are vital for sustaining signal quality and spectral efficiency in emerging high-mobility 5G and future 6G wireless networks. Conventional beam management approaches, which rely on periodic Channel State Information feedback and static codebooks, as outlined in 3GPP standards, are [...] Read more.
Low-latency and robust beamforming are vital for sustaining signal quality and spectral efficiency in emerging high-mobility 5G and future 6G wireless networks. Conventional beam management approaches, which rely on periodic Channel State Information feedback and static codebooks, as outlined in 3GPP standards, are insufficient in rapidly varying propagation environments. In this work, we propose a Dominance-Enforced Adaptive Clustered Sliding Window Regression (DE-ACSW-R) framework for predictive beamforming in O-RAN Split 7-2x architectures. DE-ACSW-R leverages a sliding window of recent angle of arrival (AoA) estimates, applying in-window change-point detection to segment user trajectories and performing both Linear Regression (LR) and curvature-adaptive Support Vector Regression (SVR) for short-term and non-linear prediction. A confidence-weighted fusion mechanism adaptively blends LR and SVR outputs, incorporating robust outlier detection and a dominance-enforced selection regime to address strong disagreements. The Open Radio Unit (O-RU) autonomously triggers localised MUSIC scans when prediction confidence degrades, minimising unnecessary full-spectrum searches and saving delay. Simulation results demonstrate that the proposed DE-ACSW-R approach significantly enhances AoA tracking accuracy, beamforming gain, and adaptability under realistic high-mobility conditions, surpassing conventional LR/SVR baselines. This AI-native modular pipeline aligns with O-RAN architectural principles, enabling scalable and real-time beam management for next-generation wireless deployments. Full article
Show Figures

Figure 1

38 pages, 15283 KiB  
Article
A Fast Convergence Scheme Using Chebyshev Iteration Based on SOR and Applied to Uplink M-MIMO B5G Systems for Multi-User Detection
by Yung-Ping Tu and Guan-Hong Liu
Appl. Sci. 2025, 15(12), 6658; https://doi.org/10.3390/app15126658 - 13 Jun 2025
Viewed by 266
Abstract
Massive multiple input–multiple output (M-MIMO) is a promising and pivotal technology in contemporary wireless communication systems that can effectively enhance link reliability and data throughput, especially in uplink scenarios. Even so, the receiving end requires more computational complexity to reconstitute the signal. This [...] Read more.
Massive multiple input–multiple output (M-MIMO) is a promising and pivotal technology in contemporary wireless communication systems that can effectively enhance link reliability and data throughput, especially in uplink scenarios. Even so, the receiving end requires more computational complexity to reconstitute the signal. This problem has emerged in fourth-generation (4G) MIMO system; with the dramatic increase in demand for devices and data in beyond-5G (B5G) systems, this issue will become yet more obvious. To take into account both complexity and signal-revested capability at the receiver, this study uses the matrix iteration method to avoid the staggering amount of operations produced by the inverse matrix. Then, we propose a highly efficient multi-user detector (MUD) named hybrid SOR-based Chebyshev acceleration (CHSOR) for the uplink of M-MIMO orthogonal frequency-division multiplexing (OFDM) and universal filtered multi-carrier (UFMC) waveforms, which can be promoted to B5G developments. The proposed CHSOR scheme includes two stages: the first consists of successive over-relaxation (SOR) and modified successive over-relaxation (MSOR), combining the advantages of low complexity of both and generating a better initial transmission symbol, iteration matrix, and parameters for the next stage; sequentially, the second stage adopts the low-cost iterative Chebyshev acceleration method for performance refinement to obtain a lower bit error rate (BER). Under constrained evaluation settings, Section (Simulation Results and Discussion) presents the results of simulations performed in MATLAB version R2022a. Results show that the proposed detector can achieve a 91.624% improvement in BER performance compared with Chebyshev successive over-relaxation (CSOR). This is very near to the performance of the minimum mean square error (MMSE) detector and is achieved in only a few iterations. In summary, our proposed CHSOR scheme demonstrates fast convergence compared to previous works and as such possesses excellent BER and complexity performance, making it a competitive solution for uplink M-MIMO B5G systems. Full article
Show Figures

Figure 1

22 pages, 2042 KiB  
Article
Secrecy Rate Performance Analysis of Jammer-Aided Symbiotic Radio with Sensing Errors for Fifth Generation Wireless Networks
by Muhammed Yusuf Onay
Appl. Sci. 2025, 15(1), 289; https://doi.org/10.3390/app15010289 - 31 Dec 2024
Cited by 1 | Viewed by 783
Abstract
Symbiotic radio (SR), which has recently been introduced as an effective solution for 5G wireless networks, stands out with system models that include hybrid devices that share the frequency spectrum and transmit information to the same receiver. However, the low bit rate and [...] Read more.
Symbiotic radio (SR), which has recently been introduced as an effective solution for 5G wireless networks, stands out with system models that include hybrid devices that share the frequency spectrum and transmit information to the same receiver. However, the low bit rate and the small amount of energy harvested in SR, where backscatter communication systems are integrated, make the system vulnerable to eavesdropping. To ensure security, the secrecy rate is defined as the difference between the number of bits transmitted to the receiver over the information channel and the number of bits reaching the eavesdropper (ED) over the wiretap channel. This paper is the first work that aims to maximize the secrecy rate for friendly jammer-aided SR networks with EDs over time allocation and power reflection coefficient in the presence of sensing errors. The proposed model consists of a base station (BS), a hybrid transmitter (HT) in symbiotic relationship with the BS, a WiFi access point used by the HT for energy harvesting, a jammer cooperating with the HT and BS, an information receiver, and EDs trying to access the information of the HT and BS. The simulation results provide valuable insights into the impact of system parameters on secrecy rate performance. Although taking the sensing error into account degrades the system performance, the real-world applicability of the system with sensing error is more realistic. It is also observed that the proposed system has higher performance compared to the wireless powered communication networks in the literature, which only use the energy harvest-then-transmit protocol and the power reflection coefficient is assumed to be zero. Full article
Show Figures

Figure 1

20 pages, 1525 KiB  
Article
Evaluation of User-Centric Cell-Free Massive Multiple-Input Multiple-Output Networks Considering Realistic Channels and Frontend Nonlinear Distortion
by Marcin Hoffmann and Paweł Kryszkiewicz
Appl. Sci. 2024, 14(5), 1684; https://doi.org/10.3390/app14051684 - 20 Feb 2024
Cited by 2 | Viewed by 1537
Abstract
Future 6G networks are expected to utilize Massive Multiple-Input Multiple-Output (M-MIMO) and follow a user-centric cell-free (UCCF) architecture. In a UCCF M-MIMO network, the user can be potentially served by multiple surrounding Radio Units (RUs) and Distributed Units (DUs) controlled and coordinated by [...] Read more.
Future 6G networks are expected to utilize Massive Multiple-Input Multiple-Output (M-MIMO) and follow a user-centric cell-free (UCCF) architecture. In a UCCF M-MIMO network, the user can be potentially served by multiple surrounding Radio Units (RUs) and Distributed Units (DUs) controlled and coordinated by a single virtualized Centralized Unit (CU). Moreover, in an M-MIMO network, each transmit frontend is equipped with a Power Amplifier (PA), typically with nonlinear characteristics, that can have a significant impact on the throughput achieved by network users. This work evaluates a UCCF M-MIMO network within an advanced system-level simulator considering multicarrier transmission, using Orthogonal Frequency-Division Multiplexing (OFDM), realistic signal-processing steps, e.g., per resource block scheduling, and a nonlinear radio frontend. Moreover, both idealistic independent and identically distributed (i.i.d.) Rayleigh and 3D ray-tracing-based radio channels are evaluated. The results show that under the realistic radio channel, the novel user-centric network architecture can lead to an almost uniform distribution of user throughput and improve the rate of the users characterized by the worst radio conditions by over 3 times in comparison to a classical, network-centric design. At the same time, the nonlinear characteristics of the PA can cause significant degradation of the UCCF M-MIMO network’s performance when operating close to its saturation power. Full article
Show Figures

Figure 1

16 pages, 1555 KiB  
Article
A Simplistic Downlink Channel Estimation Method for NB-IoT
by Jarosław Magiera
Appl. Sci. 2023, 13(23), 12615; https://doi.org/10.3390/app132312615 - 23 Nov 2023
Cited by 1 | Viewed by 1745
Abstract
This paper presents a downlink channel estimation method intended for a Narrowband Internet of Things (NB-IoT) access link. Due to its low computational complexity, this method is well suited for energy-efficient IoT devices, still providing acceptable reception quality in terms of signal-to-noise (SNR) [...] Read more.
This paper presents a downlink channel estimation method intended for a Narrowband Internet of Things (NB-IoT) access link. Due to its low computational complexity, this method is well suited for energy-efficient IoT devices, still providing acceptable reception quality in terms of signal-to-noise (SNR) performance. This paper describes the physical layer of NB-IoT within the scope of channel estimation, and also reviews existing channel estimation methods for OFDM signals. The proposed method, based on linear interpolation of channel coefficients, is described as a three-step procedure. Next, indicators of channel quality assessment, which may be determined without prior knowledge about the transmitted signal, are defined. Two variants of channel estimation, differing in the frequency domain processing, are evaluated to assess the significance of frequency selectivity in an NB-IoT downlink. The chosen method is compared with another method implemented in MATLAB LTE ToolboxTM. An analysis of the computation time is conducted, subsequently demonstrating the definite advantage of the proposed method. Full article
Show Figures

Figure 1

26 pages, 1048 KiB  
Article
A Novel Covert Channel for IEEE 802.11 Networks Utilizing MAC Address Randomization
by Geovani Teca and Marek Natkaniec
Appl. Sci. 2023, 13(14), 8000; https://doi.org/10.3390/app13148000 - 8 Jul 2023
Cited by 7 | Viewed by 2465
Abstract
Vendors implement the MAC address randomization technique to prevent IEEE 802.11 client station devices from being tracked. Although it conceals device identity, it cannot hide its occurring data transmission. This paper presents a novel covert channel that leverages the MAC address randomization technique [...] Read more.
Vendors implement the MAC address randomization technique to prevent IEEE 802.11 client station devices from being tracked. Although it conceals device identity, it cannot hide its occurring data transmission. This paper presents a novel covert channel that leverages the MAC address randomization technique to create a covert channel to hide data transmission inside IEEE 802.11 networks. The secret data are a disposable random MAC address generated by the IEEE 802.11 station as part of the probe request frame while scanning the network. The paper presents the concept of the covert channel, its implementation, and performance metrics. The study covers diverse scenarios, including the adaptation of the modified Selective Repeat ARQ protocol to alleviate the impact of the number of client stations and their offered loads on the covert channel. The results show that with the appropriate parameter selections, we can adapt the covert channel to produce excellent throughput, efficiency, delay, and jitter according to the environment in which it is installed. Full article
Show Figures

Figure 1

Back to TopTop