Dynamic Abrasion Resistance and Fractal-Based Damage Quantification in Fiber Rubber Concrete for Hydraulic Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials Used in the Experiment
2.2. Preparation of Rubberized Fiber-Reinforced Concrete Specimens
2.3. Test Methods
3. Results
3.1. Mechanical Properties
3.2. Impact Resistance
3.3. Evolutionary Pattern of Abrasion Strength
3.4. Characteristics of Dynamic Evolution Regarding Punching and Grinding Damage
3.5. Fractal Characterization of Surface Topography and Damage Quantification
3.5.1. Three-Dimensional Morphology Measurement
3.5.2. Calculation of the Fractal Dimension
3.5.3. Test Results and Analysis
3.6. Multiscale Analysis of the Mechanism of the Impact Abrasion Resistance of Fibrous Rubber
3.7. Mechanism Behind the Negative Correlation Between Compressive Strength and Splitting Tensile Strength and Abrasion Resistance
3.8. Positive Drivers of the Influence of the Impact Toughness Ratio on Impact Wear Performance
4. Discussion
5. Conclusions
- (1)
- The incorporation of fibrous rubber significantly increased the impact abrasion resistance of the concrete. The optimum group (15% NBR and a fiber length of 12 mm) achieved 25.0 h/(kg/m2) after 144 h, which is 163.7% higher than that of ordinary concrete. The dosage and length of fibers need to be synergistically optimized: the higher the dosage (15%) and the longer the fibers (12 mm), the better the performance, but excessively long fibers (18 mm) lead to a decrease in performance due to agglomeration at high dosages.
- (2)
- Fibrous rubberized concrete showed stability in long-term punching and grinding experiments. In the case of the optimum group, the mass loss after 144 h was only 2.36%, which is 40.5% of that of ordinary concrete. The wear rate tended to level off with time, indicating that this concrete’s elastic energy dissipation mechanism was still effective under long-term loading conditions.
- (3)
- Surface roughness was characterized using the fractal dimension D. It was found that the fractal dimension of fiber concrete was significantly lower than that of ordinary concrete (D = 2.204 for 144 h in the optimal group and D = 2.356 in the benchmark group), indicating that the fiber network inhibited surface damage extension. The fractal dimension was highly correlated with mass loss and volume loss, which can be used as quantitative evaluation indices of impact and abrasion resistance.
- (4)
- Fibrous rubber absorbs impact energy through large deformation and reduces matrix stress. A chaotic distribution of fibers leads to the formation of a spatial mesh structure, bridging cracks and slowing down expansion. The high surface roughness of nitrile rubber enhances its bonding force with the cement matrix and reduces interfacial debonding, and the elasticity of the fibers restores the structural integrity of a material over long-term punching and grinding.
- (5)
- Compressive strength and splitting tensile strength are negatively correlated with impact and abrasion strength. The impact toughness of fibrous rubber concrete is positively correlated with its impact abrasion resistance; i.e., fibrous rubber concrete with good impact toughness will have greater impact abrasion resistance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tanchev, L. Dams and Appurtenant Hydraulic Structures; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Su, F.; Ma, X.; Lin, Y.; He, T. Exploring the factors influencing the abrasion resistance of hydraulic concrete based on underwater steel ball test. Case Stud. Constr. Mater. 2024, 20, e03020. [Google Scholar] [CrossRef]
- Müller-Hagmann, M.; Albayrak, I.; Auel, C.; Boes, R.M. Field Investigation on Hydroabrasion in High-Speed Sediment-Laden Flows at Sediment Bypass Tunnels. Water 2020, 12, 469. [Google Scholar] [CrossRef]
- Liu, Q.; Andersen, L.V.; Zhang, M.; Wu, M. Abrasion damage of concrete for hydraulic structures and mitigation measures: A comprehensive review. Constr. Build. Mater. 2024, 422, 135754. [Google Scholar] [CrossRef]
- Cheyad, S.M.; Hilo, A.N.; Al-Gasham, T.S. Comparing the abrasion resistance of conventional concrete and geopolymer samples. Mater. Today Proc. 2022, 56, 1832–1839. [Google Scholar] [CrossRef]
- Guo, J.; Gao, M.; Wang, K.; Zhang, P. Mechanisms and influential variables on the abrasion resistance hydraulic concrete. Nanotechnol. Rev. 2022, 11, 2997–3019. [Google Scholar] [CrossRef]
- Qiong, L.; Liang, L.; Vabbersgaard, L.A.; Min, W. Studying the abrasion damage of concrete for hydraulic structures under various flow conditions. Cem. Concr. Compos. 2023, 135, 104849. [Google Scholar]
- Thomas, B.S.; Kumar, S.; Mehra, P.; Gupta, R.C.; Joseph, M.; Csetenyi, L.J. Abrasion resistance of sustainable green concrete containing waste tire rubber particles. Constr. Build. Mater. 2016, 124, 906–909. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, B.; Li, G. The abrasion-resistance investigation of rubberized concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2012, 27, 1144–1148. [Google Scholar] [CrossRef]
- Bisht, K.; Ramana, P.V. Evaluation of mechanical and durability properties of crumb rubber concrete. Constr. Build. Mater. 2017, 155, 811–817. [Google Scholar] [CrossRef]
- Chen, F.; Zou, C.; Zhou, Y.; Hu, S.; Mao, J. Correlation analysis of abrasion resistance of rubber concrete with microstructure and pore structure. Constr. Build. Mater. 2025, 475, 141211. [Google Scholar] [CrossRef]
- Chen, X.; Han, X.; Ji, Y.; Duan, W.; Zhang, K. Research Status on Mechanical and Anti-Abrasion Properties of Rubber Concrete. Henan Sci. Technol. 2022, 41, 65–68. (In Chinese) [Google Scholar]
- Feng, L.; Chen, A.; Liu, H. Effect of waste tire rubber particles on concrete abrasion resistance under high-speed water flow. Int. J. Concr. Struct. Mater. 2021, 15, 37. [Google Scholar] [CrossRef]
- Niu, J.; Kong, F.; Zhu, X.; Li, J. Research and Application of Fiber-Reinforced Hydraulic Anti-Abrasion Concrete. Henan Water Resour. South-to-North Water Divers. 2019, 48, 84–86. (In Chinese) [Google Scholar]
- Li, S.; Tang, L.; Shi, W.; Zhong, C. Experimental investigation on hydroabrasive erosion of steel fiber UHPC and rubber UHPC. Adv. Mater. Sci. Eng. 2020, 2020, 5920824. [Google Scholar] [CrossRef]
- Li, S.; Wei, K.; Jiang, C. Anti-Abrasion Performance of Basalt Fiber Rubber Concrete. J. Civ. Environ. Eng. (Chin. Engl.) 2024, 46, 175–182. (In Chinese) [Google Scholar]
- Li, Z.; Li, S.; Jiang, C. A Study on the Mechanical Properties and Performance of Fibrous Rubberized Concrete. Buildings 2025, 15, 1245. [Google Scholar] [CrossRef]
- SL/T 325-2020; Hydraulic Concrete Test Procedure. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2020.
- CECS 13:2009; Standard Test Methods for Fiber Concrete. Beijing China Planning Publishing House: Beijing, China, 2009.
- Feng, L.; Yuan, Q.; Ma, Y.; Shi, C. Experimental Study on Mechanical Properties of Rubber Concrete. J. Yangtze River Sci. Res. Inst. 2015, 32, 115–118. (In Chinese) [Google Scholar]
- Liang, C.; Liu, T.; Xiao, J.; Zou, D.; Yang, Q. The damping property of recycled aggregate concrete. Constr. Build. Mater. 2016, 102, 834–842. [Google Scholar] [CrossRef]
- Jiang, C.; An, S.; Li, S.; Wu, B. Evaluation and Prediction of Anti-Abrasion Performance of Hydraulic Concrete Based on Three-Dimensional Topography. Concr. Cem. Prod. 2024, 6, 82–87. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, H.W.; Xie, H. Direct estimation of the fractal dimensions of a fracture surface of rock. Surf. Rev. Lett. 2003, 10, 751–762. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Wang, R.; Lei, Y. Performance enhancement of rubberised concrete via surface modification of rubber: A review. Constr. Build. Mater. 2019, 227, 116691. [Google Scholar] [CrossRef]
- Zhu, Z.; Tai, C.; Zhang, Y.; Lu, Y. Effects and mechanisms of green-modified waste rubber particles on the mechanical properties and durability of cement-based materials. J. Build. Eng. 2025, 104, 112237. [Google Scholar] [CrossRef]
- He, L.; Ma, Y.; Liu, Q.; Mu, Y. Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete. Constr. Build. Mater. 2016, 120, 403–407. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z.; Leung, C.K.Y.; Tang, S.; Pan, J.; Huang, W.; Chen, E. Properties of rubberized concrete modified by using silane coupling agent and carboxylated SBR. J. Clean. Prod. 2016, 112, 797–807. [Google Scholar] [CrossRef]
- Zhang, L. Comparative Experimental Study on Anti-Abrasion Performance of Modified Rubber Concrete. Water Sci. Cold Reg. Eng. 2023, 6, 34–37. (In Chinese) [Google Scholar]
- Wang, D.; Wang, Z.; Cao, H.; Wang, W. Study on Fractal Characteristics and Mechanical Properties of Nano-SiO2 Coated Modified Rubber Concrete. Shanxi Archit. 2024, 50, 9–13. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Wu, B.; Jiang, C.; Wu, L. Study on the damage mechanism of hydraulic concrete under the alternating action of freeze-thaw and abrasion. Constr. Build. Mater. 2024, 447, 137976. [Google Scholar] [CrossRef]
- Gesoğlu, M.; Güneyisi, E.; Khoshnaw, G.; İpek, S. Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Constr. Build. Mater. 2014, 73, 19–24. [Google Scholar] [CrossRef]
Density | Specific Surface Area | Standard-Consistency Water Consumption | Setting Time (min) | Compression Strength (MPa) | Flexural Strength (MPa) | |||
---|---|---|---|---|---|---|---|---|
(g/cm3) | (m2/kg) | (%) | Initial setting | Final setting | 3 d | 28 d | 3 d | 28 d |
3.13 | 366 | 26.7 | 184 | 237 | 25.7 | 51.5 | 5.6 | 8.6 |
Element Content | C | O | Ca | Zn | S | Na | Cl | K | Si | Al |
---|---|---|---|---|---|---|---|---|---|---|
(%) | 66.44 | 17.27 | 6.04 | 0.67 | 0.93 | 0.12 | 3.92 | 0.03 | 4.41 | 0.17 |
Test Number | Cement (kg·m−3) | Water (kg·m−3) | Sand (kg·m−3) | Stone (kg·m−3) | Rubber Length (mm) | Rubber Content (%) |
---|---|---|---|---|---|---|
1 | 475 | 190 | 677.5 | 1016 | — | — |
2 | 475 | 190 | 643.6 | 1016 | 6 | 5 |
3 | 475 | 190 | 643.6 | 1016 | 12 | 5 |
4 | 475 | 190 | 643.6 | 1016 | 18 | 5 |
5 | 475 | 190 | 609.8 | 1016 | 6 | 10 |
6 | 475 | 190 | 609.8 | 1016 | 12 | 10 |
7 | 475 | 190 | 609.8 | 1016 | 18 | 10 |
8 | 475 | 190 | 575.9 | 1016 | 6 | 15 |
9 | 475 | 190 | 575.9 | 1016 | 12 | 15 |
10 | 475 | 190 | 575.9 | 1016 | 18 | 15 |
Test Number | Rubber Length (mm) | Rubber Doping (%) | Cubic Compressive Strength (MPa) | Cubic Splitting Tensile Strength (MPa) |
---|---|---|---|---|
1 | — | — | 52.6 | 3.76 |
2 | 6 | 5 | 46.87 | 3.43 |
3 | 12 | 5 | 48.6 | 3.56 |
4 | 18 | 5 | 49.94 | 3.66 |
5 | 6 | 10 | 44.21 | 3.3 |
6 | 12 | 10 | 45.7 | 3.38 |
7 | 18 | 10 | 47.1 | 3.43 |
8 | 6 | 15 | 38.43 | 3.03 |
9 | 12 | 15 | 40.12 | 3.18 |
10 | 18 | 15 | 39.97 | 3.1 |
Test Number | Number of Impacts | Number of Impacts of a Single Sample in Each Group of Specimens | Average | Impact Work (J) | Impact Toughness Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||||
1 | N1 | 31 | 26 | 40 | 34 | 46 | 50 | 33 | 54 | 39 | 775 | 1 |
N2 | 32 | 27 | 40 | 35 | 47 | 51 | 35 | 55 | 40 | 795 | 1 | |
2 | N1 | 65 | 67 | 60 | 73 | 68 | 75 | 72 | 77 | 70 | 1391 | 1.79 |
N2 | 72 | 72 | 68 | 79 | 75 | 80 | 78 | 85 | 76 | 1510 | 1.9 | |
3 | N1 | 78 | 88 | 62 | 67 | 73 | 69 | 93 | 75 | 75 | 1490 | 1.92 |
N2 | 83 | 92 | 65 | 73 | 79 | 72 | 100 | 81 | 80 | 1589 | 2 | |
4 | N1 | 77 | 79 | 82 | 85 | 83 | 73 | 80 | 86 | 81 | 1609 | 2.08 |
N2 | 84 | 84 | 88 | 91 | 90 | 80 | 85 | 94 | 87 | 1728 | 2.17 | |
5 | N1 | 93 | 111 | 77 | 127 | 107 | 116 | 118 | 115 | 110 | 2185 | 2.82 |
N2 | 97 | 113 | 82 | 133 | 111 | 121 | 123 | 119 | 114 | 2265 | 2.85 | |
6 | N1 | 119 | 123 | 138 | 154 | 134 | 145 | 142 | 128 | 135 | 2682 | 3.46 |
N2 | 125 | 129 | 144 | 161 | 141 | 152 | 150 | 136 | 142 | 2821 | 3.55 | |
7 | N1 | 159 | 155 | 172 | 151 | 147 | 134 | 152 | 154 | 153 | 3039 | 3.92 |
N2 | 168 | 164 | 180 | 159 | 156 | 144 | 161 | 164 | 162 | 3218 | 4.05 | |
8 | N1 | 142 | 150 | 146 | 153 | 160 | 141 | 140 | 144 | 146 | 2900 | 3.74 |
N2 | 149 | 155 | 152 | 158 | 168 | 147 | 146 | 151 | 152 | 3020 | 3.8 | |
9 | N1 | 159 | 173 | 147 | 165 | 162 | 169 | 156 | 174 | 164 | 3258 | 4.2 |
N2 | 166 | 181 | 154 | 173 | 171 | 177 | 164 | 182 | 172 | 3417 | 4.3 | |
10 | N1 | 158 | 170 | 153 | 166 | 167 | 159 | 165 | 163 | 163 | 3238 | 4.18 |
N2 | 165 | 177 | 160 | 174 | 173 | 166 | 170 | 172 | 170 | 3377 | 4.25 |
Test Number | Rubber Length (mm) | Rubber Doping (%) | 72 h Abrasion Strength (h·m2)kg−1 | 144 h Abrasion Strength (h·m2)kg−1 | 72 h Relative Value (%) | 144 h Relative Value (%) |
---|---|---|---|---|---|---|
1 | — | — | 8.67 | 9.48 | 100 | 100 |
2 | 5 | 6 | 10.42 | 11.86 | 120.18 | 125.11 |
3 | 5 | 12 | 11.58 | 13.22 | 133.56 | 139.45 |
4 | 5 | 18 | 13.33 | 15.58 | 153.75 | 164.35 |
5 | 10 | 6 | 15.31 | 19.67 | 176.58 | 207.49 |
6 | 10 | 12 | 16.67 | 20.55 | 192.27 | 216.77 |
7 | 10 | 18 | 18.18 | 22.81 | 209.69 | 240.61 |
8 | 15 | 6 | 16.85 | 21.35 | 194.35 | 225.21 |
9 | 15 | 12 | 20.98 | 25 | 241.98 | 263.71 |
10 | 15 | 18 | 19.35 | 23.53 | 223.18 | 248.21 |
Test Number | Cumulative Mass Loss M (%) | Cumulative Volume Loss V (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | 120 h | 144 h | 24 h | 48 h | 72 h | 96 h | 120 h | 144 h | |
1 | 1.1 | 2.19 | 3.18 | 4.08 | 4.95 | 5.82 | 0.908 | 1.69 | 2.451 | 3.12 | 3.783 | 4.44 |
2 | 0.99 | 1.89 | 2.71 | 3.44 | 4.1 | 4.76 | 0.828 | 1.484 | 2.124 | 2.67 | 3.191 | 3.705 |
3 | 0.88 | 1.7 | 2.45 | 3.1 | 3.7 | 4.28 | 0.756 | 1.347 | 1.934 | 2.428 | 2.903 | 3.365 |
4 | 0.78 | 1.48 | 2.1 | 2.64 | 3.13 | 3.59 | 0.684 | 1.197 | 1.695 | 2.112 | 2.505 | 2.885 |
5 | 0.74 | 1.31 | 1.85 | 2.23 | 2.56 | 2.89 | 0.653 | 1.075 | 1.485 | 1.832 | 2.189 | 2.54 |
6 | 0.7 | 1.27 | 1.71 | 2.1 | 2.45 | 2.78 | 0.625 | 1.046 | 1.417 | 1.792 | 2.162 | 2.518 |
7 | 0.64 | 1.15 | 1.53 | 1.86 | 2.14 | 2.4 | 0.589 | 0.974 | 1.325 | 1.651 | 1.972 | 2.272 |
8 | 0.7 | 1.29 | 1.76 | 2.11 | 2.44 | 2.76 | 0.627 | 1.065 | 1.457 | 1.773 | 2.105 | 2.429 |
9 | 0.59 | 0.98 | 1.4 | 1.76 | 2.07 | 2.36 | 0.551 | 0.909 | 1.274 | 1.57 | 1.845 | 2.121 |
10 | 0.61 | 1.09 | 1.5 | 1.86 | 2.15 | 2.42 | 0.567 | 0.932 | 1.287 | 1.593 | 1.88 | 2.174 |
Test Number | Fractal Dimension D | |||||
---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | 120 h | 144 h | |
1 | 2.194 | 2.232 | 2.295 | 2.321 | 2.343 | 2.356 |
2 | 2.183 | 2.191 | 2.199 | 2.202 | 2.218 | 2.232 |
3 | 2.173 | 2.184 | 2.195 | 2.208 | 2.212 | 2.219 |
4 | 2.170 | 2.174 | 2.194 | 2.203 | 2.212 | 2.218 |
5 | 2.163 | 2.190 | 2.198 | 2.207 | 2.214 | 2.217 |
6 | 2.158 | 2.163 | 2.175 | 2.187 | 2.197 | 2.207 |
7 | 2.158 | 2.169 | 2.176 | 2.184 | 2.199 | 2.209 |
8 | 2.157 | 2.160 | 2.173 | 2.188 | 2.191 | 2.208 |
9 | 2.163 | 2.165 | 2.174 | 2.183 | 2.198 | 2.204 |
10 | 2.160 | 2.173 | 2.180 | 2.193 | 2.198 | 2.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, S.; Jiang, C. Dynamic Abrasion Resistance and Fractal-Based Damage Quantification in Fiber Rubber Concrete for Hydraulic Structures. Buildings 2025, 15, 1770. https://doi.org/10.3390/buildings15111770
Li Z, Li S, Jiang C. Dynamic Abrasion Resistance and Fractal-Based Damage Quantification in Fiber Rubber Concrete for Hydraulic Structures. Buildings. 2025; 15(11):1770. https://doi.org/10.3390/buildings15111770
Chicago/Turabian StyleLi, Zhantao, Shuangxi Li, and Chunmeng Jiang. 2025. "Dynamic Abrasion Resistance and Fractal-Based Damage Quantification in Fiber Rubber Concrete for Hydraulic Structures" Buildings 15, no. 11: 1770. https://doi.org/10.3390/buildings15111770
APA StyleLi, Z., Li, S., & Jiang, C. (2025). Dynamic Abrasion Resistance and Fractal-Based Damage Quantification in Fiber Rubber Concrete for Hydraulic Structures. Buildings, 15(11), 1770. https://doi.org/10.3390/buildings15111770