Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Correlation Analysis
2.3.2. MCMC Algorithm
2.3.3. MODIS-PSN Model
2.3.4. Geographical Detector Method
3. Results
3.1. MODIS-PSN Model Validation
3.2. Characteristics of Spatial and Temporal Evolution of Vegetation GPP on the Qinghai-Tibet Plateau
3.2.1. Characterization of Temporal Variation in GPP of Vegetation on the Qinghai-Tibet Plateau
3.2.2. Model Parameter Optimization Process
3.3. Characterization of Spatial and Temporal Changes in Drivers
3.3.1. Characterization of Interannual Variation in Drivers
3.3.2. Interannual Spatial Distribution of Drivers
3.3.3. Spatial Distribution of Rate of Change and Significance of Temperature on the Qinghai-Tibet Plateau
3.4. Analysis of the Impact of Spatial Differentiation on Vegetation GPP
3.4.1. Impact of Individual Factors on Vegetation GPP
3.4.2. Impact of Multifactor Interactions on Vegetation GPP
4. Discussion
4.1. Trends in the Spatial and Temporal Evolution of Vegetation GPP
4.2. Impact Analysis of Drivers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.X.; Zhai, L.; Sang, H.Y.; Cheng, S.Y.; Li, H.W. Effects of hydrothermal factors and human activities on the vegetation coverage of the Qinghai-Tibet Plateau. Sci. Rep. 2023, 13, 12488. [Google Scholar] [CrossRef]
- Sun, H.L.; Zheng, D.; Yao, T.D.; Zhang, Y.L. Protection and construction of national ecological security barriers on the Qinghai-Tibet Plateau. J. Geogr. 2012, 67, 3–12. [Google Scholar]
- Li, R.; Wu, Q.B.; Li, X.; Sheng, Y.; Hu, G.J.; Cheng, G.D.; Zhao, L.; Jin, H.J.; Zou, D.F.; Wu, X.D. Characteristics, changes and impacts of perennial permafrost on the Qinghai-Tibet Plateau. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar]
- Wang, X.; Pang, G.; Yang, M. Precipitation over the Qinghai-Tibet Plateau during recent decades: A review based on observations and simulations. Int. J. Climatol. 2018, 38, 1116–1131. [Google Scholar] [CrossRef]
- Qimei, L.; Zheng, C.; Yuan, L.H.; Wu, P.T.; Tan, K.; Shen, Q.T.; Shi, H.J. Spatial-temporal dynamics of vegetation light use efficiency and its driving factors on the Qinghai-Xizang Plateau. Arid. Zone Res. 2024, 41, 1731–1739. [Google Scholar]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.F.; Fang, X.Q.; Gao, Y.H.; Zhu, D.; Yang, G.; Tian, J.Q. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Qinghai-Tibet Plateau. Glob. Change Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.L. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef]
- Kuang, X.X.; Jiao, J.J. Review on climate change on the Qinghai-Tibet Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Li, S.C.; Zhang, Y.L.; Wang, Z.F.; Li, L.H. Mapping human influence intensity in the Qinghai-Tibet Plateau for conservation of ecological service functions. Ecosyst. Serv. 2017, 30, 276–286. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Yang, Y.P.; Piao, S.L. Ecological change on the Qinghai-Tibet Plateau. Chin. J. 2015, 60, 3048. [Google Scholar]
- Yang, Y.; Dou, Y.X.; An, S.S.; Zhu, Z.L. Abiotic and biotic factors modulate plant biomass and root/shoot(R/S) ratios in grassland on the Loess Plateau, China. Sci. Total Environ. 2018, 636, 621–631. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.W.; Shen, B.B.; Wang, X.; Xu, D.W.; Yan, R.R.; Yan, Y.C.; Xin, X.P.; Xiao, J.F.; Li, M. Spatial patterns and driving factors of aboveground and belowground biomass over the eastern Eurasian steppe. Sci. Total Environ. 2022, 803, 149700. [Google Scholar] [CrossRef]
- Ge, J.; Hou, M.J.; Liang, T.G.; Feng, Q.S.; Meng, X.Y.; Liu, J.; Bao, X.Y.; Gao, H.Y. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Sci. Total Environ. 2022, 826, 154226. [Google Scholar] [CrossRef] [PubMed]
- You, Y.F.; Wang, S.Y.; Ma, Y.X.; Wang, X.Y.; Liu, W.H. Improved modeling of gross primary productivity of Alpine Grasslands on the Qinghai-Tibet Plateau using the biome-BGC model. Remote Sens. 2019, 11, 1287. [Google Scholar] [CrossRef]
- Li, H.Y.; Wu, X.D.; Ma, D.J.; Wei, C.; Peng, B.Y.; Du, W.Z. Spatiotemporal variation characteristics and influencing factors analysis of the GPP in the Qinghai-Tibet Plateau. Remote Sens. Technol. Appl. 2024, 39, 727–740. [Google Scholar]
- Zheng, Z.T.; Zhang, Y.J.; Zhu, J.T.; Cong, N. Daytime temperature contributes more than night time temperature to the weakened relationshipbetween climate warming and vegetation growth in the extratropical Northern Hemisphere. Ecol. Indic. 2021, 131, 108203. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Han, J.Q.; Shi, S.Y.; Ding, W.B. Impacts of climate change and human activities on vegetation NDVI changes in China from 1982 to 2015. J. Geogr. 2020, 75, 961–974. [Google Scholar]
- Yang, Y.T.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.Z.; Zhang, Y.Q.; Tim, R.; McVicar, T.R.; et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef]
- Liu, S.H.; Yan, D.H.; Shi, X.L.; Yuan, Z. Interannual variation and correlation between vegetation NDVI and climate factors in China. Arid. Zone Geogr. 2014, 37, 480–489. [Google Scholar]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.; Mao, J.F.; Myneni, R.B.; Peng, S.S. Detection and attribution of vegetation greening trend on the Qinghai-Tibet Plateau over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Ren, Y.H.; Wang, H.; Yang, K.; Li, W.; Hu, Z.M.; Ma, Y.M.; Qiao, S.C. Vegetation productivity slowdown on the Qinghai-Tibet Plateau around the late 1990s. Geophys. Res. Lett. 2024, 51, e2023GL103865. [Google Scholar] [CrossRef]
- Guo, J.K.; Wu, X.Q.; Dong, G.H.; Li, Y.S.; Wu, R. Analysis of the relative roles of drivers of vegetation cover change in the Tarim River Basin based on MODIS/NDVI. Arid. Zone Res. 2017, 34, 621–629. [Google Scholar]
- Zhang, Y.L.; Li, B.Y.; Liu, L.S.; Zheng, D. Revisiting the extent of the Qinghai-Tibet Plateau. Geogr. Res. 2021, 40, 1543–1553. [Google Scholar]
- Miao, L.; Lu, Q.; Liu, G.L.; Wei, X.J. Temporal and spatial variation characteristics of NDVI in different vegetation types on the Qinghai-Tibet Plateau from 1999 to 2019 and its response to climatic factors. Soil Water Conserv. Res. 2023, 30, 97–105. [Google Scholar]
- Zhang, Y.; Li, B.; Zheng, D. A discussion on the boundary and area of the Qinghai-Tibet Plateau in China. Geogr. Res. 2002, 21, 1–8. [Google Scholar]
- Ding, M.J.; Li, L.H.; Nie, Y.; Chen, Q.; Zhang, Y.L. Spatio-temporal variation of spring phenology in Qinghai-Tibet Plateauand its linkage to climate change from 1982 to 2012. J. Mt. Sci. 2016, 13, 83–94. [Google Scholar] [CrossRef]
- Ly, A.; Marsman, M.; Wagenmakers, E.J. Analytic posteriors for Pearson’s correlation coefficient. Stat. Neerl. 2018, 72, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Afyouni, S.; Smith, S.M.; Nichols, T.E. Effective degrees of freedom of the Pearson’s correlation coefficient under autocorrelation. NeuroImage 2019, 199, 609–625. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.J.; Zhou, D.W.; Li, F.; Zhang, H.Y. Vegetation Change and Its Response to Climate Change in Grassland Region of China. Geogr. Sci. 2015, 35, 622–629. [Google Scholar]
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In Methods in Ecosystem Science; Springer: New York, NY, USA, 2000; pp. 44–57. [Google Scholar]
- Huang, X.; Ma, M.; Wang, X.; Tang, X.; Yang, H. The uncertainty analysis of the MODIS GPP product in global maize croplands. Front. Earth Sci. 2018, 12, 739–749. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geo-Graph. Sin. 2017, 72, 116–134. [Google Scholar]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Li, H. Research on spatial and temporal evolution of net primary productivity and driving factors of urban vegetation in mountainous areas based on geodetector--Taking Chongqing as an example. J. Guizhou Univ. (Nat. Sci. Ed.) 2024, 41, 19–27. [Google Scholar]
- Xin, P.Y.; Tian, T.; Zhang, M.L.; Han, W.Z.; Song, Y.T. Assessment of habitat quality changes and drivers in Jilin Province based on the InVEST model and geoprobes. J. Appl. Ecol. 2024, 35, 2853–2860. [Google Scholar]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.N.; Yuan, W.P. Model Differences in Gross Primary Production on the Qinghai-Tibet Plateau. Remote Sens. Technol. Appl. 2017, 32, 406–418. [Google Scholar]
- Dong, M.Y.; Jiang, Y.; Zheng, C.T.; Zhang, D.Y. Trends in the thermal growing season throughout the Qinghai-Tibet Plateau during 1960–2009. Agric. For. Meteorol. 2012, 166–167, 201–206. [Google Scholar] [CrossRef]
- Zuo, L.; Gao, J. Quantitative attribution of NPP to karst vegetation based on geoprobes. J. Ecol. Environ. 2020, 29, 686–694. [Google Scholar]
- He, H.C.; Ma, B.X.; Jing, J.L.; Xu, Y.; Dou, S.Q.; Liu, B. Spatiotemporal Changes of NPP and Natural Factors in the Southwestern Karst Areas from 2000 to 2019. Soil Water Conserv. Res. 2022, 29, 172–178. [Google Scholar]
- Chen, D.L.; Sun, D.L.; Wen, H.J.; Gu, Q.Y. LightGBM-SHAP landslide susceptibility study based on different factor screening methods. J. Beijing Norm. Univ. (Nat. Sci. Ed.) 2024, 60, 148–158. [Google Scholar]
- Sun, Z.; Xie, S. Spatial and temporal evolution of net primary productivity and factor detection in Yunnan Province based on geoprobes. J. Ecol. 2021, 40, 3836–3848. [Google Scholar]
- Xie, J.L.; Yin, G.F.; Ma, D.J.; Chen, R.; Zhao, W.; Xie, Q.Y.; Wang, C.; Lin, S.R.; Yuan, W.Q. Climatic limitations on grassland photosynthesis over the Qinghai-Tibet Plateau shifted from temperature to water. Sci. Total Environ. 2024, 906, 167663. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fu, B.J.; Liu, Y.X.; Li, Y.; Feng, X.M.; Wang, S. Response of vegetation to drought in the Qinghai-Tibet Plateau: Elevation differentiation and the dominant factors. Agric. For. Meteorol. 2021, 306, 108468. [Google Scholar] [CrossRef]
- Li, J.X.; Zhao, W.W. Variations of vegetation gross primary productivity and its driving factors in Qinghai-Tibet Plateaul. Acta Ecol. Sin. 2025, 45, 1–14. [Google Scholar]
- Wang, S.J.; Zhang, X.H.; Hou, L.L.; Sun, J.J.; Xu, M. Estimating Global Gross Primary Production Using an Improved MODIS Leaf Area Index Dataset. Remote Sens. 2024, 16, 3731. [Google Scholar] [CrossRef]
- Chen, X.; Cai, A.; Guo, R.J.; Liang, C.Z.; Li, Y.Y. Variation of gross primary productivity dominated by leaf area index in significantly greening area. J. Geogr. Sci. 2023, 33, 1747–1764. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
Name | Altitude (m) | Longitude (°) | Latitude (°) | Time | Underlying Surface |
---|---|---|---|---|---|
Guantan | 2835 | 100.2863 E | 38.556 N | 2010~2011 | Evergreen coniferous forest |
Dashalong | 3033 | 100.4643 E | 38.0473 N | 2015~2020 | Grassland |
Arou | 3739 | 98.9406 E | 38.8399 N | 2014~2021 | Alpine grassland |
Haibei-Shrub | 3250 | 101.31667 E | 37.61667 N | 2006~2010 | Shrublands |
Haibei-Wetland | 3250 | 101.32240 E | 37.60991 N | 2004~2009 | Wetland |
Dangxiong | 4313 | 91.06639 E | 30.49727 N | 2004~2010 | Alpine grassland |
Ali | 4271 | 79.70 E | 33.38 N | 2010.9.6 ~ 2011.8.28 | Alpine grassland |
Lijiang | 3560 | 100.23 E | 27.17 N | 2013~2025 | Alpine grassland |
Maduo | 4410 | 97.32 E | 34.63 N | 2014.5.25~10.31 | Alpine grassland |
Muztag | 3668 | 74.95 E | 38.66 N | 2016 | Alpine grassland |
Mt. Everest | 4276 | 86.56 E | 28.21 N | 2016 | Shrublands |
Shenzha | 4750 | 88.70 E | 30.95 N | 2017~2018 | Wetland |
Naqu | 4598 | 92.01 E | 31.64 N | 2014~2018 | Alpine grassland |
Zoige | 3460 | 102.87 E | 33.93 N | 2008~2009 | Wetland |
Sanjiangyuan | 3960 | 100.55 E | 34.35 N | 2012~2016 | Alpine grassland |
Driving Factor | Positive Correlation (%) | Negative Positive Correlation (%) | Significant (%) (p < 0.05) | Slope |
---|---|---|---|---|
Precipitation | 70.1% | 29.9% | 8.0% | −4.420~15.170 |
Temperature | 83.7 | 16.3 | 40.6% | −0.004~0.094 |
Radiation | 17.1% | 82.9% | 15% | −15.260~4.770 |
Vapor Pressure Deficit | 84.3% | 15.7% | 21% | −0.992~3.502 |
Evapotranspiration | 85.0% | 15.0% | 38% | −9.180~12.440 |
Leaf Area Index | 82.6% | 17.4% | 34.9% | −0.009~0.017 |
Year | ET (X1) | LAI (X2) | Precipitation (X3) | Radiation (X4) | Temperature (X5) | VPD (X6) |
---|---|---|---|---|---|---|
2001 | 0.2195 | 0.8954 | 0.4776 | 0.3764 | 0.1858 | 0.0414 |
[4] | [1] | [2] | [3] | [5] | [6] | |
*** | *** | *** | *** | *** | *** | |
2006 | 0.3876 | 0.7473 | 0.4847 | 0.369 | 0.218 | 0.0302 |
[3] | [1] | [2] | [4] | [5] | [6] | |
2011 | 0.2593 | 0.9012 | 0.4278 | 0.3201 | 0.1345 | 0.0527 |
[4] | [1] | [2] | [3] | [5] | [6] | |
*** | *** | *** | *** | *** | *** | |
2016 | 0.9757 | 0.9103 | 0.3711 | 0.3661 | 0.1368 | 0.0667 |
[1] | [2] | [3] | [4] | [5] | [6] | |
*** | *** | *** | *** | *** | *** | |
2022 | 0.4402 | 0.9072 | 0.4517 | 0.4544 | 0.2287 | 0.0634 |
[4] | [1] | [3] | [2] | [5] | [6] | |
*** | *** | *** | *** | *** | *** | |
2001~2022 | 0.3072 | 0.8976 | 0.5039 | 0.4596 | 0.2468 | 0.0799 |
[4] | [1] | [2] | [3] | [5] | [6] | |
*** | *** | *** | *** | *** | *** |
Year | First-Order Dominant Interaction | Second-Order Dominant Interaction | Third-Order Dominant Interaction |
---|---|---|---|
2001 | LAI ∩ VPD | LAI ∩ Precipitation | LAI ∩ Temperature |
X2 ∩ X6 | X2 ∩ X3 | X2 ∩ X5 | |
0.9032 | 0.9019 | 0.8993 | |
2006 | LAI ∩ Temperature | LAI ∩ Precipitation | LAI ∩ Radiation |
X2 ∩ X5 | X2 ∩ X3 | X2 ∩ X4 | |
0.7806 | 0.7782 | 0.7779 | |
2011 | LAI ∩ Precipitation | ET ∩ LAI | LAI ∩ VPD |
X2 ∩ X3 | X1 ∩ X2 | X2 ∩ X6 | |
0.9071 | 0.9069 | 0.9063 | |
2016 | ET ∩ LAI | ET ∩ Temperature | ET ∩ Precipitation |
X1 ∩ X2 | X1 ∩ X5 | X1 ∩ X3 | |
0.9801 | 0.9771 | 0.9767 | |
2022 | ET ∩ LAI | LAI ∩ Precipitation | LAI ∩ VPD |
X1 ∩ X2 | X2 ∩ X3 | X2 ∩ X6 | |
0.9152 | 0.9150 | 0.9125 | |
2001~2022 | LAI ∩ VPD | LAI ∩ Precipitation | LAI ∩ Temperature |
X2 ∩ X6 | X2 ∩ X3 | X2 ∩ X5 | |
0.9051 | 0.9040 | 0.9025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xin, C.; Sun, M. Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors. Atmosphere 2025, 16, 940. https://doi.org/10.3390/atmos16080940
Zhang L, Xin C, Sun M. Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors. Atmosphere. 2025; 16(8):940. https://doi.org/10.3390/atmos16080940
Chicago/Turabian StyleZhang, Liang, Cunlin Xin, and Meiping Sun. 2025. "Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors" Atmosphere 16, no. 8: 940. https://doi.org/10.3390/atmos16080940
APA StyleZhang, L., Xin, C., & Sun, M. (2025). Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors. Atmosphere, 16(8), 940. https://doi.org/10.3390/atmos16080940