Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = fertilizer-feeding component

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7734 KB  
Article
Synergistic Regulatory Effects of Water–Nitrogen Coupling on Osmotic Regulation, Yield, and Forage Quality of Alfalfa
by Yi Ling, Minhua Yin, Yanxia Kang, Guangping Qi and Yanlin Ma
Plants 2026, 15(2), 173; https://doi.org/10.3390/plants15020173 - 6 Jan 2026
Viewed by 159
Abstract
Water scarcity and poor soil fertility are major limiting factors constraining agricultural production in the arid and semi-arid regions of Northwest China. Water–nitrogen synergistic regulation is an important approach to improving crop growth and enhancing agricultural productivity. In this study, four irrigation levels—severe [...] Read more.
Water scarcity and poor soil fertility are major limiting factors constraining agricultural production in the arid and semi-arid regions of Northwest China. Water–nitrogen synergistic regulation is an important approach to improving crop growth and enhancing agricultural productivity. In this study, four irrigation levels—severe water deficit (W1: 45–65% θf), moderate water deficit (W2: 55–70% θf), mild water deficit (W3: 65–80% θf), and full irrigation (W4: 75–90% θf)—and four nitrogen application rates—no nitrogen (N0, 0 kg·ha−1), low nitrogen (N1, 80 kg·ha−1), medium nitrogen (N2, 160 kg·ha−1), and high nitrogen (N3, 240 kg·ha−1)—were established to systematically analyze the effects of water–nitrogen coupling on osmotic adjustment substances, yield, and forage quality of alfalfa (Medicago sativa L.) leaves. The results showed that: (1) Proline (Pro) content increased significantly with intensified water deficit, with W1 being 82.29% higher than W4 on average. Soluble protein (SP) and soluble sugar (SS) contents increased with increasing water availability, with their average values under W4 being 26.50% and 36.92% higher than those under W1, respectively. Increasing nitrogen application significantly improved the accumulation of osmotic adjustment substances, with Pro reaching the lowest value at N2, SP peaking at N2, and SS peaking at N3. (2) Yield increased significantly with higher irrigation, and increased first and then decreased with nitrogen application. Yield under W4 was 94.20% higher than under W1, and N2 increased yield by 12.45–50.65% compared with other nitrogen levels. (3) Under the W4N2 treatment, crude protein (CP) content and relative feed value (RFV) increased by 34.54% and 51.10%, respectively, compared with W1N0, while acid detergent fiber (ADF) and neutral detergent fiber (NDF) decreased by 28.74% and 24.44%, respectively. (4) Correlation analysis indicated that Pro content was significantly positively correlated with ADF and NDF but negatively correlated with yield, CP, and RFV. In contrast, SP and SS contents were significantly negatively correlated with ADF and NDF and positively correlated with yield, CP, and RFV. (5) Principal component analysis identified that the combination of full irrigation (W4: 75–90% θf) and medium nitrogen application (N2, 160 kg·ha−1) optimizes both yield and forage quality by balancing osmotic adjustment substances. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

16 pages, 4127 KB  
Article
The Water Efficiency and Productivity of Forage Maize (Zea mays L.) in a Semi-Arid Region Under Different Humidity, Nitrogen, and Substrate Levels
by Antonio Anaya-Salgado, Abel Quevedo-Nolasco, Martín Alejandro Bolaños-González, Jorge Flores-Velázquez, Arturo Reyes-González, Saúl Santana-Espinoza, Jorge Maltos-Buendía, Juan Isidro Sánchez-Duarte and Jorge Alonso Maldonado-Jaquez
Crops 2026, 6(1), 1; https://doi.org/10.3390/crops6010001 - 22 Dec 2025
Viewed by 247
Abstract
The Lagunera Region, located in northern Mexico, is home to the country’s most important dairy basin, situated in a semi-arid environment. In this region, forage corn (Zea mays L.) is the main input in dairy cattle feed. In this context, optimizing water [...] Read more.
The Lagunera Region, located in northern Mexico, is home to the country’s most important dairy basin, situated in a semi-arid environment. In this region, forage corn (Zea mays L.) is the main input in dairy cattle feed. In this context, optimizing water use and nitrogen nutrition is a priority to ensure the sustainability of this activity. The main objective of this study was to evaluate the productivity and water use efficiency of forage corn under different humidity, nitrogen, and substrate type levels. A randomized block design with sub-subdivided plots was used. The larger plot contained two usable moisture levels (80 and 50%); the subplots were assigned according to three nitrogen levels: 13.6 (N1), 6.8 (N2), and control 0.35 (N3) NO3 mmol·L−1; the sub-subplots were assigned based on two substrates: sand and a mixture (MI) of sand, perlite, and peat moss. The results showed significant triple interactions (p < 0.05) in the root volume traits, where nitrogen played a determining role, as well as double interactions (Nutrition*Substrate) for all vegetative and radicle production variables and water use efficiency. Principal components analysis explained 91.4% of the total observed variation, where basal diameter had the vector with the highest load value. Cluster analysis identified that the main discriminant factor was nutrition. It is concluded that usable moisture levels up to 50% with 6.8 mmol·L−1 of NO3 show acceptable levels of vegetative production and root volume in forage corn. These results suggest the possibility of reducing water and nitrogen fertilizer consumption without compromising yield, with significant economic and environmental benefits for agriculture in arid and semi-arid regions. Full article
Show Figures

Figure 1

19 pages, 742 KB  
Article
Enhancing Maize–Climbing Bean Intercropping with Biostimulants: Implications for Yield and Silage Quality
by Rafał Górski, Anna Sikorska, Robert Czaplicki and Iwona Mystkowska
Agronomy 2025, 15(12), 2894; https://doi.org/10.3390/agronomy15122894 - 16 Dec 2025
Viewed by 435
Abstract
In the face of climate pressure and threats to biodiversity, intercropping cereals with legumes and using biostimulants can increase feed yield and quality. This research evaluated a two-year intercropping system of maize and climbing beans for silage in central Poland, comparing four sowing [...] Read more.
In the face of climate pressure and threats to biodiversity, intercropping cereals with legumes and using biostimulants can increase feed yield and quality. This research evaluated a two-year intercropping system of maize and climbing beans for silage in central Poland, comparing four sowing schemes 90,000 ha−1 maize with 90,000 (90 + 90); 45,000 (90 + 45) or 27,500 (90 + 27.5) climbing beans ha−1 and sole maize, as well as five biostimulant application: control object, liquid microelement fertilizer (Zn-8.0%) containing zinc acetate, liquid extract from Ecklonia maxima algae, Methylobacterium symbioticum bacteria, Bacillus halotolerans bacteria. The aim of the field research was to evaluate the biomass components, yields, and crude protein content in silage. The intercropping pattern and biostimulants had a significant effect on dry matter and yields, with limited interactions. Single maize plant weight and yield were highest in the single crop and 90 + 27.5 treatments, while total intercrop yield peaked at 90 + 45, exceeding single maize by 14%. Biostimulants increased maize yields by 3–8% and intercrop yields by up to 6%, but reduced bean yields compared to controls. The crude protein content of silage was lowest for maize alone and highest for 90 + 45; biostimulants increased protein content by 5–9%, mainly for Methylobacterium symbioticum. Overall, the combination of 90 + 45 with Ecklonia maxima or Methylobacterium symbioticum optimized silage biomass and protein. The presented research is the first to evaluate the intercropping of maize with runner beans in orderly sowing and under the influence of biostimulants. It may constitute an important step in improving the efficiency of intercropping for implementation in agricultural practice. Further research should evaluate reduced mineral fertilization in this system. Full article
(This article belongs to the Special Issue Cereal–Legume Cropping Systems)
Show Figures

Figure 1

16 pages, 1612 KB  
Article
Evaluation of the Resource Utilization Potential of Capsicum Residue for Sustainable Industrial Capsaicin Extraction
by Zhifeng Hu, Shijiao Li, Tianxue Yang, Dongyang Li, Xiaowei Wang, Yuxin Chen, Zhe Zhang, Zhiliang Yao, Dayang Yu, Shi Cheng, Yilin Wang and Jiaomei Liu
Sustainability 2025, 17(22), 10303; https://doi.org/10.3390/su172210303 - 18 Nov 2025
Viewed by 506
Abstract
Capsicum residue generated from industrial capsaicin extraction is rich in nutrients and represents a significant fraction of solid waste in the food processing industry. Despite its potential value, limited efforts have been devoted to its resource recovery, leading to considerable resource loss and [...] Read more.
Capsicum residue generated from industrial capsaicin extraction is rich in nutrients and represents a significant fraction of solid waste in the food processing industry. Despite its potential value, limited efforts have been devoted to its resource recovery, leading to considerable resource loss and environmental burdens. This study systematically evaluates the applicability of existing food waste recycling technologies for capsicum residue and assesses its valorization potential through comprehensive characterization. The results indicate that capsicum residue holds promise as a feedstock for pectin extraction and as a component in animal feed. Regarding anaerobic fermentation for acid production, the maximum volatile fatty acids (VFAs) yield and VFAs/SCOD ratio reached 462.09 mg·L−1 and 3.16%, respectively, suggesting moderate potential for acidogenic conversion but limited suitability for methanogenesis. Fluorescence spectroscopy of dissolved organic matter revealed that microbial humic-like substances (C1) were the dominant fluorophore, accounting for 42.64% of the total fluorescence, followed by terrestrial humic-like (C2, 19.28%), fulvic-like (C3, 19.12%), and tryptophan-like (C4, 18.95%) components. The favorable C/N ratio of amino acids and humic substances supports the feasibility of composting. Additionally, trace levels of residual capsaicin may confer antibacterial benefits and enhance soil fertility, further supporting the potential of capsicum residue as a value-added resource. Full article
(This article belongs to the Special Issue Research on Resource Utilization of Solid Waste)
Show Figures

Figure 1

15 pages, 763 KB  
Article
Optimizing Artificial Diet Composition for Enhanced Development and Fertility of Amblyseius swirskii
by Karlygash Alpysbayeva, Ainura Adilkhankyzy, Assel Seitzhan, Kanat Anuarbekov, Balzhan Naimanova and Shyryn Turbekova
Insects 2025, 16(11), 1105; https://doi.org/10.3390/insects16111105 - 30 Oct 2025
Viewed by 851
Abstract
The predatory mite Amblyseius swirskii is widely used as a biological control agent against phloem-feeding pests in vegetable production. However, its mass rearing is constrained by the lack of standardized and cost-effective artificial diets (ADs). In this study, the effects of various AD [...] Read more.
The predatory mite Amblyseius swirskii is widely used as a biological control agent against phloem-feeding pests in vegetable production. However, its mass rearing is constrained by the lack of standardized and cost-effective artificial diets (ADs). In this study, the effects of various AD compositions on the development and viability of A. swirskii were assessed at lab-scale. A basal diet was supplemented with eggs of Sitotroga cerealella, Galleria mellonella, Tetranychus turkestani, and decapsulated Artemia salina cysts. The feeder mite Carpoglyphus lactis served as a control. Developmental duration, survival, adult longevity, feeding intensity, and fertility were evaluated. The shortest pre-imaginal development (2.9 ± 0.1 days) and highest survival (78%) were observed on S. cerealella eggs, while the longest adult lifespan (10.5 ± 0.3 days) and weakest survival (38%) occurred with A. salina. In contrast, G. mellonella eggs proved to be the least suitable, resulting in minimal survival and reproduction. Study findings support S. cerealella and A. salina as promising AD components, with further optimization needed for improving reproductive output. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

19 pages, 2656 KB  
Article
Foliar Nutritional Status Influences Herbivory Caused by Gonipterus platensis in Eucalyptus globulus, E. nitens and Their Hybrids
by Clara Ricci, Regis Le-Feuvre, Matías Pincheira, Claudia Bonomelli, Rafael Rubilar and Priscila Moraga-Suazo
Forests 2025, 16(11), 1618; https://doi.org/10.3390/f16111618 - 22 Oct 2025
Viewed by 502
Abstract
Eucalyptus plantations worldwide experience significant productivity losses due to herbivory caused by the weevil Gonipterus platensis (Coleoptera: Curculionidae. Marelli 1927); however, the role of leaf nutritional status in host preference remains poorly understood. In this study, we evaluated the incidence and severity of [...] Read more.
Eucalyptus plantations worldwide experience significant productivity losses due to herbivory caused by the weevil Gonipterus platensis (Coleoptera: Curculionidae. Marelli 1927); however, the role of leaf nutritional status in host preference remains poorly understood. In this study, we evaluated the incidence and severity of defoliation on two seed-propagated eucalypts—Eucalyptus globulus Labill. and Eucalyptus nitens Maiden, as well as two clonally propagated E. nitens × E. globulus hybrids—at a trial site in Mulchén, Chile. Sampling occurred after peak weevil activity (December 2022) and during austral autumn (May 2023). We determined foliar concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), boron (B), carbon (C), and the carbon-to-nitrogen (C/N) ratio, and analyzed their relationships with herbivory using ANOVA, principal component analysis (PCA), and linear regression. Overall defoliation was low (<7%), but significantly higher on E. globulus, with hybrids exhibiting intermediate damage. Seasonally, N and Mg concentrations declined, while K and Ca levels increased, resulting in an elevated C/N ratio in autumn. A positive correlation was observed between leaf Ca concentration and both the incidence and severity of herbivory during peak activity in the susceptible E. globulus genotype (R2 = 0.96, p < 0.05). These findings suggest that calcium accumulation may influence weevil feeding preferences. Further research should explore nutrient-mediated resistance to guide selection and fertilization strategies for developing more resilient eucalyptus varieties. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

21 pages, 679 KB  
Review
Effects of Nitrogen Fertilizer Application on N2O Emissions from Rice Cultivation: A Review
by Annette Madelene Dăncilă, Cristina Modrogan and Oanamari Daniela Orbuleț
Environments 2025, 12(10), 383; https://doi.org/10.3390/environments12100383 - 15 Oct 2025
Viewed by 1996
Abstract
Rice is a major dietary component for more than half of the world’s population, and its cultivation requires a careful balance of nutrients to ensure high yields and sustainable practices. Soil-derived N2O fluxes represent a major environmental challenge with global implications. [...] Read more.
Rice is a major dietary component for more than half of the world’s population, and its cultivation requires a careful balance of nutrients to ensure high yields and sustainable practices. Soil-derived N2O fluxes represent a major environmental challenge with global implications. While agriculture is a necessary activity to feed a growing population, it must evolve to minimize its ecological footprint. This review provides an update on the effects of nitrogen fertilizer application, such as ammonium nitrate (NH4NO3), urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and calcium ammonium nitrate (CAN), on N2O emissions from rice cultivation. The role of various nitrification inhibitors (e.g., dicyandiamide (DCD), 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin) and 3,4-dimethylpyrazole phosphate (DMPP)) in minimizing the release of N2O from soils to the atmosphere was also discussed. Here, we described N2O production by nitrification and denitrification processes in the paddy rice field, and then summarized the strategies, such as optimized fertilizer use, improved drainage and water management, and the use of organic amendments, that can enhance crop productivity while promoting sustainable reductions in N2O emissions. Full article
Show Figures

Figure 1

14 pages, 1012 KB  
Article
Productivity and Forage Quality of Alfalfa Response to Potassium Fertilizer: A Field Study in Inner Mongolian Plateau
by Yuntao Wang, Lele Cui, Shenghao Liu, Wenxuan Li, Zhenyi Li, Wenxing Ye and Linqing Yu
Agronomy 2025, 15(10), 2328; https://doi.org/10.3390/agronomy15102328 - 1 Oct 2025
Viewed by 852
Abstract
The Inner Mongolian Plateau is a critical region for the development of herbivorous animal husbandry in China. However, its harsh climate and poor soil quality have constrained the sustainable growth of the alfalfa industry. This 3-year field study investigated the effects of potassium [...] Read more.
The Inner Mongolian Plateau is a critical region for the development of herbivorous animal husbandry in China. However, its harsh climate and poor soil quality have constrained the sustainable growth of the alfalfa industry. This 3-year field study investigated the effects of potassium (K) fertilizer on the productivity and forage quality of alfalfa (Medicago sativa L. cv. ‘WL168’) in such specific conditions of the region. Five rates of K fertilizer (0 (CK), 100, 200, 300, and 400 kg ha−1 of K2O) were applied in three split applications. Forage harvests occurred three times annually in 2023 and 2024, and yield, yield components, and forage quality were determined. The results showed that the forage yield of alfalfa increased initially and then decreased with the rising K application rates, which paralleled the changes in the plant density, and plant height, especially the mass shoot−1; forage yield was mainly correlated with mass shoot−1. Appropriate K fertilizer improved forage quality, especially in 2024. With increasing application, crude protein (CP) and total digestible nutrients (TDNs) first rose then declined, whereas neutral detergent fiber (NDF) and acid detergent fiber (ADF) decreased steadily, leading to a consistent rise in the relative feeding value (RFV). Comprehensively considering both yield and quality under such condition, a K fertilizer application rate of 273.2 kg ha−1 of K2O is suggested as a reference for this region. Full article
(This article belongs to the Special Issue Fertility Management for Higher Crop Productivity)
Show Figures

Figure 1

20 pages, 457 KB  
Review
Cultivating Value from Waste: Creating Novel Food, Feed, and Industrial Applications from Bambara Groundnut By-Products
by Mercy Lungaho, Omena Bernard Ojuederie, Kehinde Titilope Kareem, Kafilat Abiodun Odesola, Jacob Olagbenro Popoola, Linus Owalum Onawo, Francis Aibuedefe Igiebor, Anthonia Uselu, Taofeek Tope Adegboyega and Beckley Ikhajiagbe
Sustainability 2025, 17(16), 7378; https://doi.org/10.3390/su17167378 - 15 Aug 2025
Viewed by 1993
Abstract
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly [...] Read more.
Bambara groundnut (Vigna subterranea), a vital yet underutilized African legume, significantly boosts food security due to its nutritional value and adaptability to harsh climates and soils. However, its processing yields substantial waste like husks, shells, and haulms, which are often carelessly discarded, causing environmental damage. This paper highlights the urgent need to valorize these waste streams to unlock sustainable growth and economic development. Given their lignocellulosic composition, Bambara groundnut residues are ideal for generating biogas and bioethanol. Beyond energy, these wastes can be transformed into various bio-based products, including adsorbents for heavy metal removal, activated carbon for water purification, and bioplastics. Their inherent nutritional content also allows for the extraction of valuable components like dietary fiber, protein concentrates, and phenolic compounds for food products or animal feed. The nutrient-rich organic matter can also be composted into fertilizer, improving soil fertility. These valorization strategies offer multiple benefits, such as reduced waste, less environmental contamination, and lower greenhouse gas emissions, alongside new revenue streams for agricultural producers. This integrated approach aligns perfectly with circular economy principles, promoting resource efficiency and maximizing agricultural utility. Despite challenges like anti-nutritional factors and processing costs, strategic investments in technology, infrastructure, and supportive policies can unlock Bambara groundnut’s potential for sustainable innovation, job creation, and enhanced food system resilience across Africa and globally. Ultimately, valorizing Bambara groundnut waste presents a transformative opportunity for sustainable growth and improved food systems, particularly within African agriculture. Full article
(This article belongs to the Special Issue RETASTE: Rethink Food Resources, Losses and Waste)
Show Figures

Figure 1

18 pages, 2865 KB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Cited by 1 | Viewed by 1190
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

30 pages, 1679 KB  
Review
Advancing Circularity in Small-Scale Rural Aquaponics: Potential Routes and Research Needs
by Laura Silva, Francisco Javier Martinez-Cordero, Gösta Baganz, Daniela Baganz, Ariadne Hernández-Pérez, Eva Coronado and Maria Celia Portella
Resources 2025, 14(8), 119; https://doi.org/10.3390/resources14080119 - 23 Jul 2025
Viewed by 5190
Abstract
Small-scale fisheries and aquaculture play a crucial role in securing food, income, and nutrition for millions, especially in the Global South. Rural small-scale aquaculture (SSA) is characterized by limited investment and technical training among farmers, diversification and dispersion of farms over large areas, [...] Read more.
Small-scale fisheries and aquaculture play a crucial role in securing food, income, and nutrition for millions, especially in the Global South. Rural small-scale aquaculture (SSA) is characterized by limited investment and technical training among farmers, diversification and dispersion of farms over large areas, reduced access to competitive markets for inputs and products, and family labor. Small-scale integrated circular aquaponic (ICAq) systems, in which systems’ component outputs are transformed into component inputs, have significant potential to increase circularity and promote economic development, especially in a rural context. We offer an integrated and comprehensive approach centered on aquaponics or aquaponic farming for small-scale aquaculture units. It aims to identify and describe a series of circular processes and causal links that can be implemented based on deep study in SSA and ICAq. Circular processes to treat by-products in ICAq include components like composting, vermicomposting, aerobic and anaerobic digestion, silage, and insect production. These processes can produce ICAq inputs such as seedling substrates, plant fertilizers, bioenergy, or feed ingredients. In addition, the plant component can supply therapeutic compounds. Further research on characterization of aquaponic components outputs and its quantifications, the impact of using circular inputs generated within the ICAq, and the technical feasibility and economic viability of circular processes in the context of SSA is needed. Full article
Show Figures

Figure 1

21 pages, 3791 KB  
Article
Evaluating the Growth Performance of Nile and Red Tilapia and Its Influence on Morphological Growth and Yield of Intercropped Wheat and Sugar Beet Under a Biosaline Integrated Aquaculture–Agriculture System
by Khaled Madkour, Fahad Kimera, Muziri Mugwanya, Rafat A. Eissa, Sameh Nasr-Eldahan, Kholoud Aref, Walaa Ahmed, Eman Farouk, Mahmoud A. O. Dawood, Yasmine Abdelmaksoud, Mohamed F. Abdelkader and Hani Sewilam
Plants 2025, 14(9), 1346; https://doi.org/10.3390/plants14091346 - 29 Apr 2025
Cited by 1 | Viewed by 2632
Abstract
Integrated aquaculture–agriculture systems (IAASs) offer a sustainable approach to mitigating soil salinity by utilizing aquaculture effluents for irrigation. This study evaluates the growth performance of Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.) under varying salinity conditions and investigates [...] Read more.
Integrated aquaculture–agriculture systems (IAASs) offer a sustainable approach to mitigating soil salinity by utilizing aquaculture effluents for irrigation. This study evaluates the growth performance of Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.) under varying salinity conditions and investigates their effluents on intercropped wheat and sugar beet. A field experiment was conducted using a randomized block design with seven treatments: control (chemical fertilizers dissolved in freshwater) and brackish water effluents from Nile tilapia and red tilapia at salinities of 5 ppt and 10 ppt as monocultures or mixed polycultures. Fish growth parameters were assessed, while wheat and sugar beet morphological and yield traits were monitored. Statistical analyses, including correlation and principal component analysis, were performed. Red tilapia outperformed Nile tilapia at 10 ppt salinity, achieving the highest final weight (174.52 ± 0.01 g/fish) and weight gain (165.78 ± 0.01 g/fish), while the mixed polyculture at 10 ppt exhibited optimal feed conversion (FCR: 1.32 ± 0.01). Wheat growth and yield traits (plant height, stalk diameter, and panicle weight) declined significantly under salinity stress, with 10 ppt treatments reducing plant height by ~57% compared to the control. Conversely, sugar beet demonstrated resilience, with total soluble solids (TSS) increasing by 20–30% under salinity. The mixed effluent partially mitigated salinity effects on wheat at 5 ppt but not at 10 ppt. This study highlights the potential of IAAS in saline environments, demonstrating red tilapia’s adaptability and sugar beet’s resilience to salinity stress. In contrast, wheat suffered significant reductions in growth and yield. Full article
(This article belongs to the Special Issue Fertilizer and Abiotic Stress)
Show Figures

Figure 1

14 pages, 226 KB  
Article
Effects of Different Dietary Crude Protein Levels on Reproductive Performance, Egg Quality and Serum Biochemical Indices of Wanxi White Geese in the Laying Period
by Wenlong Shi, Changsheng Jiang, Xu Zhang, Qianqian Hu, Chunfang Zhao, Xiaojin Li, Ahmed H. Ghonaim, Shenghe Li and Man Ren
Animals 2025, 15(8), 1140; https://doi.org/10.3390/ani15081140 - 15 Apr 2025
Cited by 3 | Viewed by 1356
Abstract
Crude protein (CP) in diets is essential for maintaining animal health and production performance. However, the protein requirements of Wanxi white geese during the laying period are not well understood. In this study, 120 one-year-old Wanxi white geese were selected and divided into [...] Read more.
Crude protein (CP) in diets is essential for maintaining animal health and production performance. However, the protein requirements of Wanxi white geese during the laying period are not well understood. In this study, 120 one-year-old Wanxi white geese were selected and divided into three groups based on similar body weights, namely 14% CP, 15% CP, and 16% CP, with each group consisting of 40 animals. The feed was administered for 120 days. Compared with the 14% CP group, the 15% CP group showed a significant increase in the number of courtships and matings, a reduction in nesting frequency, an enhancement in the egg fertility, and an improvement in the nutritional components, and specific gravity of eggs. Additionally, the 16% CP group promoted the secretion of serum E2, LH, P4, and GnRH while inhibiting the secretion of LEP, compared with the 14% CP group. Taken together, it can be seen that a diet containing 15% CP can enhance the reproductive performance, egg fertility, and egg quality of Wanxi white geese. This study is the first to analyze the effects of different dietary CP levels on the reproductive performance and egg specific gravity of Wanxi white geese during the laying period, providing a theoretical basis for formulating feeding standards for this breed. Full article
(This article belongs to the Section Poultry)
17 pages, 4354 KB  
Article
Biological Production and Nitrogen Use Efficiency in a Water-Sharing and Water-Saving System Combining Aquaculture and Vegetable Hydroponic Cultivation
by Yoshiaki Kitaya, Yotsuba Shimakawa, Teruo Wada, Kenji Nakamura, Ryosuke Endo and Toshio Shibuya
Water 2025, 17(7), 963; https://doi.org/10.3390/w17070963 - 26 Mar 2025
Cited by 1 | Viewed by 1484
Abstract
Aquaponics, a biological production system that combines land-based aquaculture and hydroponic cultivation of plants, is a water-sharing and water-saving system that is expected to be a sustainable food production system with water and nutrient resource circulation in agricultural and fisheries fields. The balance [...] Read more.
Aquaponics, a biological production system that combines land-based aquaculture and hydroponic cultivation of plants, is a water-sharing and water-saving system that is expected to be a sustainable food production system with water and nutrient resource circulation in agricultural and fisheries fields. The balance among feeding, fish density, and plant absorption capacity was investigated to obtain fundamental data for sustainable aquaponic systems. To clarify the effects of feeding rates on biological production and nitrogen utilization efficiency, fish and plant growth performance and nitrogen flow were evaluated in an aquaponic system that combined loach aquaculture with lettuce hydroponic cultivation. Test groups with different feeding rates and different fish densities were set. As a result, the fertilizer components in loach excreta contributed to plant growth, and the growth rate of lettuce plants tended to be greater than that of control hydroponic cultivation without fish. However, there was no difference in lettuce growth at feeding rates of 0 to 2 g d−1/system, but above 2 g d−1/system, the growth of lettuce plants was suppressed due to an overload of excreta. The yield of loaches increased with increasing daily feeding rate per system, but a minimum feed conversion ratio was detected. The NO2 concentration increased with increasing daily feeding rate per system and amount of excreta. The nitrogen use efficiency did not change at feeding rates ranging from 0 to 1.5 g d−1/system. In this feeding rate range, 80% of NUE in aquaponics was due to NUE in the plant hydroponic cultivation subsystem. However, above 2 g d−1/system, nitrogen use efficiency decreased with increasing daily feeding rate per system. A feeding rate of approximately 1.5 g d−1/system maximized biological production while maintaining high nitrogen utilization efficiency. In conclusion, a balance among feeding, fish density, and plant absorption capacity is essential to maintain a sustainable aquaponic system for sustainable fish and plant production as a food production system, saving water and chemical fertilizer. Full article
(This article belongs to the Special Issue Aquaculture Productivity and Environmental Sustainability)
Show Figures

Figure 1

21 pages, 9376 KB  
Article
Optimizing the Production of High-Quality Silage from Jingkenuo 2000 Fresh Waxy Maize: The Synergistic Effects of Microbial Fertilizer and Fermentation Agents
by Min Hou, Yang Li, Fan Yang, Weidong Cui, Xinxin Huang, Deli Dong, Lifeng Dong and Bo Zhang
Fermentation 2025, 11(3), 151; https://doi.org/10.3390/fermentation11030151 - 17 Mar 2025
Cited by 1 | Viewed by 1025
Abstract
Probiotics improve the quality of silage during the planting and fermentation processes. This study was designed to investigate the accumulation of nutritional components in the fresh corn variety Jingkenuo 2000 waxy maize under different fertilization conditions and its effectiveness as silage feed. The [...] Read more.
Probiotics improve the quality of silage during the planting and fermentation processes. This study was designed to investigate the accumulation of nutritional components in the fresh corn variety Jingkenuo 2000 waxy maize under different fertilization conditions and its effectiveness as silage feed. The nutrient accumulation trends of dry matter (DM), starch, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), and ether extract (EE) in the stems, leaves, grains, and whole plant of Jingkenuo 2000 waxy maize were evaluated during different growth cycles. The relative feed value (RFV) was also assessed, with the results showing that the whole plant of Jingkenuo 2000 waxy maize at the wax stage was most suitable for use as silage. The experiment conducted in the present study was carried out in a completely random block design with two additives and three fertilizer application conditions: no-additive + conventional fertilization treatment (CKCK); no-additive + conventional fertilization + drip irrigation of bacterial solution treatment (CKJJ); no-additive + conventional fertilization + microbial organic fertilizer treatment (CKYJ); additive + conventional fertilization treatment (FJCK); additive + conventional fertilization + drip irrigation of bacterial solution treatment (FJJJ); and additive + conventional fertilization + microbial organic fertilizer treatment (YJFJ). Additionally, the nutrient composition, fermentation quality, and bacterial community structure of the silage fermentation treatments were analyzed. The results indicate that there was significant interaction between the additive and fertilization treatments, with them significantly influencing the parameters CP, EE, NDF, ADF, and RFV (p < 0.01). In particular, the treatment combining additives, conventional fertilization, and drip irrigation of bacterial solution exhibited the highest CP, EE, and starch (p < 0.01) among all the tested treatments, while also displaying the lowest NDF and ADF contents (p < 0.01). Furthermore, this treatment reduced the pH value (p < 0.01), decreased bacterial diversity, and fostered the growth of Lactobacillus. Overall, the findings presented herein demonstrate that, through precise nutritional accumulation monitoring and scientific biological pretreatment methods, Jingkenuo 2000 waxy maize has the potential to become a high-quality silage feed. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

Back to TopTop