Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (175)

Search Parameters:
Keywords = fiber dispersion limitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 251
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

16 pages, 3185 KiB  
Article
Genetic Diversity and Phylogenetic Relationships of Castor fiber birulai in Xinjiang, China, Revealed by Mitochondrial Cytb and D-loop Sequence Analyses
by Linyin Zhu, Yingjie Ma, Chengbin He, Chuang Huang, Xiaobo Gao, Peng Ding and Linqiang Zhong
Animals 2025, 15(14), 2096; https://doi.org/10.3390/ani15142096 - 16 Jul 2025
Viewed by 269
Abstract
Castor fiber birulai is a subspecies of the Eurasian beaver that has a relatively small population size compared to other Castor subspecies. There is limited genetic research on this subspecies. In this study, mitochondrial cytochrome b (Cytb) and D-loop sequences were [...] Read more.
Castor fiber birulai is a subspecies of the Eurasian beaver that has a relatively small population size compared to other Castor subspecies. There is limited genetic research on this subspecies. In this study, mitochondrial cytochrome b (Cytb) and D-loop sequences were analysed in genetic samples obtained from 19 individuals residing in the Buergen River Basin, Xinjiang, China. The Cytb region presented a single haplotype, whereas three haplotypes were identified in the D-loop region. The genetic diversity within the Chinese population was low (D-loop Hd = 0.444; Pi = 0.0043), markedly lower than that observed in other geographical populations of C. fiber. Phylogenetic reconstructions and haplotype network analyses revealed substantial genetic differentiation between C. f. birulai and other Eurasian lineages (Fst > 0.95), supporting the status of C. f. birulai as a distinct evolutionary lineage. Although the genetic distance between the Chinese and Mongolian populations was relatively small (distance = 0.00269), significant genetic differentiation was detected (Fst = 0.67055), indicating that anthropogenic disturbances—such as hydraulic infrastructure and fencing along the cross-border Bulgan River—may have impeded gene flow and dispersal. Demographic analyses provided no evidence of recent population expansion (Fu’s Fs = 0.19152), suggesting a demographically stable population. In subsequent studies, we recommend increasing nuclear gene data to verify whether the C. f. birulai population meets the criteria for Evolutionarily Significant Unit classification, and strengthening cross-border protection and cooperation between China and Mongolia. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

18 pages, 3864 KiB  
Article
Composite Metal Oxide Nanopowder-Based Fiber-Optic Fabry–Perot Interferometer for Protein Biomarker Detection
by Ulpan Balgimbayeva, Zhanar Kalkozova, Kuanysh Seitkamal, Daniele Tosi, Khabibulla Abdullin and Wilfried Blanc
Biosensors 2025, 15(7), 449; https://doi.org/10.3390/bios15070449 - 13 Jul 2025
Viewed by 401
Abstract
In this paper, we present the development of a new semi-distributed interferometer (SDI) biosensor with a Zn, Cu, and Co metal oxide nanopowder coating for the detection of a kidney disease biomarker as a model system. The combination of nanopowder coating with the [...] Read more.
In this paper, we present the development of a new semi-distributed interferometer (SDI) biosensor with a Zn, Cu, and Co metal oxide nanopowder coating for the detection of a kidney disease biomarker as a model system. The combination of nanopowder coating with the SDI platform opens up unique opportunities for improving measurement reproducibility while maintaining high sensitivity. The fabrication of sensors is simple, which involves one splice and subsequent cutting at the end of an optical fiber. To ensure specific detection of the biomarker, a monoclonal antibody was immobilized on the surface of the probe. The biosensor has demonstrated an impressive ability to detect biomarkers in a wide range of concentrations, from 1 aM to 100 nM. The theoretical limit of detection was 126 fM, and the attomolar detection level was experimentally achieved. The sensors have achieved a maximum sensitivity of 190 dB/RIU and operate with improved stability and reduced dispersion. Quantitative analysis revealed that the sensor’s response gradually increases with increasing concentration. The signal varies from 0.05 dB at 1 aM to 0.81 dB at 100 nM, and the linear correlation coefficient was R2 = 0.96. The sensor showed excellent specificity and reproducibility, maintaining detection accuracy at about 10−4 RIU. This opens up new horizons for reliable and highly sensitive biomarker detection, which can be useful for early disease diagnosis and monitoring using a cost-effective and reproducible sensor system. Full article
(This article belongs to the Special Issue New Progress in Optical Fiber-Based Biosensors—2nd Edition)
Show Figures

Figure 1

14 pages, 4406 KiB  
Article
Craftsmanship and Techniques of a Lacquered Ear Cup from the Ancient Nanyue Kingdom
by Lin Zheng, Xia Li, Zichen Zhao, Shuang’e Tian, Jianling Tang, Siming Li, Xiaocen Li, Na Wang and Tengfei Yu
Coatings 2025, 15(7), 752; https://doi.org/10.3390/coatings15070752 - 25 Jun 2025
Viewed by 408
Abstract
This study analyzes a lacquered ear cup excavated from the Luobowan tomb complex in Guigang, Guangxi, attributed to the Nanyue Kingdom of the early Han dynasty. A range of analytical techniques, including optical microscopy (OM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), [...] Read more.
This study analyzes a lacquered ear cup excavated from the Luobowan tomb complex in Guigang, Guangxi, attributed to the Nanyue Kingdom of the early Han dynasty. A range of analytical techniques, including optical microscopy (OM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), pyrolysis–gas chromatography–mass spectrometry (Py-GC-MS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), were employed to investigate the structural layers, material composition, and preservation state of the artifact. The lacquerware consists of four traditional layers: a wooden core, fabric reinforcement, lacquer ground, and lacquer film, reflecting Central Plains lacquerware techniques. The wooden core was identified as Phoebe sp., and the fabric layer is likely hemp, though fiber degradation limited exact identification. The lacquer ground layer contains natural lacquer mixed with SiO2 from brick or tile powder. The lacquer film is a blend of Chinese and Vietnamese lacquer, with no synthetic additives or plant oils detected. The red lacquer layer contains cinnabar (HgS) as a pigment, while the black lacquer uses carbon black. Differences in moisture content between the red and black lacquer films are attributed to variations in surface porosity and pigment characteristics. This research provides valuable insights into Nanyue lacquer technology and preservation challenges. Full article
(This article belongs to the Special Issue Research and Conservation of Ancient Lacquer)
Show Figures

Figure 1

17 pages, 3104 KiB  
Article
Investigating the Bond Performance of FRP Bars and Concrete Under Dynamic Loading Conditions
by Wenhui Bao, Yini Tan, Hao Li, Chenglong Liang, Hui Chen and Chuanqing Fu
Coatings 2025, 15(6), 716; https://doi.org/10.3390/coatings15060716 - 13 Jun 2025
Viewed by 538
Abstract
With growing emphasis on sustainable construction, fiber-reinforced polymer (FRP) bars are increasingly being used as alternatives to steel rebars due to their high strength-to-weight ratio, corrosion resistance, and environmental benefits. This study has investigated the bond behavior between FRP bars and concrete of [...] Read more.
With growing emphasis on sustainable construction, fiber-reinforced polymer (FRP) bars are increasingly being used as alternatives to steel rebars due to their high strength-to-weight ratio, corrosion resistance, and environmental benefits. This study has investigated the bond behavior between FRP bars and concrete of different strength grades under dynamic loading conditions. To analyze the microscopic properties of FRP bar surfaces, the study employs a variety of techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and non-contact surface profilometry. In addition, X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and energy dispersive spectrometry (EDS) are used to further investigate surface characteristics. The results reveal a direct correlation between the resin surface roughness of FRP bars and their wettability characteristics, which in turn influence the cement hydration process. Pull-out tests under different loading rates and concrete strength grades have been conducted to evaluate the bond–slip behavior and failure modes. The results indicate that bond strength increases with increasing concrete strength. Dynamic pull-out tests further reveal that higher loading rates generate heterogeneous stress fields, which limit the deformation of FRP bars and consequently diminish the contribution of mechanical interlock to interfacial bonding. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

18 pages, 2542 KiB  
Article
From Plant to Polymers: Micro-Processing Sisal Fiber-Reinforced PLA/PHA Bio-LFTs at Laboratory Scale
by Rumeysa Yıldırım, Nursel Karakaya, Bas Liebau, Tim Welten, Beyza Bayram, Mehmet Kodal and Güralp Özkoç
Polymers 2025, 17(12), 1618; https://doi.org/10.3390/polym17121618 - 11 Jun 2025
Viewed by 723
Abstract
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated [...] Read more.
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated with dispersing and processing high-aspect-ratio natural fibers. The rheological, mechanical, thermal, and morphological properties of the resulting bio-LFT composites were systematically characterized using FTIR, SEM, rotational rheology, mechanical testing, DSC, and TGA. The results demonstrated generally homogeneous fiber dispersion, although limited interfacial adhesion between the fibers and polymer matrix was observed. Mechanical tests revealed that sisal fiber incorporation significantly enhanced tensile strength and stiffness, while impact toughness decreased. Thermal analyses showed improved crystallinity and thermal stability with increasing PHA content and fiber reinforcement. Overall, this work highlights the potential of natural fibers to create high-performance, sustainable biocomposites and lays a solid foundation for future advancements in developing eco-friendly structural materials. Full article
Show Figures

Graphical abstract

11 pages, 2025 KiB  
Article
Complete Dispersion Measurement for Few-Mode Fibers with Large Mode Numbers Enabled by Multiplexer-Assisted S2
by Bingyi Zhao, Zhiqun Yang, Zhongze Lv, Huihui Wang, Yaping Liu, Zhanhua Huang and Lin Zhang
Photonics 2025, 12(6), 561; https://doi.org/10.3390/photonics12060561 - 3 Jun 2025
Viewed by 325
Abstract
With the widespread use and increasing importance of few-mode fibers (FMFs), comprehensive dispersion measurement for FMFs with large mode numbers is in urgent demand. Among existing methods, spatially and spectrally resolved (S2) imaging technique offers distinct advantages for measuring differential mode [...] Read more.
With the widespread use and increasing importance of few-mode fibers (FMFs), comprehensive dispersion measurement for FMFs with large mode numbers is in urgent demand. Among existing methods, spatially and spectrally resolved (S2) imaging technique offers distinct advantages for measuring differential mode group delay (DMGD) and chromatic dispersion (CD) parameters. However, it suffers from several limitations such as uncontrollable mode excitation and an inability to measure absolute CD. In this study, we enhance the traditional S2 method, making it possible to effectively measure the complete dispersion for high-mode-count FMFs. By introducing a mode multiplexer (MMUX), selectively and proportionally mode excitation can be realized. Combined with a tunable delay line array, the misalignment of the MMUX’s fiber pigtail lengths is canceled. Additionally, with the help of a reference path capable of generating planar light, the measurement of the absolute CD is enabled. Based on the enhanced MMUX-assisted S2, a simultaneous DMGD and absolute CD measurement for an FMF supporting up to six LP modes is conducted, which has not been previously demonstrated with a single S2-based system. The proposed paradigm significantly expands the mode number of FMF measurable by S2, enriches the parameters that S2 can cover, and even has great inspiration for other measurement methods. Full article
Show Figures

Figure 1

19 pages, 5185 KiB  
Article
Smart Cement-Based Materials Reinforced with CNT-Grafted CFs: Preparation and Performance Evaluation
by Xiaoyan Liu, Xiangwei Guo, Junqing Zuo, Aihua Liu, Haifeng Li, Feng Fu, Gangao Wang, Qianwen Hu and Surendra P. Shah
Nanomaterials 2025, 15(11), 823; https://doi.org/10.3390/nano15110823 - 29 May 2025
Viewed by 438
Abstract
Smart cement-based materials have the potential to monitor the health of structures. The performances of composites with various kinds of conductive fillers have been found to be sensitive and stable. However, poor dispersion of conductive fillers limits their application. This study adopted the [...] Read more.
Smart cement-based materials have the potential to monitor the health of structures. The performances of composites with various kinds of conductive fillers have been found to be sensitive and stable. However, poor dispersion of conductive fillers limits their application. This study adopted the coupling agent method to attach carbon nanotubes (CNTs) onto the surface of carbon fibers (CFs). The CNT-grafted CFs (CNT-CFs) were adopted as conductive fillers to develop a CNT-CF-incorporated cementitious composite (CNT-CF/CC). The feasibility of this approach was demonstrated through Scanning Electron Microscopy (SEM) analysis and X-ray Photoelectron Spectroscopy (XPS) analysis. The CNT-CF/CC exhibited excellent conductivity because of the introduction of CNTs compared with the CF-incorporated cementitious composite (CF/CC). The CNT-CF/CC reflected huge responses under different temperatures and moisture contents. Even under conditions of high humidity or elevated temperatures, the CNT-CF/CC demonstrated stable performance and exhibited a broad measurement range. The introduction of CNT-CFs also enhanced the mechanical properties of the composite, displaying superior piezoresistivity. The failure load for the CNT-CF/CC reached 25 kN and the maximum FCR was 24.77%. In the cyclic loading, the maximum FCR reached 20.03% when subjected to peak cyclic load at 45% of the failure load. The additional conductive pathways introduced by CNTs enhanced the conductivity and sensitivity of the composite. And the anchoring connection between CNT-CFs and the cement matrix has been identified as a primary factor enhancing the stability in performance. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Figure 1

22 pages, 4907 KiB  
Article
Dynamic Abrasion Resistance and Fractal-Based Damage Quantification in Fiber Rubber Concrete for Hydraulic Structures
by Zhantao Li, Shuangxi Li and Chunmeng Jiang
Buildings 2025, 15(11), 1770; https://doi.org/10.3390/buildings15111770 - 22 May 2025
Viewed by 352
Abstract
Hydraulic concrete is subject to severe durability challenges when abraded by the high-speed flow of sandy water. Conventional concrete frequently needs to be repaired because of its high brittleness and insufficient abrasion resistance, while granular rubber can easily be dislodged from the matrix [...] Read more.
Hydraulic concrete is subject to severe durability challenges when abraded by the high-speed flow of sandy water. Conventional concrete frequently needs to be repaired because of its high brittleness and insufficient abrasion resistance, while granular rubber can easily be dislodged from the matrix during abrasion, forming a new source of abrasion and increasing the damage to the matrix. For this reason, we used fibrous rubber concrete to systematically study the mechanisms of the influence of the dosage of nitrile rubber (5%, 10%, and 15%) and fiber length (6, 12, and 18 mm) on resistance to impact and abrasion performance. Through mechanical tests, underwater steel ball abrasion tests, three-dimensional morphology measurements, and fractal dimension analysis, the law behind the damage evolution of fibrous rubber concrete was revealed. The results show that concrete with 15% NBR and 12 mm fibers yielded the best performance, and its 144-hour abrasion resistance reached 25.0 h/(kg/m2), which is 163.7% higher than that for the baseline group. Fractal dimension analysis (D = 2.204 for the optimum group vs. 2.356 for the benchmark group) showed that the fiber network effectively suppressed surface damage extension. The long-term mass loss rate was only 2.36% (5.82% for the benchmark group), and the elastic energy dissipation mechanism remained stable under dynamic loading. The results of a microanalysis showed that the high surface roughness of NBR enhances interfacial bonding, which synergizes with crack bridging and stress dispersion and, thus, forms a multiscale anti-impact abrasion barrier. This study provides a new material solution for the design of durable concrete for use in high-impact and high-abrasion environments, which combines mechanical property preservation and resource recycling value. However, we did not systematically examine the evolution of the performance of fiber rubber concrete concrete under long-term environmental coupling conditions, such as freeze–thaw cycles, ultraviolet aging, or chemical attacks, and there are limitations to our assessment of full life-cycle durability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 8672 KiB  
Article
Enhancing the Mechanical Properties of Recycled Aggregate Concrete: A Comparative Study of Basalt- and Glass-Fiber Reinforcements
by Shibo Bao, Shuangjie Wang, Huahua Xia, Kewei Liu, Xugang Tang and Peng Jin
Buildings 2025, 15(10), 1718; https://doi.org/10.3390/buildings15101718 - 19 May 2025
Cited by 1 | Viewed by 649
Abstract
Recycled aggregate concrete (RAC) holds significant promise for reducing the environmental impact of the construction industry. However, the poor mechanical properties of RAC compared to conventional concrete are mainly due to the porous and soft nature of recycled aggregates. While fiber reinforcement has [...] Read more.
Recycled aggregate concrete (RAC) holds significant promise for reducing the environmental impact of the construction industry. However, the poor mechanical properties of RAC compared to conventional concrete are mainly due to the porous and soft nature of recycled aggregates. While fiber reinforcement has been proposed as a promising method to address this issue, existing studies primarily focus on steel and polypropylene fibers, with limited systematic comparison of alternative fiber types and dosages. In particular, the mechanical enhancement mechanisms of basalt and glass fibers in RAC remain underexplored, and there is a lack of predictive models for strength behavior. This study evaluates the effects of basalt and glass fibers on RAC through uniaxial compression, splitting tensile, and three-point bending tests. Nine mixtures with varying fiber types and volume fractions (1.0–2.5%) were tested, and results were compared to plain RAC. Key properties such as strength, energy absorption, toughness, and flexibility were analyzed using load–displacement curves and advanced toughness indices. Both fiber types improved tensile and flexural properties, with glass fibers showing superior performance, particularly at 1.5% content, where the splitting tensile strength increased by up to 40% and the flexural strength improved by 42.19%. Basalt fibers dispersed more uniformly but were less effective in enhancing toughness and crack resistance. Excessive fiber content reduced matrix homogeneity and mechanical performance. Optimal fiber dosages were identified as 1–1.5% for glass fibers and 1–2% for basalt fibers, depending on the targeted property. Predictive formulas for the flexural strength of fiber-reinforced RAC are also proposed, offering guidance for the design of structural RAC elements. Full article
(This article belongs to the Special Issue The Damage and Fracture Analysis in Rocks and Concretes)
Show Figures

Figure 1

37 pages, 6284 KiB  
Systematic Review
Valorization of Medical Waste in Cement-Based Construction Materials: A Systematic Review
by M. Murillo, S. Manzano, Y. F. Silva, C. Burbano-García and G. Araya-Letelier
Buildings 2025, 15(10), 1643; https://doi.org/10.3390/buildings15101643 - 13 May 2025
Viewed by 926
Abstract
Worldwide, the healthcare industry produces massive quantities of medical waste (MW), most of which is incinerated, releasing large quantities of dioxins, mercury, and other pollutants. Despite this, only a limited number of studies have explored the incorporation of MW into construction materials, with [...] Read more.
Worldwide, the healthcare industry produces massive quantities of medical waste (MW), most of which is incinerated, releasing large quantities of dioxins, mercury, and other pollutants. Despite this, only a limited number of studies have explored the incorporation of MW into construction materials, with a special focus on cement-based construction materials (CB-CMs). However, to the best of the authors’ knowledge, no existing review formally structures, summarizes, correlates, and discusses the findings of previous studies on MW in CB-CMs to encourage further research and applications of this promising alternative. Therefore, the added value of this study lies in providing an innovative and critical analysis of existing research on the use of MW in CB-CMs, consolidating and evaluating dispersed findings through a systematic literature review, enhancing understanding of the topic, and identifying knowledge gaps to guide future research. A robust systematic literature review was conducted, encompassing 40 peer-reviewed research articles, retrieved from the Web of Science Core Collection database. The methodology involved a three-stage process: a descriptive analysis of the included articles, the identification and synthesis of key thematic areas, and a critical evaluation of the data to ensure a rigorous and systematic report. The selection criteria prioritized peer-reviewed research articles in English with full text availability published in the last 7 years, explicitly excluding conference papers, book chapters, short reports, and articles not meeting the language or accessibility requirements. The results indicate that the influence of MW in CB-CM varies significantly. For example, while the incorporation of face masks as fiber reinforcement in concrete generally enhances its mechanical and durability properties, the use of gloves is less effective and not always recommended. Finally, it was found that further research is needed in this field due to its novelty. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Graphical abstract

18 pages, 14418 KiB  
Article
Recovery of End-of-Life Building Materials: Thermal Decomposition and Phase Transformation of Chrysotile in Asbestos-Containing Fiber Cement Boards
by António Curado, Leonel J. R. Nunes, Arlete Carvalho, João Abrantes, Eduarda Lima and Mário Tomé
Fibers 2025, 13(5), 62; https://doi.org/10.3390/fib13050062 - 9 May 2025
Viewed by 601
Abstract
The circular economy emphasizes reducing, recycling, and reusing waste, a principle that is challenging to apply to hazardous materials like asbestos-containing construction waste, typically destined for landfills due to limited recycling options. This experimental study investigates the physicochemical characterization of asbestos fibers in [...] Read more.
The circular economy emphasizes reducing, recycling, and reusing waste, a principle that is challenging to apply to hazardous materials like asbestos-containing construction waste, typically destined for landfills due to limited recycling options. This experimental study investigates the physicochemical characterization of asbestos fibers in fiber cement boards and assesses the efficacy of mechanical grinding and thermal treatments to transform these fibers into non-fibrous, stable phases for reuse in sustainable construction applications, such as cement and mineral wool production. Using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), we analyzed samples from end-of-life fiber cement panels, subjecting them to thermal treatments at 700 °C, 1000 °C, and 1200 °C. Results show that, while grinding reduces particle size, it does not eliminate fibrous structures; however, thermal treatment above 1000 °C fully converts chrysotile into forsterite and enstatite, eliminating health risks and enabling material reuse. These findings, that are part of the FiberRec project, support a systematic approach to integrating asbestos-containing waste into a closed-loop material cycle, significantly reducing carbon emissions and landfill dependency. Full article
Show Figures

Figure 1

18 pages, 4180 KiB  
Article
Study on the Influence of Fiber Parameters on the Mechanical Properties of Self-Compacting Concrete
by Yu Zhao, Nan Ru, Jun Wang, Yong Li and Yi Zhou
Constr. Mater. 2025, 5(2), 25; https://doi.org/10.3390/constrmater5020025 - 19 Apr 2025
Viewed by 422
Abstract
To address the issues of significant brittleness in self-compacting concrete (SCC), limited parameter ranges in existing steel fiber reinforcement studies, and incomplete performance evaluation systems, this study conducted mechanical performance tests on steel fiber-reinforced SCC (SFRSCC) with a wide range of volume fractions [...] Read more.
To address the issues of significant brittleness in self-compacting concrete (SCC), limited parameter ranges in existing steel fiber reinforcement studies, and incomplete performance evaluation systems, this study conducted mechanical performance tests on steel fiber-reinforced SCC (SFRSCC) with a wide range of volume fractions (1–3%) and multiple aspect ratios. A multi-indicator comprehensive evaluation model of compressive strength, flexural strength, and elastic modulus was established using an improved entropy-weighted TOPSIS method. Gray relational analysis was integrated to reveal nonlinear correlation patterns between fiber parameters (the volume fraction and aspect ratio) and mechanical responses. The experimental results demonstrated the following: (1) At a 3% fiber content, compressive and flexural strengths increased by 25.7% and 280%, respectively, compared to the control group; (2) the elastic modulus peaked at 2% fiber content, with excessive content (3%) causing an uneven fiber dispersion and diminishing performance gains; (3) short fibers (6 mm) achieved optimal compressive strength at 3% content and medium-length fibers (13 mm) significantly enhanced flexural strength, while long fibers (25 mm) maximized the elastic modulus at 2% content. The combined application of the improved entropy-weighted TOPSIS method and gray relational analysis identified that the high fiber content (3%) paired with medium-length fibers (13 mm) optimally balanced flexural strength and toughness, providing theoretical guidance for the application of SFRSCC in tensile- and crack-resistant engineering projects. Full article
Show Figures

Figure 1

24 pages, 20309 KiB  
Article
Study on the Influence and Mechanism of Steel, Polyvinyl Alcohol, and Polyethylene Fibers on Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Enhui Jiang, Kunpeng Li, Huawei Shi, Chen Chen and Chengfang Yuan
Polymers 2025, 17(8), 1072; https://doi.org/10.3390/polym17081072 - 16 Apr 2025
Cited by 1 | Viewed by 391
Abstract
Steel fibers (STs), polyvinyl alcohol fibers (PVAs), and polyethylene fibers (PEs) were selected to systematically investigate the effects of different fiber types and dosages on the workability (slump and spread) and mechanical properties (compressive strength and splitting tensile strength) of slag–Yellow River sand [...] Read more.
Steel fibers (STs), polyvinyl alcohol fibers (PVAs), and polyethylene fibers (PEs) were selected to systematically investigate the effects of different fiber types and dosages on the workability (slump and spread) and mechanical properties (compressive strength and splitting tensile strength) of slag–Yellow River sand geopolymer eco-cementitious materials. By combining microstructural testing techniques such as thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), the influence mechanisms of fibers on the characteristic products and microstructure of the matrix were thoroughly revealed, and the role of fibers in the strength development of Yellow River sediment-based geopolymers was elucidated. The results show that as the fiber content increases, the workability of the mixture significantly decreases. The appropriate incorporation of steel fibers and PVAs can significantly enhance the strength and toughness of the matrix. When the fiber dosage is 1%, the 28-day compressive strength of specimens with steel fibers and PVAs increased by 25.93% and 21.96%, respectively, compared to the control group, while the splitting tensile strength increased by 50.00% and 60.34%, respectively. However, the mechanisms of action differ significantly; steel fibers primarily enhance the compressive performance of the matrix through their high stiffness and strength, whereas PVAs inhibit crack propagation through their flexibility and excellent bonding properties. In contrast, the strength improvement of PEs is mainly reflected in toughening. When the fiber dosage is 1.5%, the 28-day splitting tensile strength of PE specimens increased by 72.61%, and the tensile-to-compressive ratio increased by 92.32% compared to the control group. Microstructural analysis indicates that the incorporation of different types of fibers does not alter the types of characteristic products in alkali-activated cementitious materials, but excessive fiber content affects the generation of gel-like products and the distribution of free water, thereby altering the thermal decomposition behavior of characteristic gel products. Additionally, the matrix incorporating PEs forms a honeycomb-like amorphous gel, resulting in weak interfacial bonding between the fibers and the matrix. This is one of the main reasons for the limited reinforcing effect of PEs at the microscopic scale and a key factor for their inferior long-term performance compared to steel fibers and PVAs. This study provides theoretical foundations and practical guidance for optimizing the performance of fiber-reinforced geopolymer materials. Full article
Show Figures

Figure 1

9 pages, 1394 KiB  
Article
Sub-200 fs Polarization-Maintaining All-Fiber Thulium-Doped Dissipative Soliton Fiber Laser System at 1920 nm
by Timothy Lim, Shutao Xu, Lachlan Hooper, Maria Davey and Michelle Y. Sander
Photonics 2025, 12(4), 361; https://doi.org/10.3390/photonics12040361 - 10 Apr 2025
Viewed by 571
Abstract
A polarization-maintaining all-fiber laser source based on a nonlinear amplifying loop mirror with broadband operation (64 nm) around 1920 nm is demonstrated. The oscillator can generate 66 pJ up-chirped dissipative soliton pulses at a repetition rate of 22.8 MHz with a high polarization [...] Read more.
A polarization-maintaining all-fiber laser source based on a nonlinear amplifying loop mirror with broadband operation (64 nm) around 1920 nm is demonstrated. The oscillator can generate 66 pJ up-chirped dissipative soliton pulses at a repetition rate of 22.8 MHz with a high polarization extinction ratio of 17 dB. By adding a polarization controller to the polarization-maintaining dispersion-compensating fiber, the filter behavior can be adjusted allowing for the tuning of the emission to a center wavelength of 1878 nm, 1907 nm, and 1926 nm. Using an all-polarization-maintaining single-mode fiber amplifier with anomalous dispersion, the pulses are amplified to 0.9 nJ and compressed to a near Fourier-limited pulse duration of 170 fs with a peak power of 4.3 kW. Such all-fiber-based sources are attractive due to their compact size, high beam quality, and good environment stability. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

Back to TopTop