Evaluation of the Resource Utilization Potential of Capsicum Residue for Sustainable Industrial Capsaicin Extraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Source and Physical Properties of Capsicum Residue
2.2. Chemical Properties of Capsicum Residue
2.3. Anaerobic Sludge Co-Fermentation
3. Results
3.1. Nutrient and Water-Soluble Organic Components in Capsicum Residue
3.2. VFAs Production in the Anaerobic Fermentation
3.3. Lactic Acid Production in the Anaerobic Fermentation
3.4. VFAs/SCOD Ratio as an Indicator of Acidification Efficiency
4. Discussion
4.1. Feasibility of Recycling Valuable Substances from Capsicum Residue
4.2. Evaluation of Anaerobic Fermentation Potential
4.3. Environmental Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, K.; Liu, Y.; Tian, L.; He, W.; Cheng, Q. Review in Anaerobic Digestion of Food Waste. Heliyon 2024, 10, e28200. [Google Scholar] [CrossRef]
- Sharma, P.; Bano, A.; Singh, S.P.; Srivastava, S.K.; Singh, S.P.; Iqbal, H.M.N.; Varjani, S. Different Stages of Microbial Community during the Anaerobic Digestion of Food Waste. J. Food Sci. Technol. 2023, 60, 2079–2091. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Cheng, K. Enhanced Biogas Production Efficiency of Kitchen Waste by Anaerobic Co-Digestion and Pretreatment. Biomass Conv. Bioref. 2024, 14, 24949–24962. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, S.; Xiao, Y.; Jiang, Y.; Liu, Z.; Wang, T.; Hu, X.; Yi, J. Effect of Pasteurization Processing and Storage Conditions on Softening of Acidified Chili Pepper: Pectin and It Related Enzymes. Int. J. Biol. Macromol. 2023, 253, 126690. [Google Scholar] [CrossRef] [PubMed]
- Vijay, A.; Kumar, A.; Islam, K.; Momo, J.; Ramchiary, N. Chapter 11-Functional Genomics to Understand the Tolerance Mechanism against Biotic and Abiotic Stresses in Capsicum Species. In Transcriptome Profiling; Ajmal Ali, M., Lee, J., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 305–332. ISBN 978-0-323-91810-7. [Google Scholar]
- Ji, T. New Process Study on Organic Solvent Extraction of Capsanthin from Red Chillies. Food Drug 2008, 10, 33–36. [Google Scholar]
- Barros, H.D.F.Q.; Coutinho, J.P.; Grimaldi, R.; Godoy, H.T.; Cabral, F.A. Simultaneous Extraction of Edible Oil from Avocado and Capsanthin from Red Bell Pepper Using Supercritical Carbon Dioxide as Solvent. J. Supercrit. Fluids 2016, 107, 315–320. [Google Scholar] [CrossRef]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive Compounds in Food Waste: A Review on the Transformation of Food Waste to Animal Feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef]
- Xu, H.; Tai, K.; Wei, T.; Yuan, F.; Gao, Y. Physicochemical and in Vitro Antioxidant Properties of Pectin Extracted from Hot Pepper (Capsicum annuum L. Var. acuminatum (Fingerh.)) Residues with Hydrochloric and Sulfuric Acids. J. Sci. Food Agric. 2017, 97, 4953–4960. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, X.; Ouyang, M.; Wang, Y. Analysis and Evaluation of Nutritional Components in Pepper Meal. China Condiment 2017, 42, 131–134. (In Chinese) [Google Scholar] [CrossRef]
- Akinci, Z.K.; Karaman, H.; Yildirim-Yalcin, M.; Olcay, H.S.; Inan, M.; Toker, O.S. Effects of Red Pepper Pomace Protein and Oil on the Properties of Starch-Based Edible Films. Waste Biomass Valor. 2024, 15, 3579–3588. [Google Scholar] [CrossRef]
- Parralejo Alcobendas, A.I.; Royano Barroso, L.; Cabanillas Patilla, J.; González Cortés, J. Pretreatment and Nanoparticles as Catalysts for Biogas Production Reactions in Pepper Waste and Pig Manure. Catalysts 2023, 13, 1029. [Google Scholar] [CrossRef]
- Kocer, A.; Yaka, I.F.; Gungor, A. Evaluation of Greenhouse Residues Gasification Performance in Hydrogen Production. Int. J. Hydrogen Energy 2017, 42, 23244–23249. [Google Scholar] [CrossRef]
- Alvi, T.; Asif, Z.; Iqbal Khan, M.K. Clean Label Extraction of Bioactive Compounds from Food Waste through Microwave-Assisted Extraction Technique-A Review. Food Biosci. 2022, 46, 101580. [Google Scholar] [CrossRef]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of Food Wastes: Status and Challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef]
- Tran, H.-T.; Vu, C.-T.; Lin, C.; Bui, X.-T.; Huang, W.-Y.; Vo, T.-D.-H.; Hoang, H.-G.; Liu, W.-Y. Remediation of Highly Fuel Oil-Contaminated Soil by Food Waste Composting and Its Volatile Organic Compound (VOC) Emission. Bioresour. Technol. Rep. 2018, 4, 145–152. [Google Scholar] [CrossRef]
- Wei, Z.; Ahmed Mohamed, T.; Zhao, L.; Zhu, Z.; Zhao, Y.; Wu, J. Microhabitat Drive Microbial Anabolism to Promote Carbon Sequestration during Composting. Bioresour. Technol. 2022, 346, 126577. [Google Scholar] [CrossRef]
- Li, Z.; Gao, C.; Ye, Q.; Ruan, M.; Liu, C.; Yao, Z.; Wan, H.; Cheng, Y. Comparative Analysis of Fruit Quality Components Between Processed and Fresh-eating Chili Pepper (Capsicum annuum L.) at Different Developmental Stages. China Veg. 2025, 2, 64–70. [Google Scholar] [CrossRef]
- Guo, H.; Yao, L. Development Achievements and Countermeasures of High Quality Developmentof Pepper Industry in Xinjiang. Southeast Hortic. 2024, 12, 525–535. [Google Scholar] [CrossRef]
- Huo, Q.; Zhao, B.; Wang, Z.; Qiao, L.; Li, W. Trend, Risk and Countermeasures of Chinese Processed Pepper Industry MovingWestward. China Veg. 2025, 5, 1–7. [Google Scholar] [CrossRef]
- QB 2484-2000; Food Additive—Pectin. National Bureau of Light Industry: Beijing, China, 2000.
- Dranca, F.; Vargas, M.; Oroian, M. Physicochemical Properties of Pectin from Malus domestica ‘Fălticeni’ Apple Pomace as Affected by Non-Conventional Extraction Techniques. Food Hydrocoll. 2020, 100, 105383. [Google Scholar] [CrossRef]
- Sobczak, P.; Nadulski, R.; Kobus, Z.; Zawiślak, K. Technology for Apple Pomace Utilization within a Sustainable Development Policy Framework. Sustainability 2022, 14, 5470. [Google Scholar] [CrossRef]
- Kauser, S.; Murtaza, M.A.; Hussain, A.; Imran, M.; Kabir, K.; Najam, A.; An, Q.U.; Akram, S.; Fatima, H.; Batool, S.A.; et al. Apple Pomace, a Bioresource of Functional and Nutritional Components with Potential of Utilization in Different Food Formulations: A Review. Food Chem. Adv. 2024, 4, 100598. [Google Scholar] [CrossRef]
- Girma, E. Extraction and Characterization of Pectin from Selected Fruit Peel Waste. Int. J. Sci. Res. Publ. 2016, 6, 447–454. [Google Scholar]
- Mahmoud, K.F.; Shedeed, N.A.; Hussein, A.M.S. Production and Quality Evaluation of Corn Crackers Fortified with Freeze-Dried Banana Peel and Pulp. Food Humanit. 2023, 1, 1680–1690. [Google Scholar] [CrossRef]
- Marçal, S.; Sousa, S.; Araújo-Rodrigues, H.; Silva, I.V.; Campos, D.A.; Pintado, M. Impact of Washing and Freezing on Nutritional Composition, Bioactive Compounds, Antioxidant Activity and Microstructure of Mango Peels. Food Chem. 2024, 442, 138368. [Google Scholar] [CrossRef] [PubMed]
- Minjares-Fuentes, R.; Femenia, A.; Garau, M.C.; Meza-Velázquez, J.A.; Simal, S.; Rosselló, C. Ultrasound-Assisted Extraction of Pectins from Grape Pomace Using Citric Acid: A Response Surface Methodology Approach. Carbohydr. Polym. 2014, 106, 179–189. [Google Scholar] [CrossRef]
- Oloye, M.T.; Arawande, J.O.; Borokini, F.B.; Lawal, T.P.; Oderemi, Y.O. Extraction and Determination of Vitamins from Pectin Obtained from Four Different Citrus Fruit Peels. GSC Biol. Pharm. Sci. 2023, 22, 180–187. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Wang, P.; Liu, Z.; An, L.; Zhang, X.; Xie, Z.; Wang, Y.; Li, X.; Gao, W. Evaluation of Citrus Pectin Extraction Methods: Synergistic Enhancement of Pectin’s Antioxidant Capacity and Gel Properties through Combined Use of Organic Acids, Ultrasonication, and Microwaves. Int. J. Biol. Macromol. 2024, 266, 131164. [Google Scholar] [CrossRef]
- Tasirin, S.M.; Puspasari, I.; Sahalan, A.Z.; Mokhtar, M.; Ghani, M.K.A.; Yaakob, Z. Drying of Citrus sinensis Peels in an Inert Fluidized Bed: Kinetics, Microbiological Activity, Vitamin C, and Limonene Determination. Dry. Technol. 2014, 32, 497–508. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Zheng, L.; Zheng, X.; Xiao, D.; Wang, S.; Ai, B.; Sheng, Z. Extraction of Pectin from Passion Fruit Peel: Composition, Structural Characterization and Emulsion Stability. Foods 2022, 11, 3995. [Google Scholar] [CrossRef] [PubMed]
- Manasa, V.; Padmanabhan, A.; Anu Appaiah, K.A. Utilization of Coffee Pulp Waste for Rapid Recovery of Pectin and Polyphenols for Sustainable Material Recycle. Waste Manag. 2021, 120, 762–771. [Google Scholar] [CrossRef] [PubMed]
- El-Garawani, I.M.; El-Nabi, S.H.; El-Shafey, S.; Elfiky, M.; Nafie, E. Coffea Arabica Bean Extracts and Vitamin C: A Novel Combination Unleashes MCF-7 Cell Death. Curr. Pharm. Biotechnol. 2020, 21, 23–36. [Google Scholar] [CrossRef] [PubMed]
- del Amo-Mateos, E.; Fernández-Delgado, M.; Lucas, S.; López-Linares, J.C.; García-Cubero, M.T.; Coca, M. Valorization of Discarded Red Beetroot through the Recovery of Bioactive Compounds and the Production of Pectin by Surfactant-Assisted Microwave Extraction. J. Clean. Prod. 2023, 389, 135995. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- Sarv, V.; Hussain, S.; Rätsep, R.; Kikas, A. The Proximate Composition, Mineral and Pectin Content and Fatty Acid Profile of the Pomace Fraction of 16 Rowanberry Cultivars. Plants 2024, 13, 1615. [Google Scholar] [CrossRef]
- Sady, S.; Ligaj, M.; Pachołek, B.; Błaszczyk, A.; Płaczek, Z.; Dłużniewska, N.; Kawałek, P.; Pakuła, K.; Konopelski, A.; Gołaszewski, E. Designing the Quality Characteristics of Berry Processing Byproducts Using Fermentation. Appl. Sci. 2024, 14, 3110. [Google Scholar] [CrossRef]
- Yang, J.-S.; Mu, T.-H.; Ma, M.-M. Extraction, Structure, and Emulsifying Properties of Pectin from Potato Pulp. Food Chem. 2018, 244, 197–205. [Google Scholar] [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and Human Health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef]
- Martin-Mata, J.; Marhuenda-Egea, F.C.; Moral, R.; Torres-Climent, A.; Martínez-Sabater, E.; Paredes, C.; Barber, X.; Morales, J. Characterization of Dissolved Organic Matter from Sewage Sludge Using 3D-Fluorescence Spectroscopy and Chemometric Tools. Commun. Soil Sci. Plant Anal. 2015, 46, 188–196. [Google Scholar] [CrossRef]
- Pérez-Murcia, M.D.; Martínez-Sabater, E.; Domene, M.A.; González-Céspedes, A.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Barber, X.; López-Lluch, D.B.; Moral, R. Role of Proteins and Soluble Peptides as Limiting Components during the Co-Composting of Agro-Industrial Wastes. J. Environ. Manag. 2021, 300, 113701. [Google Scholar] [CrossRef]
- Jin, Z.; Yu, Q.; Zhao, Z.; Zhang, Y. Insight into the Role of Intermittent Microaeration in Enhancing Lignocellulose-Containing Anaerobic Digestion and Humic Substances Formation. Chem. Eng. J. 2025, 520, 166500. [Google Scholar] [CrossRef]
- Rong, Q.; Ji, J.-L.; Li, Y.; Wang, D.; Pan, J.; Wang, Y.-Z. Effect of Biochar Addition on Biogas Production and Humic Acid Formation during Solid-State Anaerobic Digestion and Subsequent Aerobic Fermentation. J. Environ. Chem. Eng. 2025, 13, 116596. [Google Scholar] [CrossRef]
- El Fallah, R.; Rouillon, R.; Vouvé, F. Spectral Characterization of the Fluorescent Components Present in Humic Substances, Fulvic Acid and Humic Acid Mixed with Pure Benzo(a)Pyrene Solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Yang, L.; Hong, H.; Stedmon, C.A.; Wang, F.; Xu, J.; Xie, Y. Assessing the Dynamics of Chromophoric Dissolved Organic Matter in a Subtropical Estuary Using Parallel Factor Analysis. Mar. Chem. 2011, 124, 125–133. [Google Scholar] [CrossRef]
- Retelletti Brogi, S.; Balestra, C.; Casotti, R.; Cossarini, G.; Galletti, Y.; Gonnelli, M.; Vestri, S.; Santinelli, C. Time Resolved Data Unveils the Complex DOM Dynamics in a Mediterranean River. Sci. Total Environ. 2020, 733, 139212. [Google Scholar] [CrossRef]
- Asmala, E.; Haraguchi, L.; Markager, S.; Massicotte, P.; Riemann, B.; Staehr, P.A.; Carstensen, J. Eutrophication Leads to Accumulation of Recalcitrant Autochthonous Organic Matter in Coastal Environment. Glob. Biogeochem. Cycles 2018, 32, 1673–1687. [Google Scholar] [CrossRef]
- Prajapati, K.; Nayak, R.; Shukla, A.; Parmar, P.; Goswami, D.; Saraf, M. Polyhydroxyalkanoates: An Exotic Gleam in the Gloomy Tale of Plastics. J. Polym. Environ. 2021, 29, 2013–2032. [Google Scholar] [CrossRef]
- Al Battashi, H.; Al-Kindi, S.; Gupta, V.K.; Sivakumar, N. Polyhydroxyalkanoate (PHA) Production Using Volatile Fatty Acids Derived from the Anaerobic Digestion of Waste Paper. J. Polym. Environ. 2021, 29, 250–259. [Google Scholar] [CrossRef]
- Szacherska, K.; Oleskowicz-Popiel, P.; Ciesielski, S.; Mozejko-Ciesielska, J. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers 2021, 13, 321. [Google Scholar] [CrossRef]
- Morgan-Sagastume, F.; Hjort, M.; Cirne, D.; Gérardin, F.; Lacroix, S.; Gaval, G.; Karabegovic, L.; Alexandersson, T.; Johansson, P.; Karlsson, A.; et al. Integrated Production of Polyhydroxyalkanoates (PHAs) with Municipal Wastewater and Sludge Treatment at Pilot Scale. Bioresour. Technol. 2015, 181, 78–89. [Google Scholar] [CrossRef]
- Ganesh Saratale, R.; Cho, S.-K.; Dattatraya Saratale, G.; Kadam, A.A.; Ghodake, G.S.; Kumar, M.; Naresh Bharagava, R.; Kumar, G.; Su Kim, D.; Mulla, S.I.; et al. A Comprehensive Overview and Recent Advances on Polyhydroxyalkanoates (PHA) Production Using Various Organic Waste Streams. Bioresour. Technol. 2021, 325, 124685. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile Fatty Acids Production from Food Waste: Effects of pH, Temperature, and Organic Loading Rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wang, S.; Zhang, W.; Yin, F.; Cao, Q.; Lian, T.; Dong, H. Polyhydroxyalkanoates Production from Lactic Acid Fermentation Broth of Agricultural Waste without Extra Purification: The Effect of Concentrations. Environ. Technol. Innov. 2023, 32, 103311. [Google Scholar] [CrossRef]
- Wang, K.; Yin, J.; Shen, D.; Li, N. Anaerobic Digestion of Food Waste for Volatile Fatty Acids (VFAs) Production with Different Types of Inoculum: Effect of pH. Bioresour. Technol. 2014, 161, 395–401. [Google Scholar] [CrossRef]
- Zuo, X.; Yuan, H.; Wachemo, A.C.; Wang, X.; Zhang, L.; Li, J.; Wen, H.; Wang, J.; Li, X. The Relationships among sCOD, VFAs, Microbial Community, and Biogas Production during Anaerobic Digestion of Rice Straw Pretreated with Ammonia. Chin. J. Chem. Eng. 2020, 28, 286–292. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, B.; Xi, W.; Liu, X.; Tang, S.; Tan, X.; Li, G.; Huang, L.; Liu, Y.; Bai, J. Modification Methods, Biological Activities and Applications of Pectin: A Review. Int. J. Biol. Macromol. 2023, 253, 127523. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, X.; Liu, J.; Tian, R. Optimization on pectin extraction from pepper slag. China Food Addit. 2016, 8, 79–85. (In Chinese) [Google Scholar]
- Sunanta, P.; Rose Sommano, S.; Luiten, C.A.; Ghofrani, M.; Sims, I.M.; Bell, T.J.; Carnachan, S.M.; Hinkley, S.F.R.; Kontogiorgos, V. Fractionation and Characterisation of Pectin-Rich Extracts from Garlic Biomass. Food Chem. 2024, 436, 137697. [Google Scholar] [CrossRef]
- Chitravathi, K.; Chauhan, O.P.; Raju, P.S. Postharvest Shelf-Life Extension of Green Chillies (Capsicum annuum L.) Using Shellac-Based Edible Surface Coatings. Postharvest Biol. Technol. 2014, 92, 146–148. [Google Scholar] [CrossRef]
- Liu, K.; Lv, L.; Li, W.; Ren, Z.; Wang, P.; Liu, X.; Gao, W.; Sun, L.; Zhang, G. A Comprehensive Review on Food Waste Anaerobic Co-Digestion: Research Progress and Tendencies. Sci. Total Environ. 2023, 878, 163155. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A Review of the Production and Applications of Waste-Derived Volatile Fatty Acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, Z.; Guan, D.; Zhao, J.; Wang, Y.; Zhang, Q.; Xie, J.; Sun, Y.; Guo, L.; Wang, D. A Comprehensive Review on Food Waste Anaerobic Co-Digestion: Current Situation and Research Prospect. Process Saf. Environ. Prot. 2023, 179, 546–558. [Google Scholar] [CrossRef]
- Feng, L.; Wang, H.; Chen, Y.; Wang, Q. Effect of Solids Retention Time and Temperature on Waste Activated Sludge Hydrolysis and Short-Chain Fatty Acids Accumulation under Alkaline Conditions in Continuous-Flow Reactors. Bioresour. Technol. 2009, 100, 44–49. [Google Scholar] [CrossRef]
- Mengmeng, C.; Hong, C.; Qingliang, Z.; Shirley, S.N.; Jie, R. Optimal Production of Polyhydroxyalkanoates (PHA) in Activated Sludge Fed by Volatile Fatty Acids (VFAs) Generated from Alkaline Excess Sludge Fermentation. Bioresour. Technol. 2009, 100, 1399–1405. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.; Hu, Y.; Zhang, Y.; Li, Y. Lactic Acid Fermentation from Food Waste with Indigenous Microbiota: Effects of pH, Temperature and High OLR. Waste Manag. 2016, 52, 278–285. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.C.; Hu, Y.; Zhang, Y.; Li, Y. Effect of pH on Lactic Acid Production from Acidogenic Fermentation of Food Waste with Different Types of Inocula. Bioresour. Technol. 2017, 224, 544–552. [Google Scholar] [CrossRef]
- Cheng, J.; Hua, J.; Kang, T.; Meng, B.; Yue, L.; Dong, H.; Li, H.; Zhou, J. Nanoscale Zero-Valent Iron Improved Lactic Acid Degradation to Produce Methane through Anaerobic Digestion. Bioresour. Technol. 2020, 317, 124013. [Google Scholar] [CrossRef]
- Bouallagui, H.; Touhami, Y.; Ben Cheikh, R.; Hamdi, M. Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes. Process Biochem. 2005, 40, 989–995. [Google Scholar] [CrossRef]
- Jie, W.; Peng, Y.; Ren, N.; Li, B. Volatile Fatty Acids (VFAs) Accumulation and Microbial Community Structure of Excess Sludge (ES) at Different pHs. Bioresour. Technol. 2014, 152, 124–129. [Google Scholar] [CrossRef]
- Du, M.; Liu, X.; Li, C.; Long, S.; Luo, L.; Guo, Y.; Wang, D. Uncovering the Mechanisms of How Capsaicin Affects Short-Chain Fatty Acid Production during Food Waste Valorization. ACS EST Eng. 2023, 3, 1986–1996. [Google Scholar] [CrossRef]







| Sample | Pectin (%) | Vitamin C (mg/100 g) | Common Treatments |
|---|---|---|---|
| Capsicum residues in this research | 8.09 | 27.65 | - |
| Capsicum residue | 9.64–15.62 [10] | - | Animal feed, composting |
| Apple pomace | 23.26 [23] | 2.545 [24] | Antioxidant substance extraction [25] |
| Banana peel | 11.31 [26] | 24.11 [27] | Minerals and antioxidant extraction |
| Mango peel | 18.5 [26] | 4.57–5.20 [28] | Phenolic composting |
| Grape pomace | 32 [29] | 10–20 [30] | Composting |
| Orange peel | 11.6–17.5 [31] | 26.0 (Dried orange peel from sunlight drying) 50.2 (Fresh orange peel) [32] | Essential oils, biofuels, pectin extraction |
| Passion fruit peel | 6.5 [33] | - | Dietary fiber extraction |
| Coffee pulp | 6.7 [34] | 20–60 (Fresh coffee pulp) 5–20 (Dried coffee pulp) [35] | Pectin extraction and composting |
| Beet pulp | 15–30% [36] | 4–8 [37] | Cellulose extraction |
| Berry pulp | 5–8 [38] | 5–12 [39] | Pigment extraction, composting |
| Potato pulp | 4–15 [40] | 5–15 [41] | Starch recovery and composting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Li, S.; Yang, T.; Li, D.; Wang, X.; Chen, Y.; Zhang, Z.; Yao, Z.; Yu, D.; Cheng, S.; et al. Evaluation of the Resource Utilization Potential of Capsicum Residue for Sustainable Industrial Capsaicin Extraction. Sustainability 2025, 17, 10303. https://doi.org/10.3390/su172210303
Hu Z, Li S, Yang T, Li D, Wang X, Chen Y, Zhang Z, Yao Z, Yu D, Cheng S, et al. Evaluation of the Resource Utilization Potential of Capsicum Residue for Sustainable Industrial Capsaicin Extraction. Sustainability. 2025; 17(22):10303. https://doi.org/10.3390/su172210303
Chicago/Turabian StyleHu, Zhifeng, Shijiao Li, Tianxue Yang, Dongyang Li, Xiaowei Wang, Yuxin Chen, Zhe Zhang, Zhiliang Yao, Dayang Yu, Shi Cheng, and et al. 2025. "Evaluation of the Resource Utilization Potential of Capsicum Residue for Sustainable Industrial Capsaicin Extraction" Sustainability 17, no. 22: 10303. https://doi.org/10.3390/su172210303
APA StyleHu, Z., Li, S., Yang, T., Li, D., Wang, X., Chen, Y., Zhang, Z., Yao, Z., Yu, D., Cheng, S., Wang, Y., & Liu, J. (2025). Evaluation of the Resource Utilization Potential of Capsicum Residue for Sustainable Industrial Capsaicin Extraction. Sustainability, 17(22), 10303. https://doi.org/10.3390/su172210303
