Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,005)

Search Parameters:
Keywords = fatty acid patterns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1603 KiB  
Article
Impact of Heat Stress on Rumen Fermentation Patterns and Microbiota Diversity and Its Association with Thermotolerance in Indigenous Goats
by Mullakkalparambil Velayudhan Silpa, Veerasamy Sejian, Chinnasamy Devaraj, Artabandhu Sahoo and Raghavendra Bhatta
Fermentation 2025, 11(8), 450; https://doi.org/10.3390/fermentation11080450 (registering DOI) - 1 Aug 2025
Abstract
Goats are considered to be the ideal climate-resilient animal species in the tropics. Fewer studies are documented assessing the heat stress response of caprine ruminal microbiota, which can also be a crucial indicator of the resilience and/or adaptability of animals. This study was [...] Read more.
Goats are considered to be the ideal climate-resilient animal species in the tropics. Fewer studies are documented assessing the heat stress response of caprine ruminal microbiota, which can also be a crucial indicator of the resilience and/or adaptability of animals. This study was conducted to comparatively assess the heat stress responses of two indigenous goat breeds, Nandidurga and Bidri, based on changes associated with the rumen fermentation pattern and distribution pattern of rumen microbiota. A total of 24 adult animals were randomly allocated into four groups of six animals each, NC (n = 6; Nandidurga control), NHS (n = 6; Nandidurga heat stress), BC (n = 6; Bidri control) and BHS (n = 6; Bidri heat stress). The animals were reared in climate chambers for a duration of 45 days wherein the NC and BC animals were maintained under thermoneutral temperature while the NHS and BHS animals were subjected to simulated heat stress. Heat stress was observed to significantly reduce the rumen ammonia, extracellular CMCase, intracellular carboxy methyl cellulase (CMCase) and total CMCase both in Nandidurga and Bidri goats. In addition to this, a significant reduction in acetate, propionate and total volatile fatty acids (VFAs) was observed in Nandidurga goats. The V3–V4 16s rRNA sequencing further revealed a significant alteration in the rumen microbiota in heat-stressed Nandidurga and Bidri goats. While both the breeds exhibited nearly similar responses in the rumen microbial abundance levels due to heat stress, breed-specific differences were also observed. Furthermore, the LEFSe analysis revealed a significant alteration in the abundances of microbes at the genus level, which were observed to be relatively greater in Bidri goats than Nandidurga goats. Furthermore, these alterations were predicted to impair the functional pathways, especially pathways associated with metabolism. This study therefore provided an insight into the rumen microbial dynamics in heat-stressed goats. Though both the breeds exhibited excellent resilience to the subjected heat stress, there were relatively less ruminal alterations in Nandidurga goats than in Bidri goats. Full article
(This article belongs to the Special Issue Research Progress of Rumen Fermentation)
31 pages, 1295 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 (registering DOI) - 1 Aug 2025
Viewed by 31
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
30 pages, 4423 KiB  
Review
Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis
by Gbolahan Alagbe, Klara Urbanova and Olajumoke Alagbe
Processes 2025, 13(8), 2444; https://doi.org/10.3390/pr13082444 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and [...] Read more.
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and kola nuts. It emphasizes the fatty acid profiles, noting that palmitic acid (C16:0) is the predominant saturated fatty acid, while oleic acid (C18:1) and linoleic acid (C18:2) are the most abundant monounsaturated and polyunsaturated fatty acids, respectively. The review also details various analytical techniques employed for extracting and characterizing bioactive compounds, which are crucial for assessing nut quality and health benefits. Methods such as Soxhlet extraction, solid-phase microextraction (SPME), supercritical fluid extraction (SFE), gas chromatography (GC-FID and GC-MS), and high-performance liquid chromatography (HPLC) are highlighted. Furthermore, it discusses scientific evidence linking nut consumption to antioxidant and anti-inflammatory properties, improved cardiovascular health, and a reduced risk of type 2 diabetes, establishing nuts as important components in a healthy diet. This review underscores the role of nuts as functional foods and calls for standardized methodologies in future lipidomic and volatilomic studies. Full article
Show Figures

Figure 1

18 pages, 875 KiB  
Review
Monounsaturated Fatty Acids in Cardiovascular Disease: Intake, Individual Types, and Content in Adipose Tissue as a Biomarker of Endogenous Exposure
by Jonas Pedersen, Berit Storgaard Hedegaard, Erik Berg Schmidt, Christina C. Dahm, Kirsten B. Holven, Kjetil Retterstøl, Philip C. Calder and Christian Bork
Nutrients 2025, 17(15), 2509; https://doi.org/10.3390/nu17152509 - 30 Jul 2025
Viewed by 131
Abstract
Unhealthy dietary patterns are a major modifiable risk factor for atherosclerotic cardiovascular disease (ASCVD). International guidelines recommend reducing saturated fatty acid intake while increasing polyunsaturated and monounsaturated fatty acids (MUFAs) to mitigate cardiovascular risk. However, evidence regarding MUFAs and risk of ASCVD remains [...] Read more.
Unhealthy dietary patterns are a major modifiable risk factor for atherosclerotic cardiovascular disease (ASCVD). International guidelines recommend reducing saturated fatty acid intake while increasing polyunsaturated and monounsaturated fatty acids (MUFAs) to mitigate cardiovascular risk. However, evidence regarding MUFAs and risk of ASCVD remains conflicting, with recent studies raising concern about a potential higher risk associated with MUFA intake. The aim of this narrative review is to provide an overview of current knowledge and gaps in the literature regarding MUFAs and the risk of ASCVD with a focus on intake, individual types, and content in adipose tissue as a biomarker of endogenous exposure. Main findings reveal that most studies have inappropriately combined all MUFAs together, despite individual MUFA types having different biological effects and showing varying correlations between dietary intake and adipose tissue content. Adipose tissue composition may serve as a biomarker of long-term MUFA exposure, reflecting cumulative intake over one to two years while minimizing biases inherent in dietary assessments. However, tissue levels reflect both dietary intake and endogenous synthesis, complicating interpretation. Importantly, the source of MUFAs appears critical, with plant-derived MUFAs potentially offering advantages over animal-derived sources. In conclusion, we suggest that future research should focus on individual MUFA types rather than treating them as a homogeneous group, investigate their specific dietary sources and associations with ASCVD risk, and use adipose tissue biomarkers to improve exposure assessment and clarify causal relationships while considering overall dietary patterns. Full article
(This article belongs to the Special Issue Diet, Nutrition and Cardiovascular Health—2nd Edition)
Show Figures

Figure 1

23 pages, 2699 KiB  
Article
Changes in L-Carnitine Metabolism Affect the Gut Microbiome and Influence Sexual Behavior Through the Gut–Testis Axis
by Polina Babenkova, Artem Gureev, Irina Sadovnikova, Inna Burakova, Yuliya Smirnova, Svetlana Pogorelova, Polina Morozova, Viktoria Gribovskaya, Dianna Adzhemian and Mikhail Syromyatnikov
Microorganisms 2025, 13(8), 1751; https://doi.org/10.3390/microorganisms13081751 - 26 Jul 2025
Viewed by 330
Abstract
L-carnitine and Mildronate are substances that can significantly rearrange the energy metabolism of cells. This can potentially cause changes in the bacterial composition of the gut microbiome and affect testis functionality and male sexual health. Mice of the C57Bl/6 line were used. Sexual [...] Read more.
L-carnitine and Mildronate are substances that can significantly rearrange the energy metabolism of cells. This can potentially cause changes in the bacterial composition of the gut microbiome and affect testis functionality and male sexual health. Mice of the C57Bl/6 line were used. Sexual behavior was assessed using physiological tests, and gene expression patterns were assessed by qPCR. High-throughput sequencing of mouse fecal microbiota was performed. We showed that long-term administration of Mildronate has no significant effect on the intestinal microbiome, and there was a compensatory increase in the expression of genes involved in fatty acid and leptin metabolism. No impairment of sexual motivation in male mice was observed. Prolonged L-carnitine supplementation caused a decrease in alpha diversity of bacteria and a decrease in some groups of microorganisms that are components of a healthy gut microflora. A correlation was observed between the level of bacteria from Firmicutes phylum, indicators of sexual motivation of mice, and the dynamics of body weight gain. Our results may indicate that metabolic modulators can have a significant impact on the structure of the bacterial community of the gut microbiome, which may influence male sexual health through the gut–semen axis. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

32 pages, 722 KiB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Viewed by 289
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

29 pages, 1209 KiB  
Review
The Oral–Gut Microbiota Axis as a Mediator of Frailty and Sarcopenia
by Domenico Azzolino, Margherita Carnevale-Schianca, Lucrezia Bottalico, Marica Colella, Alessia Felicetti, Simone Perna, Leonardo Terranova, Franklin Garcia-Godoy, Mariangela Rondanelli, Pier Carmine Passarelli and Tiziano Lucchi
Nutrients 2025, 17(15), 2408; https://doi.org/10.3390/nu17152408 - 23 Jul 2025
Viewed by 526
Abstract
Traditionally studied in isolation, the oral and gut microbiota are now being recognized as interconnected through anatomical and physiological pathways forming a dynamic “oral–gut microbiota axis”. Both oral and gut microbiota undergo changes with aging, characterized by a decline in microbial diversity and [...] Read more.
Traditionally studied in isolation, the oral and gut microbiota are now being recognized as interconnected through anatomical and physiological pathways forming a dynamic “oral–gut microbiota axis”. Both oral and gut microbiota undergo changes with aging, characterized by a decline in microbial diversity and a shift toward potentially harmful species. The aim of this review is, therefore, to provide an overview of oral–gut communications in mediating frailty and sarcopenia. PubMed, EMBASE and Scopus databases were searched for relevant articles. We limited our search to manuscripts published in the English language. Interactions between oral and gut microbiota occur mainly through three pathways namely the enteral, the bloodstream and the fecal-oral routes. Alterations in the oral–gut microbiota axis contribute to chronic low-grade inflammation (i.e., “inflamm-ageing”) and mitochondrial dysfunction, key mechanisms underlying frailty and sarcopenia. Microbial metabolites, such as short-chain fatty acids and modified bile acids, appear to play an emerging role in influencing microbial homeostasis and muscle metabolism. Furthermore, poor oral health associated with microbial dysbiosis may contribute to altered eating patterns that negatively impact gut microbiota eubiosis, further exacerbating muscle decline and the degree of frailty. Strategies aimed at modulating the microbiota, such as healthy dietary patterns with reduced consumption of ultra-processed foods, refined carbohydrates and alcohol, ensuring an adequate protein intake combined with physical exercise, as well as supplementation with prebiotics, probiotics, and omega-3 polyunsaturated fatty acids, are increasingly recognized as promising interventions to improve both oral and gut microbiota health, with beneficial effects on frailty and sarcopenia. A better understanding of the oral–gut microbiota axis offers promising insights into nutritional interventions and therapeutic strategies for the age-related muscle decline, frailty and systemic health maintenance. Full article
(This article belongs to the Special Issue Addressing Malnutrition in the Aging Population)
Show Figures

Figure 1

23 pages, 4569 KiB  
Article
Multi-Omics Analysis Provides New Insights into the Interplay Between Gut Microbiota, Fatty Acid Metabolism, and Immune Response in Cultured and Wild Coilia nasus from the Yangtze River Area in China
by Chang Yang, Kai Liu, Yanmin Deng, Qianhui Wang, Shiqian Cao and Qunlan Zhou
Microorganisms 2025, 13(7), 1711; https://doi.org/10.3390/microorganisms13071711 - 21 Jul 2025
Viewed by 354
Abstract
To elucidate the interactions among fatty acid metabolism, immune status, and gut microbiota, both cultured and wild Coilia nasus from the Yangtze River were examined in China. The results demonstrated that wild C. nasus exhibited markedly higher lipid and docosahexaenoic acid (DHA) contents, [...] Read more.
To elucidate the interactions among fatty acid metabolism, immune status, and gut microbiota, both cultured and wild Coilia nasus from the Yangtze River were examined in China. The results demonstrated that wild C. nasus exhibited markedly higher lipid and docosahexaenoic acid (DHA) contents, a greater ratio of total ω-3 PUFAs to total ω-6 PUFAs, and more active antioxidant enzymes compared to cultured C. nasus. However, the shear force, water-holding capacity, and total n-6 PUFA content were lower in wild C. nasus. Transcriptome analysis revealed distinct gene expression patterns: wild C. nasus upregulated immune-related genes, while cultured C. nasus downregulated genes related to fatty acid metabolism. Significant differences were observed in alpha and beta diversity between cultured and wild groups. LEfSe analysis identified Clostridium_T, Escherichia, and Glutamicibacter as biomarkers for cultured C. nasus, while eight genera, including Pseudomonas_E and Sphingomonas_L, were predominant in wild C. nasus. Modular analysis identified five modules linked to immune functions and fatty acid metabolism. Clostridium_T, Sphingomonas_L, and Pseudomonas_E were dominant in the first two modules, with Pseudomonas_E and Clostridium_T as key regulators of fatty acid metabolism and immune processes. These differences, likely due to gut microbiota variations, provide insights for C. nasus nutritional studies. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

14 pages, 2150 KiB  
Brief Report
Transcriptional Signatures of Aerobic Exercise-Induced Muscle Adaptations in Humans
by Pranav Iyer, Diana M. Asante, Sagar Vyavahare, Lee Tae Jin, Pankaj Ahluwalia, Ravindra Kolhe, Hari Kashyap, Carlos Isales and Sadanand Fulzele
J. Funct. Morphol. Kinesiol. 2025, 10(3), 281; https://doi.org/10.3390/jfmk10030281 - 19 Jul 2025
Viewed by 404
Abstract
Background: Aerobic exercise induces a range of complex molecular adaptations in skeletal muscle. However, a complete understanding of the specific transcriptional changes following exercise warrants further research. Methods: This study aimed to identify gene expression patterns following acute aerobic exercise by [...] Read more.
Background: Aerobic exercise induces a range of complex molecular adaptations in skeletal muscle. However, a complete understanding of the specific transcriptional changes following exercise warrants further research. Methods: This study aimed to identify gene expression patterns following acute aerobic exercise by analyzing Gene Expression Omnibus (GEO) datasets. We performed a comparative analysis of transcriptional profiles of related genes in two independent studies, focusing on both established and novel genes involved in muscle physiology. Results: Our analysis revealed ten consistently upregulated and eight downregulated genes across both datasets. The upregulated genes were predominantly associated with mitochondrial function and cellular respiration, including MDH1, ATP5MC1, ATP5IB, and ATP5F1A. Conversely, downregulated genes such as YTHDC1, CDK5RAP2, and PALS2 were implicated in vascular structure and cellular organization. Importantly, our findings also revealed novel exercise-responsive genes not previously characterized in this context. Among these, MRPL41 and VEGF were significantly upregulated and are associated with p53-mediated apoptotic signaling and fatty acid metabolism, respectively. Novel downregulated genes included LIMCH1, CMYA5, and FOXJ3, which are putatively involved in cytoskeletal dynamics and muscle fiber type specification. Conclusions: These findings enhance our understanding of the transcriptional landscape of skeletal muscle following acute aerobic exercise and identify novel molecular targets for further investigation in the fields of exercise physiology and metabolic health. Full article
(This article belongs to the Special Issue Advances in Physiology of Training—2nd Edition)
Show Figures

Figure 1

30 pages, 8115 KiB  
Article
Effects of Italian Mediterranean Organic Diet on the Gut Microbiota: A Pilot Comparative Study with Conventional Products and Free Diet
by Laura Di Renzo, Giulia Frank, Barbara Pala, Rossella Cianci, Giada La Placa, Glauco Raffaelli, Roselisa Palma, Daniele Peluso, Antonino De Lorenzo, Paola Gualtieri and on behalf of Clinical Nutrition and Nutrigenomics Project Group
Microorganisms 2025, 13(7), 1694; https://doi.org/10.3390/microorganisms13071694 - 18 Jul 2025
Viewed by 450
Abstract
The human exposome, including dietary exposures such as pesticides, additives, and environmental contaminants, plays a critical role in shaping the gut microbiota (GM) and long-term health outcomes. While the Mediterranean Diet is known for its health-promoting effects, the role of food quality, specifically [...] Read more.
The human exposome, including dietary exposures such as pesticides, additives, and environmental contaminants, plays a critical role in shaping the gut microbiota (GM) and long-term health outcomes. While the Mediterranean Diet is known for its health-promoting effects, the role of food quality, specifically organic vs. conventional products, in modulating GM within this dietary pattern remains underexplored. The aim of this study was to evaluate (1) whether an Italian Mediterranean Organic Diet (IMOD) confers additional benefits compared to an Italian Mediterranean non-Organic Diet (IMnOD), and (2) the impact of IMOD and IMnOD versus a free diet (No Diet) on GM and anthropometric parameters. A randomized, controlled trial was conducted on 39 healthy subjects. Eligible subjects were divided into the following groups: (1) 4 weeks No Diet, (2) 4 weeks IMOD, and (3) 4 weeks IMnOD. Microbiota profiling (16S rRNA sequencing), body composition (BIA), and dietary adherence (MEDAS, FFQ) were evaluated. Distinct microbial shifts following both IMOD and IMnOD compared to No Diet were revealed. Several taxa previously associated with short-chain fatty acid (SCFA) biosynthesis (i.e., Anaerobutyricum hallii, Anaerostipes hadrus, and Dorea longicatena) were increased after both Mediterranean Diet interventions, while Parabacteroides distasonis showed a specific increase in the IMOD group. No significant changes in body weight or composition were observed. These findings suggest that adherence to a Mediterranean Diet, regardless of food source, reshapes the gut microbiota, while organic food intake may influence specific microbial trajectories. Our results support the relevance of food quality in dietary interventions. Full article
Show Figures

Figure 1

13 pages, 1017 KiB  
Systematic Review
Systematic Review of Nutritional Guidelines for the Management of Gestational Diabetes Mellitus: A Global Comparison
by Angelo Sirico, Maria Giovanna Vastarella, Eleonora Ruggiero and Luigi Cobellis
Nutrients 2025, 17(14), 2356; https://doi.org/10.3390/nu17142356 - 18 Jul 2025
Viewed by 508
Abstract
Background: Gestational diabetes mellitus (GDM) affects 7–9% of pregnancies worldwide and is associated with adverse maternal and neonatal outcomes. Nutritional therapy is a key component of GDM management. However, inconsistencies exist across international and national guidelines regarding macronutrient distribution, glycemic targets, and micronutrient [...] Read more.
Background: Gestational diabetes mellitus (GDM) affects 7–9% of pregnancies worldwide and is associated with adverse maternal and neonatal outcomes. Nutritional therapy is a key component of GDM management. However, inconsistencies exist across international and national guidelines regarding macronutrient distribution, glycemic targets, and micronutrient supplementation. This systematic review aims to compare updated nutritional recommendations for GDM across major health organizations and identify areas of consensus, divergence, and evidence gaps. Methods: This systematic review was conducted following PRISMA guidelines and registered in PROSPERO (CRD420251026194). A comprehensive literature search was performed in PubMed, Scopus, and Google Scholar (concluding March 2025), along with manual searches of official websites of professional health organizations (e.g., ADA, WHO, NICE, IDF). Guidelines published within the last 10 years (or the most relevant national guideline if slightly older), available in English or with access to translation, and including explicit nutritional recommendations for GDM were included. Data were extracted on macronutrient composition, glycemic targets, and micronutrient supplementation, with evaluation of the supporting evidence and regional context, incorporating findings from recent key guideline updates. Results: In total, 12 guidelines met the inclusion criteria. While all guidelines emphasized carbohydrate moderation and adequate fiber intake, significant discrepancies were found in carbohydrate quality recommendations (e.g., low-glycemic index focus vs. total carbohydrate restriction), postprandial glucose targets (e.g., 1-h vs. 2-h measurements and varying thresholds like <120 vs. <140 mg/dL), and the use of non-routine micronutrients such as chromium, selenium, and omega-3 fatty acids (generally lacking endorsement). Recent updates from key bodies like ADA, Diabetes Canada, and KDA largely maintain these core stances but show increasing emphasis on dietary patterns and acknowledgement of CGM technology, without resolving key discrepancies. Cultural adaptability and behavioral counselling strategies were minimally addressed across most guidelines. Conclusions: Despite general agreement on the principal recommendations of nutritional management in GDM, substantial variation persists in specific recommendations, even considering recent updates. Consistent, evidence-based, and culturally adaptable guidelines incorporating implementation strategies are needed to optimize care and reduce disparities in GDM management across regions. Full article
Show Figures

Figure 1

18 pages, 3116 KiB  
Article
Effects of Probiotic Supplementation on Depressive Symptoms, Sleep Quality, and Modulation of Gut Microbiota and Inflammatory Biomarkers: A Randomized Controlled Trial
by S Rehan Ahmad, Abdullah M. AlShahrani and Anupriya Kumari
Brain Sci. 2025, 15(7), 761; https://doi.org/10.3390/brainsci15070761 - 18 Jul 2025
Viewed by 1163
Abstract
Background: More than merely determining our sleep pattern, our body’s internal clock also improves the quality of our sleep, alleviates the symptoms of depression, and maintains the balance of our gut flora. Methods: We carried out a 12-week randomized controlled trial with 99 [...] Read more.
Background: More than merely determining our sleep pattern, our body’s internal clock also improves the quality of our sleep, alleviates the symptoms of depression, and maintains the balance of our gut flora. Methods: We carried out a 12-week randomized controlled trial with 99 adults from Kolkata, New Delhi, and Pune who reported sleep problems and symptoms of depression or anxiety. Participants received either a probiotic formulated to improve sleep quality and reduce depressive symptoms or a placebo. We tracked sleep using overnight studies and wearable devices, assessed depressive symptoms with standardized questionnaires, and analyzed stool samples to profile gut bacteria and their metabolites using gene sequencing and metabolomics. Advanced statistics and machine learning helped us pinpoint the key microbial and metabolic factors tied to sleep and mental health. Results: At the start, participants with disrupted sleep and depressive symptoms had fewer beneficial gut bacteria like Bifidobacterium and Lactobacillus, more inflammation-related microbes, and lower levels of helpful short-chain fatty acids. These imbalances were linked to poorer sleep efficiency, less REM sleep, and higher depression and anxiety scores. After 12 weeks, those taking the circadian-supporting probiotic saw a statistically significant increase in beneficial gut bacteria, improved sleep efficiency (+7.4%, p = 0.02), and greater reductions in depression and anxiety compared to the placebo. Increases in SCFA-producing bacteria most strongly predicted improvements. Conclusions: Our results show that taking a probiotic supplement can help bring your gut back into balance, support better sleep, and lift symptoms of depression and anxiety. This offers a hopeful and practical option for people looking for real relief from these deeply connected challenges. Full article
(This article belongs to the Special Issue Relationships Between Disordered Sleep and Mental Health)
Show Figures

Figure 1

16 pages, 301 KiB  
Article
Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern
by Aleš Žák, Marek Vecka, Peter Szitanyi, Marcela Floriánková, Barbora Staňková, Petra Uhlíková, Veronika Dostálová and Michal Burda
Nutrients 2025, 17(14), 2347; https://doi.org/10.3390/nu17142347 - 17 Jul 2025
Viewed by 285
Abstract
Background: Dyslipidemia and distorted fatty acid (FA) metabolism are frequent biochemical abnormalities associated with anorexia nervosa (AN). Gut microbiota is supposed to play an important role in the etiopathogenesis of AN. Apart from the digestive function of bile acids (BAs), these compounds have [...] Read more.
Background: Dyslipidemia and distorted fatty acid (FA) metabolism are frequent biochemical abnormalities associated with anorexia nervosa (AN). Gut microbiota is supposed to play an important role in the etiopathogenesis of AN. Apart from the digestive function of bile acids (BAs), these compounds have multiple metabolic functions due to the activation of specific receptors. Objective/aims: The aims of the study were to investigate biochemical measures, including plasma lipids (lipoproteins, respectively), fatty acid (FA) patterns, and the profile of plasma Bas, in AN patients and healthy controls (CON). Methods: Plasma phospholipid FA and BAs profiles were analyzed in 39 women with a restrictive type of AN (AN-R; median age 17 years) and in 35 CON women (median age 20 years). Results: Compared to CON, AN had an increased concentration of HDL-C, increased content of palmitic acid, and decreased proportion of linoleic acid. Moreover, AN had a drop in the level of the sum of PUFAn-6 and increased delta 9 desaturase activity for stearic acid. In AN, we found decreased levels of plasma tauroursodeoxycholic acid (TUDCA). In AN, concentrations of 22:5n-6, 16:0, 20:3n-6 and fat mass index were predic-tors of HDL-C levels (R2 = 0.43). Conclusions: Patients with AN-R had an increased concentration of HDL-C, decreased levels of total PUFA n-6, and increased activity of D9D for stearic acid. Furthermore, AN exerted decreased levels of TUDCA. Therefore, a decreased level of TUDCA could potentially serve as a marker of AN. Full article
(This article belongs to the Special Issue Eating and Mental Health Disorders)
25 pages, 1591 KiB  
Review
Cardiovascular Risk Factors, Alzheimer’s Disease, and the MIND Diet: A Narrative Review from Molecular Mechanisms to Clinical Outcomes
by Amirhossein Ataei Kachouei, Saiful Singar, Amber Wood, Jason D. Flatt, Sara K. Rosenkranz, Richard R. Rosenkranz and Neda S. Akhavan
Nutrients 2025, 17(14), 2328; https://doi.org/10.3390/nu17142328 - 16 Jul 2025
Viewed by 658
Abstract
Cardiovascular diseases (CVDs) and Alzheimer’s disease (AD) are among the top 10 causes of death worldwide. Accumulating evidence suggests connections between CVD risk factors―including hypertension (HTN), hyperlipidemia (HLP), diabetes mellitus (DM), obesity, and physical inactivity―and AD. The Mediterranean–DASH Intervention for Neurodegenerative Delay (MIND) [...] Read more.
Cardiovascular diseases (CVDs) and Alzheimer’s disease (AD) are among the top 10 causes of death worldwide. Accumulating evidence suggests connections between CVD risk factors―including hypertension (HTN), hyperlipidemia (HLP), diabetes mellitus (DM), obesity, and physical inactivity―and AD. The Mediterranean–DASH Intervention for Neurodegenerative Delay (MIND) dietary pattern has recently garnered considerable attention as a key preventive strategy for both CVDs and AD. While previous studies have examined the connections between CVD risk factors and AD, they have not thoroughly explored their underlying mechanisms. Therefore, the current literature review aims to synthesize the literature and highlight underlying mechanisms from preclinical to clinical studies to elucidate the relationship between CVD risk factors, AD, and the role of the MIND dietary pattern in these conditions. The MIND dietary pattern emphasizes foods rich in antioxidants and brain-healthy nutrients such as vitamin E, folate, polyphenols, flavonoids, carotenoids, fiber, monounsaturated fatty acids, and omega-3 fatty acids. These components have been associated with reduced amyloid-β accumulation in preclinical studies and may contribute to the prevention of AD, either directly or indirectly by affecting CVD risk factors. Despite the extensive evidence from preclinical and observational studies, few clinical trials have investigated the effects of the MIND dietary pattern on cognitive health. Therefore, long-term clinical trials are required to better understand and establish the potential role of the MIND dietary pattern in preventing and managing AD. Full article
Show Figures

Figure 1

17 pages, 3910 KiB  
Article
Genome-Wide Identification and Comprehensive Analysis of Ubiquitin-Specific Protease Gene Family in Soybean (Glycine max)
by Cuirong Tan, Dingyue Ban, Haiyang Li, Jinxing Wang, Baohui Liu and Chunyu Zhang
Int. J. Mol. Sci. 2025, 26(14), 6689; https://doi.org/10.3390/ijms26146689 - 11 Jul 2025
Viewed by 373
Abstract
Deubiquitination plays a pivotal role in regulating plant responses to abiotic stress, growth, and development. Among the deubiquitinase (DUB) families, ubiquitin-specific proteases (UBPs) constitute the largest group. Despite this, limited research has been conducted on the functional characteristics of the UBP gene family [...] Read more.
Deubiquitination plays a pivotal role in regulating plant responses to abiotic stress, growth, and development. Among the deubiquitinase (DUB) families, ubiquitin-specific proteases (UBPs) constitute the largest group. Despite this, limited research has been conducted on the functional characteristics of the UBP gene family in soybean (Glycine max). In this study, we identified 52 UBP gene family members in soybean, all of which harbored UCH (ubiquitin C-terminal hydrolase) domains with short yet evolutionarily conserved Cys-box and His-box. These genes were phylogenetically classified into 14 distinct groups; GmUBP genes within the same group shared analogous patterns of conserved domains and motifs. Moreover, a synteny analysis reveals that the GmUBP family has undergone extensive gene duplication events and shares a close evolutionary relationship with Arabidopsis thaliana. We conducted a focused analysis on GmUBP7, which is a gene exhibiting high expression levels in soybean seeds. Intriguingly, this gene exhibited several haplotypes in natural soybean varieties, with significant differences being observed in relation to seed traits, such as 100-seed weight, total fatty acid content, and protein content among different haplotypes. Collectively, the findings from this study provide a foundation for the functional characterization of GmUBP genes, offering new insights into the regulatory network underlying seed development in soybean. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop