Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling
2.3. Nutritional Analysis
2.3.1. Protein Content
2.3.2. Crude Fat
2.3.3. Ash
2.3.4. Carbohydrate and Fiber Content
2.4. Physical Parameters
2.4.1. Water Activity (aw)
2.4.2. Moisture
2.5. Chemical Parameters
2.5.1. pH
2.5.2. Total Acidity
2.5.3. Total Solids
2.5.4. Fatty Acids
2.5.5. Organic Acids
2.5.6. Phenolic Compounds
2.6. Bioactive Parameters
2.6.1. Preparation of the Extracts
2.6.2. Total Phenols
2.6.3. DPPH
2.6.4. FRAP
2.6.5. Cellular Antioxidant Activity
2.6.6. Cytotoxicity and Anti-Inflammatory Activity
2.6.7. Antimicrobial Activity
2.7. Statistical Analysis
3. Results
3.1. Nutritional Composition
3.2. Physical and Chemical Parameters
Phenolic Compounds
3.3. Bioactivity Measurements
3.4. Innovative Food Applications of Bioactive Compounds from PANCs
3.5. Linear Discriminant Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duarte-Casar, R.; González-Jaramillo, N.; Bailon-Moscoso, N.; Rojas-Le-Fort, M.; Romero-Benavides, J.C. Five Underutilized Ecuadorian Fruits and Their Bioactive Potential as Functional Foods and in Metabolic Syndrome: A Review. Molecules 2024, 29, 2904. [Google Scholar] [CrossRef]
- Leal, M.L.; Alves, R.P.; Hanazaki, N. Knowledge, Use, and Disuse of Unconventional Food Plants. J. Ethnobiol. Ethnomed. 2018, 14, 6. [Google Scholar] [CrossRef]
- Moura, I.O.; Santana, C.C.; Lourenço, Y.R.F.; Souza, M.F.; Silva, A.R.S.T.; Dolabella, S.S.; de Oliveira e Silva, A.M.; Oliveira, T.B.; Duarte, M.C.; Faraoni, A.S. Chemical Characterization, Antioxidant Activity and Cytotoxicity of the Unconventional Food Plants: Sweet Potato (Ipomoea batatas (L.) Lam.) Leaf, Major Gomes (Talinum paniculatum (Jacq.) Gaertn.) and Caruru (Amaranthus deflexus L.). Waste Biomass Valorization 2021, 12, 2407–2431. [Google Scholar] [CrossRef]
- Milião, G.L.; de Oliveira, A.P.H.; Soares, L.d.S.; Arruda, T.R.; Vieira, É.N.R.; Leite Junior, B.R.d.C. Unconventional Food Plants: Nutritional Aspects and Perspectives for Industrial Applications. Future Foods 2022, 5, 100124. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Suárez, M.; Aragonès, G.; Mulero, M.; Ávila-Román, J.; Arola-Arnal, A.; Salvadó, M.J.; Arola, L.; Bravo, F.I.; Muguerza, B. Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Mol. Nutr. Food Res. 2022, 66, e2100990. [Google Scholar] [CrossRef]
- de Castro Campos Pinto, N.; Scio, E. The Biological Activities and Chemical Composition of Pereskia Species (Cactaceae)—A Review. Plant Foods Hum. Nutr. 2014, 69, 189–195. [Google Scholar] [CrossRef]
- Garcia, J.A.A.; Corrêa, R.C.G.; Barros, L.; Pereira, C.; Abreu, R.M.V.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Phytochemical Profile and Biological Activities of “Ora-pro-Nobis” Leaves (Pereskia aculeata Miller), an Underexploited Superfood from the Brazilian Atlantic Forest. Food Chem. 2019, 294, 302–308. [Google Scholar] [CrossRef]
- Souza, L.; Caputo, L.; Inchausti De Barros, I.; Fratianni, F.; Nazzaro, F.; De Feo, V. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities. Int. J. Mol. Sci. 2016, 17, 1478. [Google Scholar] [CrossRef]
- Pinto, N.d.C.C.; Machado, D.C.; da Silva, J.M.; Conegundes, J.L.M.; Gualberto, A.C.M.; Gameiro, J.; Moreira Chedier, L.; Castañon, M.C.M.N.; Scio, E. Pereskia aculeata Miller Leaves Present In Vivo Topical Anti-Inflammatory Activity in Models of Acute and Chronic Dermatitis. J. Ethnopharmacol. 2015, 173, 330–337. [Google Scholar] [CrossRef]
- Mazon, S.; Menin, D.; Cella, B.M.; Lise, C.C.; Vargas, T.d.O.; Daltoé, M.L.M. Exploring Consumers’ Knowledge and Perceptions of Unconventional Food Plants: Case Study of Addition of Pereskia aculeata Miller to Ice Cream. Food Sci. Technol. 2020, 40, 215–221. [Google Scholar] [CrossRef]
- Ferreira, C.P.; de Lima, M.d.C.; da Silva, J.G.; Peixoto Araujo, N.M. Nutritional Composition, Phenolic Compounds and Biological Activities of Selected Unconventional Food Plants. Food Res. Int. 2024, 191, 114643. [Google Scholar] [CrossRef]
- Araújo, S.d.S.; Giunco, A.J.; Argandoña, J.S.; Bromatology, S.M.S.E. Food Chemistry and Antioxidant Activity of Xanthosoma sagittifolium (L.) Schott. Emir. J. Food Agric. 2019, 31, 188. [Google Scholar] [CrossRef]
- da Silva, C.F.B.; Cardoso, F.A.R.; Casarin, P.; Droval, A.A.; Fuchs, R.H.B.; Marques, L.L.M. In Vitro Evaluation of Goldfish (Stachys byzantina K. Koch) Extracts Obtained Using Natural Deep Eutectic Solvents (NADES). Ind. Crops Prod. 2024, 208, 117851. [Google Scholar] [CrossRef]
- Lima, J.A.d.S.; Leite, V.C.; Silva, J.P.; Ferrarez, M.A.; Bahia, G.D.; Rezende, L.V.N.; Guedes, M.C.M.R.; Macedo, G.C.; Silva, N.P.d.; Tavares, G.D.; et al. Stachys Byzantina K. Koch in the Treatment of Skin Inflammation: A Comprehensive Evaluation of its Therapeutic Properties. ACS Omega 2024, 9, 49899–49912. [Google Scholar] [CrossRef] [PubMed]
- Senevirathna, N.; Karim, A. Banana Inflorescence as a New Source of Bioactive and Pharmacological Ingredients for Food Industry. Food Chem. Adv. 2024, 5, 100814. [Google Scholar] [CrossRef]
- Muchahary, S.; Nickhil, C.; Deka, S.C. An Artificial Intelligence Approach for Modeling Nachos Developed from Bhimkol Banana (Musa Balbisiana) Blossom. J. Food Process Eng. 2023, 46, e14227. [Google Scholar] [CrossRef]
- Choudhury, N.; Nickhil, C.; Deka, S.C. Comprehensive Review on the Nutritional and Therapeutic Value of Banana By-Products and Their Applications in Food and Non-Food Sectors. Food Biosci. 2023, 56, 103416. [Google Scholar] [CrossRef]
- Panyayong, C.; Srikaeo, K. Foods from Banana Inflorescences and Their Antioxidant Properties: An Exploratory Case in Thailand. Int. J. Gastron. Food Sci. 2022, 28, 100436. [Google Scholar] [CrossRef]
- Nogueira Silva, N.; Silva, S.; Baron, D.; Oliveira Neves, I.; Casanova, F. Pereskia aculeata Miller as a Novel Food Source: A Review. Foods 2023, 12, 2092. [Google Scholar] [CrossRef]
- Boakye, A.A.; Wireko-Manu, F.D.; Oduro, I.; Ellis, W.O.; Gudjónsdóttir, M.; Chronakis, I.S. Utilizing Cocoyam (Xanthosoma Sagittifolium) for Food and Nutrition Security: A Review. Food Sci. Nutr. 2018, 6, 703–713. [Google Scholar] [CrossRef]
- de Oliveira, I.; da Silveira, T.F.F.; dos Santos Garcia, V.A.; Veiga-Santos, P.; Lima, G.P.P.; Lima, L.A.; Santos-Buelga, C.; Barros, L.; Heleno, S.A.; Carocho, M. Development of Bioactive Edible Coatings Enriched with Extracts of Celery and Banana Inflorescence for the Preservation of Persimmons. Food Res. Int. 2025, 213, 116608. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.H.S. de Stachys byzantina: Nutritional Value, Culinary Potential, and Sustainability of an Unconventional Food Plant. Asian J. Biotechnol. Bioresour. Technol. 2024, 10, 60–64. [Google Scholar] [CrossRef]
- Babaei Rad, S.; Mumivand, H.; Mollaei, S.; Khadivi, A. Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Capparis spinosa L. Fruits. BMC Plant Biol. 2025, 25, 133. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Pandey, D.; van der Heide, M.E.; Nørgaard, J.V.; Vrhovsek, U.; Khanal, P. Effect of Different Drying Methods on the Nutritional Composition and Phenolic Compounds of the Brown Macroalga, Fucus vesiculosus (Fucales, Phaeophyceae). J. Appl. Phycol. 2024, 36, 3649–3663. [Google Scholar] [CrossRef]
- Jordan, R.A.; Sanjinez-Argandoña, E.J.; Ferreira, O.M.; Quequeto, W.D.; Siqueira, V.C.; Mendoza, V.d.S.; Flozino, G.K.M.; Sanches, Í.S.; Sanches, É.S.; Antunes, B.M. Efeito de Sistemas e Condições de Secagem Sobre o Consumo Específico de Energia e os Compostos Bioativos da Taioba (Xanthosoma sagittifolium Schott). Res. Soc. Dev. 2021, 10, e21610716512. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016; ISBN 978-0-935584-87-5. [Google Scholar]
- Yao, S.; LiBrizzi, B.R.; Chen, H. Heating Temperature and Water Activity of Alfalfa Seeds Affect Thermal Inactivation of Salmonella and Maintaining Seed Viability. Int. J. Food Microbiol. 2023, 384, 109975. [Google Scholar] [CrossRef]
- Sadler, G.D.; Murphy, P.A. PH and Titratable Acidity. In Food Analysis; Springer: Berlin, Germany, 2010; pp. 219–238. [Google Scholar]
- Albuquerque, B.R.; Finimundy, T.C.; Pinela, J.; Pires, T.C.S.P.; Mandim, F.; Vaz, J.; Corrêa, R.C.G.; Oliveira, M.B.P.P.; Barros, L. Brazilian Berry Waste as a Source of Bioactive Compounds: Grumixama (Eugenia brasiliensis Lam.) as a Case Study. Food Funct. 2023, 14, 3994–4005. [Google Scholar] [CrossRef]
- de Oliveira, I.; Chrysargyris, A.; Heleno, S.A.; Carocho, M.; Calhelha, R.C.; Dias, M.I.; Petrović, J.; Soković, M.; Petropoulos, S.A.; Santos-Buelga, C.; et al. Effects of the Extraction Techniques on the Chemical Composition and Bioactive Properties of Lemon Balm (Melissa officinalis L.) Plants Grown under Different Cropping and Irrigation Regimes. Food Res. Int. 2023, 170, 113044. [Google Scholar] [CrossRef]
- de Oliveira, I.; Chrysargyris, A.; Finimundy, T.C.; Carocho, M.; Santos-Buelga, C.; Calhelha, R.C.; Tzortzakis, N.; Barros, L.; Heleno, S.A. The Influence of Magnesium and Manganese Cations on the Chemical and Bioactive Properties of Purple and Green Basil. Food Funct. 2024, 15, 10644–10662. [Google Scholar] [CrossRef]
- Ciríaco, A.C.d.A.; Mendes, R.d.M.; Carvalho, V.S. Antioxidant Activity and Bioactive Compounds in Ora-pro-Nóbis Flour (Pereskia aculeata Miller). Braz. J. Food Technol. 2023, 26, e2022054. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Takeiti, C.Y.; Antonio, G.C.; Motta, E.M.P.; Collares-Queiroz, F.P.; Park, K.J. Nutritive Evaluation of a Non-Conventional Leafy Vegetable (Pereskia Aculeata Miller). Int. J. Food Sci. Nutr. 2009, 60, 148–160. [Google Scholar] [CrossRef]
- Fernandes Serra Moura, H.; de Souza Dias, F.; Beatriz Souza e Souza, L.; Magalhães, B.E.A.d.; de Aragão Tannus, C.; Correia de Carvalho, W.; Cardoso Brandão, G.; dos Santos, W.N.L.; Graças Andrade Korn, M.; Cristina Muniz Batista dos Santos, D.; et al. Evaluation of Multielement/Proximate Composition and Bioactive Phenolics Contents of Unconventional Edible Plants from Brazil Using Multivariate Analysis Techniques. Food Chem. 2021, 363, 129995. [Google Scholar] [CrossRef] [PubMed]
- Cruz, T.M.; Santos, J.S.; do Carmo, M.A.V.; Hellström, J.; Pihlava, J.-M.; Azevedo, L.; Granato, D.; Marques, M.B. Extraction Optimization of Bioactive Compounds from Ora-pro-Nobis (Pereskia aculeata Miller) Leaves and Their In Vitro Antioxidant and Antihemolytic Activities. Food Chem. 2021, 361, 130078. [Google Scholar] [CrossRef] [PubMed]
- Teixeira da Silva, G. Caracterização Fisico-Quimica, Digestibilidade de Compostos Bioativos e Análise Fitoquímica das Folhas do Peixinho da Horta (Stachys byzantina K. Koch); Universidade Federal do Paraná: Curitiba, Brazil, 2022. [Google Scholar]
- Botrel, N.; Freitas, S.; Fonseca, M.J.d.O.; Melo, R.A.d.C.e.; Madeira, N. Valor Nutricional de Hortaliças Folhosas Não Convencionais Cultivadas no Bioma Cerrado. Braz. J. Food Technol. 2020, 23, e2018174. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Kirkan, B.; Sarikurkcu, C. Phenolic Ingredients and Therapeutic Potential of Stachys cretica Subsp. Smyrnaea for the Management of Oxidative Stress, Alzheimer’s Disease, Hyperglycemia, and Melasma. Ind. Crops Prod. 2019, 127, 82–87. [Google Scholar] [CrossRef]
- Miranda, C.T.C.d.S.; Soares, S.D.; de Oliveira, W.Q.; Lima, A.d.S.; Neri Numa, I.A.; Pastore, G.M. Unconventional Edible Plants of the Amazon: Bioactive Compounds, Health Benefits, Challenges, and Future Trends. Foods 2024, 13, 2925. [Google Scholar] [CrossRef]
- de Paula de Almeida Duarte, S.; Teixeira-Costa, B.E.; do Rosário, R.C.; Amante, E.R.; Pires, M.B.; dos Santos, O.V. Valorization of Taioba Products and By-Products: Focusing on Starch. Foods 2024, 13, 2415. [Google Scholar] [CrossRef]
- Fioroto, A.M.; Toniazzo, T.; Giuntini, E.B.; Oliveira, P.V.; Purgatto, E. Mineral Nutrients and Protein Composition of Non-Conventional Food Plants (Pereskia aculeata Miller, Sonchus Oleraceus L. and Xanthosoma sagittifolium (L.) Schott). J. Food Compos. Anal. 2024, 136, 106825. [Google Scholar] [CrossRef]
- Khalid, W.; Arshad, M.S.; Jabeen, A.; Muhammad Anjum, F.; Qaisrani, T.B.; Suleria, H.A.R. Fiber-enriched Botanicals: A Therapeutic Tool against Certain Metabolic Ailments. Food Sci. Nutr. 2022, 10, 3203–3218. [Google Scholar] [CrossRef]
- Aiemcharoen, P.; Wichienchot, S.; Sermwittayawong, D. Antioxidant and Anti-Diabetic Activities of Crude Ethanolic Extract from the Banana Inflorescence of Musa (ABB Group) Namwa Maliong. Funct. Foods Health Dis. 2022, 12, 161. [Google Scholar] [CrossRef]
- Lau, B.F.; Kong, K.W.; Leong, K.H.; Sun, J.; He, X.; Wang, Z.; Mustafa, M.R.; Ling, T.C.; Ismail, A. Banana Inflorescence: Its Bio-Prospects as an Ingredient for Functional Foods. Trends Food Sci. Technol. 2020, 97, 14–28. [Google Scholar] [CrossRef]
- da Cruz Alves, T.; Kinupp, V.F.; de Mendonça, B.A.F.; Breier, T.B. Non-Conventional Food Plants (Plantas alimentícias Não Convencionais (PANC)) of the Petrópolis–Teresópolis Crossing, Serra Dos Órgãos National Park, Rio de Janeiro, Brazil. Wild 2024, 1, 17–29. [Google Scholar] [CrossRef]
- Pereira, J.; Brohi, S.A.; Malairaj, S.; Zhang, W.; Zhou, G.H. Quality of Fat-Reduced Frankfurter Formulated with Unripe Banana by-Products and Pre-Emulsified Sunflower Oil. Int. J. Food Prop. 2020, 23, 420–433. [Google Scholar] [CrossRef]
- Mostafa, H.S. Banana Plant as a Source of Valuable Antimicrobial Compounds and its Current Applications in the Food Sector. J. Food Sci. 2021, 86, 3778–3797. [Google Scholar] [CrossRef]
- Krishnan, A.; Deepakraj, G.; Nishanth, N.; Anandkumar, K.M. Autonomous Walking Stick for the Blind Using Echolocation and Image Processing. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Noida, India, 14–17 December 2016; IEEE: New York, NY, USA, 2016; pp. 13–16. [Google Scholar]
- Pérez, E.E.; Gutiérrez, M.E.; De Delahaye, E.P.; Tovar, J.; Lares, M. Production and Characterization of Xanthosoma sagittifolium and Colocasia esculenta Flours. J. Food Sci. 2007, 72, S367–S372. [Google Scholar] [CrossRef]
- Ramu, R.; Shirahatti, P.; Anilakumar, K.; Nayakavadi, S.; Zameer, F.; Dhananjaya, B.; Nagendra Prasad, M. Assessment of Nutritional Quality and Global Antioxidant Response of Banana (Musa Sp. CV. Nanjangud Rasa Bale) Pseudostem and Flower. Pharmacogn. Res. 2017, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Swe, K.N.N. Study on Phytochemicals and Nutritional Composition of Banana Flowers of Two Cultivars (Phee Kyan and Thee Hmwe). Univ. Res. J. 2012, 5, 1–7. [Google Scholar]
- Borges-Machado, A.L.; Neves-Martins, M.J.; Ribeiro-Sanches, M.A.; Pereira, L.S.; dos Santos, P.A.; Telis-Romero, J. Desorption Properties of Taioba (Xanthosoma taioba E.G. Gonç.) Leaves: A Non-Conventional Edible Plant. Food Biosci. 2024, 59, 104093. [Google Scholar] [CrossRef]
- Sheng, Z.; Dai, H.; Pan, S.; Ai, B.; Zheng, L.; Zheng, X.; Prinyawiwatkul, W.; Xu, Z. Phytosterols in Banana (Musa spp.) Flower Inhibit A-glucosidase and A-amylase Hydrolysations and Glycation Reaction. Int. J. Food Sci. Technol. 2017, 52, 171–179. [Google Scholar] [CrossRef]
- Ramírez-Bolaños, S.; Pérez-Jiménez, J.; Díaz, S.; Robaina, L. A Potential of Banana Flower and Pseudo-Stem as Novel Ingredients Rich in Phenolic Compounds. Int. J. Food Sci. Technol. 2021, 56, 5601–5608. [Google Scholar] [CrossRef]
- de Rijke, E.; Out, P.; Niessen, W.M.A.; Ariese, F.; Gooijer, C.; Brinkman, U.A.T. Analytical Separation and Detection Methods for Flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef]
- Picerno, P.; Mencherini, T.; Lauro, M.R.; Barbato, F.; Aquino, R. Phenolic Constituents and Antioxidant Properties of Xanthosoma Violaceum Leaves. J. Agric. Food Chem. 2003, 51, 6423–6428. [Google Scholar] [CrossRef]
- Vukics, V.; Guttman, A. Structural Characterization of Flavonoid Glycosides by Multi-stage Mass Spectrometry. Mass. Spectrom. Rev. 2010, 29, 1–16. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil-Izquierdo, A.; Andrade, P.B.; Valentão, P.; Tomás-Barberán, F.A. Characterization of C-Glycosyl Flavones O-Glycosylated by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2007, 1161, 214–223. [Google Scholar] [CrossRef]
- Ntengna, Y.F.; Tchameni, N.S.; Fokom, R.; Sameza, M.L.; Minyaka, E.; Ngonkeu, M.E.L.; Wakam, N.L.; Wakam Etoa, F.X. Effects of Arbuscular Mycorrhiza Fungi on Stimulation of Nutrient Content and Induction of Biochemical Defense Response in Xanthosoma sagittifolium Plants against Root Rot Disease Caused by Pythium Myriotylum. IJAAR 2019, 7, 98–107. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, B. Phenylethanoid Glycosides: Research Advances in Their Phytochemistry, Pharmacological Activity and Pharmacokinetics. Molecules 2016, 21, 991. [Google Scholar] [CrossRef] [PubMed]
- Tomou, E.-M.; Barda, C.; Skaltsa, H. Genus Stachys: A Review of Traditional Uses, Phytochemistry and Bioactivity. Medicines 2020, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Alcázar Magaña, A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic Acids: Chemistry, Biosynthesis, Occurrence, Analytical Challenges, and Bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef]
- Kirkan, B. Antioxidant Potential, Enzyme Inhibition Activity, and Phenolic Profile of Extracts from Stachys cretica Subsp. Vacillans. Ind. Crops Prod. 2019, 140, 111639. [Google Scholar] [CrossRef]
- El-Ansari, M.A.; Nawwar, M.A.; Saleh, N.A.M. Stachysetin, a Diapigenin-7-Glucoside-p,p’-Dihydroxy-Truxinate from Stachys Aegyptiaca. Phytochemistry 1995, 40, 1543–1548. [Google Scholar] [CrossRef]
- Mróz, M.; Malinowska-Pańczyk, E.; Bartoszek, A.; Kusznierewicz, B. Comparative Study on Assisted Solvent Extraction Techniques for the Extraction of Biologically Active Compounds from Sideritis Raeseri and Sideritis Scardica. Molecules 2023, 28, 4207. [Google Scholar] [CrossRef] [PubMed]
- Asnaashari, S.; Delazar, A.; Alipour, S.; Nahar, L.; Williams, A.; Pasdaran, A.; Mojarab, M.; Azad, F.; Sarker, S.D. Chemical Composition, Free-Radical-Scavenging and Insecticidal Activities of the Aerial Parts of Stachys byzantina. Arch. Biol. Sci. 2010, 62, 653–662. [Google Scholar] [CrossRef]
- Andary, C.; Ibrahim, R.K. Biosynthetic Capacity of Stachys Seedlings for Verbascoside and Related Caffeoyl Derivatives. Z. Für Naturforschung C 1986, 41, 18–21. [Google Scholar] [CrossRef]
- Karioti, A.; Bolognesi, L.; Vincieri, F.F.; Bilia, A.R. Analysis of the Constituents of Aqueous Preparations of Stachys Recta by HPLC–DAD and HPLC–ESI-MS. J. Pharm. Biomed. Anal. 2010, 53, 15–23. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Ceylan, O.; Benabdallah, A.; Tepe, B. Stachys germanica Subsp. Heldreichii (Boiss.) Hayek: Phytochemical Analysis, Antioxidant and Enzyme Inhibitory Activities. South. Afr. J. Bot. 2021, 143, 291–300. [Google Scholar] [CrossRef]
- Elfalleh, W.; Kirkan, B.; Sarikurkcu, C. Antioxidant Potential and Phenolic Composition of Extracts from Stachys Tmolea: An Endemic Plant from Turkey. Ind. Crops Prod. 2019, 127, 212–216. [Google Scholar] [CrossRef]
- Axiotis, E.; Petrakis, E.A.; Halabalaki, M.; Mitakou, S. Phytochemical Profile and Biological Activity of Endemic Sideritis sipylea Boiss. in North Aegean Greek Islands. Molecules 2020, 25, 2022. [Google Scholar] [CrossRef]
- Dimaki, V.D.; Zeliou, K.; Nakka, F.; Stavreli, M.; Bakratsas, I.; Papaioannou, L.; Iatrou, G.; Lamari, F.N. Characterization of Sideritis Clandestina Subsp. Peloponnesiaca Polar Glycosides and Phytochemical Comparison to Other Mountain Tea Populations. Molecules 2022, 27, 7613. [Google Scholar] [CrossRef]
- de Souza, A.H.; Mendonça, H.d.O.P.; de Paula, A.C.C.F.F.; Augusti, R.; Fante, C.A.; Melo, J.O.F.; Carlos, L. de A. Influence of Harvest Time on the Chemical Profile of Pereskia aculeate Mill. Using Paper Spray Mass Spectrometry. Molecules 2022, 27, 4276. [Google Scholar] [CrossRef] [PubMed]
- Cabañas-García, E.; Areche, C.; Jáuregui-Rincón, J.; Cruz-Sosa, F.; Pérez-Molphe Balch, E. Phytochemical Profiling of Coryphantha macromeris (Cactaceae) Growing in Greenhouse Conditions Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2019, 24, 705. [Google Scholar] [CrossRef] [PubMed]
- Moraes, T.V.d.; Montenegro, J.; Marques, T.S.; Evangelista, L.M.; Rocha, C.B.; Teodoro, A.J.; Kato, L.; Moreira, R.F.A. Perfil Fitoquímico e Atividade Antioxidante de Flores e Frutos de Pereskia aculeata Miller. Sci. Plena 2021, 17, 2021. [Google Scholar] [CrossRef]
- Hoff, R.; Daguer, H.; Deolindo, C.T.P.; de Melo, A.P.Z.; Durigon, J. Phenolic Compounds Profile and Main Nutrients Parameters of Two Underestimated Non-Conventional Edible Plants: Pereskia aculeata Mill. (Ora-pro-Nóbis) and Vitex Megapotamica (Spreng.) Moldenke (Tarumã) Fruits. Food Res. Int. 2022, 162, 112042. [Google Scholar] [CrossRef]
- Cruz, T.M.; Lima, A.d.S.; Zhou, F.; Zhang, L.; Azevedo, L.; Marques, M.B.; Granato, D. Bioactive Compounds from Ora-Pro-Nobis (Pereskia aculeata Mill.) Leaves and Fruits: Bioaccessibility After In Vitro Digestion, Cytotoxicity, and Oxidative Stress Attenuation in Human Plasma and Erythrocytes. Food Chem. 2024, 1, 460. [Google Scholar] [CrossRef]
- Bashmil, Y.M.; Ali, A.; BK, A.; Dunshea, F.R.; Suleria, H.A.R. Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants 2021, 10, 1521. [Google Scholar] [CrossRef]
- Sandjo, L.P.; dos Santos Nascimento, M.V.P.; Moraes, M.d.H.; Rodrigues, L.M.; Dalmarco, E.M.; Biavatti, M.W.; Steindel, M. NOx-, IL-1β-, TNF-α-, and IL-6-Inhibiting Effects and Trypanocidal Activity of Banana (Musa Acuminata) Bracts and Flowers: UPLC-HRESI-MS Detection of Phenylpropanoid Sucrose Esters. Molecules 2019, 24, 4564. [Google Scholar] [CrossRef]
- Maier, C.; Conrad, J.; Steingass, C.B.; Beifuss, U.; Carle, R.; Schweiggert, R.M. Quillajasides A and B: New Phenylpropanoid Sucrose Esters from the Inner Bark of Quillaja Saponaria Molina. J. Agric. Food Chem. 2015, 63, 8905–8911. [Google Scholar] [CrossRef]
- Van Kiem, P.; Nhiem, N.X.; Cuong, N.X.; Hoa, T.Q.; Huong, H.T.; Huong, L.M.; Van Minh, C.; Kim, Y.H. New Phenylpropanoid Esters of Sucrose from Polygonum Hydropiper and Their Antioxidant Activity. Arch. Pharm. Res. 2008, 31, 1477–1482. [Google Scholar] [CrossRef]
- Rebello, L.P.G.; Ramos, A.M.; Pertuzatti, P.B.; Barcia, M.T.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Flour of Banana (Musa AAA) Peel as a Source of Antioxidant Phenolic Compounds. Food Res. Int. 2014, 55, 397–403. [Google Scholar] [CrossRef]
- Oresanya, I.O.; Sonibare, M.A.; Gueye, B.; Balogun, F.O.; Adebayo, S.; Ashafa, A.O.T.; Morlock, G. Isolation of Flavonoids from Musa Acuminata Colla (Simili Radjah, ABB) and the In Vitro Inhibitory Effects of Its Leaf and Fruit Fractions on Free Radicals, Acetylcholinesterase, 15-Lipoxygenase, and Carbohydrate Hydrolyzing Enzymes. J. Food Biochem. 2020, 44, e13137. [Google Scholar] [CrossRef] [PubMed]
- Mba, C.J.; Agu, H.O. Developments on the Bioactive Compounds and Food Uses of the Tubers: Colocasia esculenta (L) Schott (Taro) and Xanthosoma sagittifolium (L) Schott (Tannia). Asian Food Sci. J. 2021, 20, 101–112. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Kubota, E.H.; da Silva, C.G.; dos Santos Alves, J.; Hautrive, T.P.; Rodrigues, G.S.; Campagnol, P.C.B. Banana Inflorescences: A Cheap Raw Material with Great Potential to be Used as a Natural Antioxidant in Meat Products. Meat Sci. 2020, 161, 107991. [Google Scholar] [CrossRef] [PubMed]
- Article, O.; Ramu, R.; Shirahatti, S.; Zameer, F.; Lakkapa, D.B.; Nagendra Prasad, M.N. Evaluation of Banana (Musa SP. Var. Nanjangud Rasa Bale) Flower and Pseudostem Extracts on Antimicrobial, Cytotoxicity and Thrombolytic Activities. Int. J. Pharm. Pharm. Sci. 2015, 7, 136–140. [Google Scholar]
- Schmidt, M.M.; Kubota, E.H.; Prestes, R.C.; Mello, R.O.; Rosa, C.S.; Scapin, G.; Ferreira, S. Development and Evaluation of Pork Burger with Added Natural Antioxidant Based on Extract of Banana Inflorescence (Musa Cavendishii). CYTA-J. Food 2016, 14, 280–288. [Google Scholar] [CrossRef]
- Almeida, M.E.F.d.; Corrêa, A.D. Utilização de Cactáceas do Gênero Pereskia na Alimentação Humana em um Município de Minas Gerais. Ciência Rural. 2012, 42, 751–756. [Google Scholar] [CrossRef]
- Araújo, N.F.d.; Barbosa, R.A.; Lima, L.T.d.; Figueiredo, R.O. Benefícios Nutricionais da Utilização de Ora-pro-Nobis (Pereskia aculeata MILLER) como Ingrediente em Produtos e Preparos Alimentícios. Rev. Foco 2024, 17, e6573. [Google Scholar] [CrossRef]
- da Silva Porto, F.G.; Campos, Â.D.; Carreño, N.L.V.; Garcia, I.T.S. Pereskia aculeata Leaves: Properties and Potentialities for the Development of New Products. Nat. Prod. Res. 2022, 36, 4821–4832. [Google Scholar] [CrossRef]
- Ferreira, R.d.S.; Lucia, C.M.D.; Minim, V.P.R.; Vieira, É.N.R.; Gomes, J.M.G.; Vidigal, M.C.T.R. Ora-Pro-Nobis (Pereskia aculeata) and Its Technological Applications in Foods: A Review. Obs. De La Econ. Latinoam. 2024, 22, e3961. [Google Scholar] [CrossRef]
- Dos Santos, O.V.; da Cunha, N.S.R.; Duarte, S. de P. de A.; Soares, S.D.; da COSTA, R.S.; Mendes, P.M.; Martins, M.G.; Do Nascimento, F.D.C.A.; Figueira, M. de S.; Duarte, S. de P. de A.; et al. Determination of Bioactive Compounds Obtained by the Green Extraction of Taioba Leaves (Xanthosoma taioba) on Hydrothermal Processing. Food Sci. Technol. 2022, 42, e22422. [Google Scholar] [CrossRef]
- Mendes, F.D.; Uliana, D.S.; Silva, A.I.d.S.; de São José, J.F.B. Unconventional Food Plants in Mixed Juices: Evaluation of the Nutritional, Physical-Chemical, Microbiological, and Sensory Quality of Orange Juice with Sorrel (Rumex Acetosa) and Taioba (Xanthosoma Sagittifolium). CyTA-J. Food 2024, 22, 2387716. [Google Scholar] [CrossRef]
- Siqueira, M.V.B.M.; do Nascimento, W.F.; Pedrosa, M.W.; Veasey, E.A. Agronomic Characteristics (Varieties or Landraces) and Potential of Xanthosoma sagittifolium as Food and Starch Source. In Varieties and Landraces; Elsevier: Amsterdam, The Netherlands, 2023; pp. 261–272. [Google Scholar]
- de Jesus Benevides, C.M.; da Silva, H.B.M.; Lopes, M.V.; Montes, S.d.S.; da Silva, A.S.L.; Matos, R.A.; de Freitas Santos Júnior, A.; dos Santos Souza, A.C.; de Almeida Bezerra, M. Multivariate Analysis for the Quantitative Characterization of Bioactive Compounds in “Taioba” (Xanthosoma sagittifolium) from Brazil. J. Food Meas. Charact. 2022, 16, 1901–1910. [Google Scholar] [CrossRef]
- Farfus, A.P.; Teixeira, S.D.; Pereira, E.A.; Santos, V.A.Q.; Tomazini, V.B.; Zanoelo, T.A.; Sartor, J.F. Avaliação da Cinética de Secagem e Atividade Antimicrobiana do Óleo Essencial e Hidrolato da Parte Aérea da Panc Stachys byzantina. Res. Soc. Dev. 2021, 10, e84101724265. [Google Scholar] [CrossRef]
- Gülsoy Toplan, G.; Taşkın, T.; Mataracı Kara, E.; Ecevit Genç, G. Antioxidant and Antimicrobial Activities of Various Extracts from Stachys cretica Subsp. Bulgarica Rech.f., Stachys byzantina K. Koch and Stachys Thirkei K. Koch. İstanbul J. Pharm. 2021, 51, 341–347. [Google Scholar] [CrossRef]
- Pashova, S.; Karcheva-Bahchevanska, D.; Ivanov, K.; Ivanova, S. Genus Stachys—Phytochemistry, Traditional Medicinal Uses, and Future Perspectives. Molecules 2024, 29, 5345. [Google Scholar] [CrossRef]
- Stefanello, F.S.; Cavalheiro, C.P.; Ludtke, F.L.; Silva, M. dos S. da; Fries, L.L.M.; Kubota, E.H. Oxidative and Microbiological Stability of Fresh Pork Sausage with Added Sun Mushroom Powder. Ciência E Agrotecnol. 2015, 39, 381–389. [Google Scholar] [CrossRef]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana By-Products: An under-Utilized Renewable Food Biomass with Great Potential. J. Food Sci. Technol. 2014, 51, 3527–3545. [Google Scholar] [CrossRef]
- Chowdary, M.Y.; Rana, S.S.; Ghosh, P. Banana Inflorescence and Their Potential Health Benefits as Future Food. Qual. Assur. Saf. Crops Foods 2022, 14, 131–136. [Google Scholar] [CrossRef]
- Aguilar, C.N.; Carvajal-Millan, E. Applied Food Science and Engineering with Industrial Applications; Aguilar, C.N., Carvajal-Millan, E., Eds.; Apple Academic Press: Toronto, NJ, USA, 2019; ISBN 9781351048644. [Google Scholar]
- Amornlerdpison, D.; Choommongkol, V.; Narkprasom, K.; Yimyam, S. Bioactive Compounds and Antioxidant Properties of Banana Inflorescence in a Beverage for Maternal Breastfeeding. Appl. Sci. 2020, 11, 343. [Google Scholar] [CrossRef]
- John, J. Nutritional, Functional and Shelf-Life Assessment of Processed Banana Inflorescence (Musa Paradisiaca). J. Postharvest Technol. 2024, 9, 58–70. [Google Scholar]
- Da Silva, J.P.S.S.; Fernandes, M.B.; De Jesus, J.H.; Tristão, T.C. Valorization of Banana Flower Residues: Potential Therapeutic and Antioxidant Applications. Lumen Et Virtus 2024, 15, 5173–5187. [Google Scholar] [CrossRef]
- Öztürk, M.; Sridhar, K.R.; Sarwat, M.; Altay, V.; Huerta-Martínez, F.M. Ethnic Knowledge and Perspectives of Medicinal Plants; Apple Academic Press: New York, NY, USA, 2023; ISBN 9781003353089. [Google Scholar]
- Fingolo, C.E.; Braga, J.M.A.; Vieira, A.C.M.; Moura, M.R.L.; Kaplan, M.A.C. The Natural Impact of Banana Inflorescences (Musa Acuminata) on Human Nutrition. An. Acad. Bras. Cienc. 2012, 84, 891–898. [Google Scholar] [CrossRef]
Nutritional Profile (g/100 g dw) | ||||||
---|---|---|---|---|---|---|
Parameters | PA | XS | SB | MAD | MAC | MAP |
Soxhlet fat | 5.25 ± 0.08 e | 4.35 ± 0.08 d | 2.33 ± 0.05 b | 7.35 ± 0.05 g | 3.90 ± 0.01 f | 5.9 ± 0.1 c |
Crude protein | 11.3 ± 0.4 d | 16.3 ± 0.3 f | 12.7 ± 0.5 e | 7.5 ± 0.2 b | 6.4 ± 0.2 b | 7.2 ± 0.1 a |
Ash | 12.7 ± 0.6 d | 12.1 ± 0.2 c | 9.6 ± 0.4 a | 11.4 ± 0.3 b | 9.1 ± 0.2 b | 11.0 ± 0.2 a |
Fiber | 45.5 ± 1.2 b | 37.7 ± 0.4 a | 59.8 ± 0.2 e | 60.07 ± 0.05 e | 66.5 ± 0.3 c | 48.8 ± 0.4 f |
Carbohydrates | 25 ± 2 c | 29.4 ± 0.1 e | 15.4 ± 0.7 b | 13.3 ± 0.2 a | 26.8 ± 0.3 d | 14.1 ± 0.6 a |
Energy (kcal) | 282 ± 4 d | 297.5 ± 0.6 f | 255 ± 2 b | 271 ± 1 c | 287.2 ± 0.4 e | 249.8 ± 1.3 a |
Physical and Chemical Parameters | ||||||
---|---|---|---|---|---|---|
Parameters | PA | XS | SB | MAD | MAC | MAP |
Water activity | 0.42 ± 0.02 e | 0.40 ± 0.01 d | 0.40 ± 0.01 d | 0.36 ± 0.01 c | 0.44 ± 0.01 f | 0.32 ± 0.01 b |
Moisture % | 3.8 ± 0.1 a | 11.3 ± 0.5 d | 7.3 ± 0.3 b | 7.8 ± 0.3 b,c | 11.3 ± 0.5 d | 8.1 ± 0.4 c |
Dry mass% | 96.2 ± 0.1 d | 88.6 ± 0.5 a | 92.7 ± 0.3 c | 92.2 ± 0.3 b,c | 88.7 ± 0.5 a | 91.8 ± 0.4 b |
pH | 6.2 ± 0.1 d | 6.07 ± 0.04 c | 6.33 ± 0.03 e | 6.10 ± 0.09 c,d | 6.14 ± 0.03 c,d | 5.88 ± 0.03 b |
Total acidity | 1.7 ± 0.1 b | 4.25 ± 0.05 e | 3.2 ± 0.3 c | 1.9 ± 0.3 b | 3.7 ± 0.5 d | 3.05 ± 0.05 c |
Total Solids | 1.20 ± 0.01 c | 1.40 ± 0.01 d | 0.90 ± 0.01 b | 1.75 ± 0.05 e | 1.83 ± 0.05 e | 2.0 ± 0.1 f |
Fatty Acids | ||||||
---|---|---|---|---|---|---|
Parameters | PA | XS | SB | MAD | MAC | MAP |
C12:0 | 0.33 ± 0.01 b | 0.15 ± 0.01 a | n.d. | 2.89 ± 0.02 d | 0.69 ± 0.01 c | n.d. |
C14:0 | 2.04 ± 0.03 b | 2.76 ± 0.01 c | n.d. | 3.74 ± 0.01 d | 0.83 ± 0.01 a | n.d. |
C15:0 | 0.45 ± 0.01 b | 0.22 ± 0.01 a | n.d. | n.d. | 0.68 ± 0.01 c | n.d. |
C16:0 | 21.88 ± 0.02 b | 22.29 ± 0.01 c | 21.71 ± 0.01 a | 41.5 ± 0.1 f | 29.26 ± 0.03 e | 26.18 ± 0.07 d |
C17:0 | n.d. | 0.33 ± 0.01 a | n.d. | n.d. | 0.53 ± 0.01 b | n.d. |
C17:1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
C18:0 | 5.61 ± 0.02 c | 3.71 ± 0.01 a | 4.86 ± 0.05 b | 11.2 ± 0.2 f | 7.49 ± 0.01 d | 8.20 ± 0.05 e |
C18:l | 4.63 ± 0.01 b | 4.06 ± 0.02 a | 8.2 ± 0.1 c | 18.70 ± 0.03 f | 15.23 ± 0.01 e | 11.02 ± 0.01 d |
C18:2 | 11.97 ± 0.02 a | 19.25 ± 0.01 d | 17.2 ± 0.2 c | 12.5 ± 0.3 b | 29.23 ± 0.06 e | 30.98 ± 0.09 f |
C18:3 | 52.38 ± 0.02 e | 43.37 ± 0.01 c | 47.9 ± 0.1 d | n.d. | 9.84 ± 0.04 a | 13.16 ± 0.03 b |
C20:0 | 0.75 ± 0.01 a | 3.88 ± 0.01 b | n.d. | 9.4 ± 0.1 d | 5.82 ± 0.04 c | 10.50 ± 0.05 e |
C20:1 | n.d. | n.d. | n.d. | n.d. | 0.36 ± 0.01 a | n.d. |
SFA | 31.06 ± 0.01 b | 33.34 ± 0.01 c | 26.59 ± 0.06 a | 68.7 ± 0.2 e | 45.30 ± 0.08 d | 44.9 ± 0.1 d |
MUFA | 4.63 ± 0.01 b | 4.06 ± 0.02 a | 8.2 ± 0.1c | 18.70 ± 0.03 f | 15.59 ± 0.02 e | 11.02 ± 0.01 d |
PUFA | 64.35 ± 0.03 d | 62.62 ± 0.02 c | 65.09 ± 0.03 e | 12.5 ± 0.3a | 39.1 ± 0.1 b | 44.1 ± 0.1 b |
Organic acids | ||||||
Oxalic acid | 5.26 ± 0.01 d | 7.53 ± 0.01 f | 2.65 ± 0.02 a | 7.16 ± 0.01 e | 4.44 ± 0.01 c | 3.76 ± 0.01 b |
Quinic acid | n.d. | n.d. | n.d. | 5.48 ± 0.02 c | 4.43 ± 0.01 b | 3.88 ± 0.04 a |
Malic acid | 1.24 ± 0.04 c | n.d. | n.d. | 1.02 ± 0.02 b | 1.04 ± 0.01 b | 0.90 ± 0.01 a |
Ascorbic acid | 0.010 ± 0.0001 a | n.d. | 0.02 ± 0.01 b | 0.13 ± 0.01 d | 0.11 ± 0.01 c | 0.11 ± 0.01 c |
Citric acid | 2.75 ± 0.01 a | n.d. | n.d. | n.d. | n.d. | n.d. |
Succinic acid | 1.390 ± 0.001 b | n.d. | n.d. | 1.06 ± 0.01 a | 17.30 ± 0.06 d | 2.23 ± 0.02 c |
Fumaric acid | 0.07 ± 0.01 a | 0.25 ± 0.01 f | 0.16 ± 0.01 c | 0.12 ± 0.01 b | 0.19 ± 0.01 e | 0.17 ± 0.01 d |
Total organic acids | 10.71 ± 0.05 c | 7.77 ± 0.01 b | 2.85 ± 0.02 a | 14.96 ± 0.05 e | 27.50 ± 0.06 f | 11.06 ± 0.08 d |
Xanthosoma sagittifolium Schott (Araceae) (XS) | |||||||||
Peak | RT (min) | λmax (nm) | [M-H]− (m/z) | MS2 | MS3 | MS4 | Tentative Identification | Calibration Curve | Results mg/g Extract |
1 | 7.19 | 609 | 489, 519, 591, 369, 459 | 399, 369 | - | Luteolin-di-C-hexoside | L7G | 0.89 ± 0.01 | |
2 | 8.72 | 327 | 593 | 473, 503, 383, 575, 353, 395 | 353, 383 | - | Apigenin-di-C-hexoside | L7G | 1.286 ± 0.002 |
3 | 9.67 | 335 | 593 | 473, 503, 353, 413, 456, 576 | 353, 383 | - | Apigenin-di-C-hexoside | L7G | 13.0 ± 0.1 |
4 | 11.11 | 579 | 489, 459, 519, 399 | 369 | - | Luteolin-C-hexoside-C-pentoside | L7G | 0.5266 ± 0.0003 | |
5 | 11.64 | 623 | 503, 383, 413, 533, 563 | 383, 485 | - | Apigenin-C-hexoside-C-(acetyl)pentoside | L7G | 0.1699 ± 0.0003 | |
6 | 12.77 | 334 | 563 | 503, 545, 443, 353, 473, 383 | 383 | - | Apigenin-C-hexoside-C-pentoside | L7G | 8.67 ± 0.02 |
7 | 13.57 | 335 | 563 | 473, 545, 503, 443, 353, 383 | 353, 383, 425 | - | Apigenin-C-hexoside-C-pentoside | L7G | 21.32 ± 0.05 |
8 | 14.43 | 755 | 300, 301, 609, 489 | 271, 255, 179, 161, 151 | - | Quercetin-O-dideoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 1.0133 ± 0.0001 | |
9 | 15.34 | 563 | 443, 545, 383, 473, 515, 545 | 354, 383, 283 | - | Apigenin-C-hexoside-C-pentoside | L7G | 5.214 ± 0.003 | |
10 | 16.86 | 577 | 473, 503, 457, 533, 541, 383 | 353 | - | Apigenin-C-deoxyhexoside-C-glucoside | L7G | 0.779 ± 0.001 | |
11 | 17.36 | 333 | 577 | 457, 487, 559, 383, 353 | 353, 383 | - | Apigenin-C-deoxyhexoside-C-glucoside | L7G | 0.2739 ± 0.0004 |
12 | 18.26 | 331 | 431 | 311, 341 | 283 | - | Apigenin-6-C-glucoside | L7G | 1.565 ± 0.001 |
13 | 19.99 | 709 | 545, 425 | 335, 365 | 335, 365, 305 | Apigenin-C-(ρ-coumaroyl)-hexoside-C-pentoside | L7G | 0.6308 ± 0.0003 | |
14 | 20.99 | 709 | 545 | 425 | 335, 365, 305 | Apigenin-C-(ρ-coumaroyl)-hexoside-C-pentoside | L7G | 1.966 ± 0.002 | |
15 | 21.63 | 739 | 545 | 425 | 335, 365, 305 | Apigenin-C-(feruloyl)-hexoside-C-pentoside | L7G | 0.559 ± 0.001 | |
16 | 22. 61 | 719 | 545 | 425 | 365, 335 | Apigenin-C-(shikimic acid)-hexoside-C-pentoside | L7G | 0.3067 ± 0.0002 | |
18 | 24.14 | 709 | 545, 563, 425 | 425 | - | Apigenin-C-(ρ-coumaroyl)-hexoside-C-pentoside | L7G | 0.480 ± 0.003 | |
19 | 26.47 | 352 | 623 | 314, 315, 299 | 299 | - | Isorhamnetin-O-deoxyhexosyl-hexoside | Quercetin-3-rutinoside | 0.81 ± 0.04 |
20 | 27.4 | 783 | 315, 329, 637, 271, 299 | 299, 300 | - | Trihydroxy-dimethoxyflavone-deoxyhexosyl-hexoside-deoxyhexoside | L7G | 0.186 ± 0.001 | |
21 | 28.96 | 607 | 298, 299 | 283, 284 | 255, 256, 227 | Diosmetin-O-deoxyhexosyl-hexoside | L7G | 0.297 ± 0.002 | |
Total phenolics | 59.9 ± 0.1 b | ||||||||
Stachys byzantina K. Koch (Lamiaceae) (SB) | |||||||||
Peak | Rt (min) | λmax (nm) | [M−H]− (m/z) | MS2 (m/z) | MS3 | MS4 | Tentative identification | Calibration Curve | Quantification mg/g extract |
1 | 8.17 | 326 | 353 | 191, 179 | - | - | 5-O-Caffeoylquinic acid | Chlorogenic acid | 8.02 ± 0.03 |
2 | 11.67 | 639 | 621 | 459, 460, 251 | 151, 163 | β-Hydroxyverbascoside I | Verbascoside | 0.2374 ± 0.0008 | |
3 | 12.11 | 639 | 621, 529, 487 | 459 | - | β-Hydroxyisoverbascoside II | Verbascoside | 0.286 ± 0.001 | |
4 | 15.99 | 330 | 755 | 593 | 461 | 315, 297, 161 | 2′-O-Arabinosyl verbascoside | Verbascoside | 6.81 ± 0.01 |
5 | 16.68 | 330 | 623 | 461 | 315, 297, 161, 135 | - | Verbascoside | Verbascoside | 45.83 ± 0.01 |
6 | 18.02 | 330 | 753 | 623 | 461 | - | Verbascoside derivative | Verbascoside | 0.606 ± 0.001 |
7 | 18.73 | 327 | 623 | 461 | 315, 297, 135, 161 | - | Verbascoside isomer II | Verbascoside | 1.290 ± 0.002 |
8 | 19.4 | 326 | 623 | 461 | 315, 297, 135, 161 | - | Verbascoside isomer III | Verbascoside | 1.712 ± 0.003 |
9 | 20.16 | 330 | 769 | 593, 637, 461 | 461, 315 | - | Leonoside A or Allysonoside | Verbascoside | 1.101 ± 0.003 |
10 | 20.78 | 709 | 665 | 503, 623 | 461 | Malonyl-verbascoside | Verbascoside | 0.329 ± 0.005 | |
11 | 20.78 | 252,340 | 651 | 609 | 285, 447 | 241, 201 | Luteolin-O-acetyl-dihexoside | L7G | 0.399 ± 0.004 |
12 | 20.78 | 667 | 625, 607, 301 | 301, 463, 445 | - | Hypolaetin -O-acetyl-allosyl-hexoside | L7G | 0.399 ± 0.004 | |
13 | 21.17 | 637 | 461 | 315 | 135 | Eukovoside | Verbascoside | 0.934 ± 0.005 | |
14 | 21.51 | 665 | 285 | 241, 185, 133 | - | Luteolin-O-acetyl-hexosyl-glucoronide | L7G | 0.135 ± 0.002 | |
15 | 22.05 | 667 | 625, 607, 445, 505, 463, 301 | 463, 445, 301 | - | Hypolaetin -O-acetyl-allosyl-hexoside | L7G | 0.132 ± 0.001 | |
Total phenolic acids | 8.02 ± 0.03 b | ||||||||
Total flavonoids | 1.07 ± 0.01 a | ||||||||
Total Phenylethanoid | 59.130 ± 0.002 c | ||||||||
Total phenolics | 68.22 ± 0.02 d | ||||||||
Pereskia aculeata Miller (Cactaceae) (PA) | |||||||||
Peak | Rt (min) | λmax (nm) | [M−H]− (m/z) | MS2 (m/z) | MS3 | MS4 | Tentative identification | Calibration Curve | Quantification mg/g extract |
1 | 7.92 | 285 | 153, 225, 191, 165, 109 | 109 | - | Protocatechuic acid pentoside | Protocatechuic acid | 0.1711 ± 0.0001 | |
2 | 7.01 | 457 | 163, 205, 313, 337 | 119 | - | p-Coumaric acid-pentoside-hexoside | p-Coumaric acid | traces | |
3 | 8.75 | 385 | 205, 223, 153, 161 | 147, 172, 191 | - | Sinapic acid hexoside | Synaptic acid | 0.0214 ± 0.0002 | |
4 | 12.45 | 316 | 355 | 191, 209, 337 | - | - | p-Coumaroyl hexaric acid | p-Coumaric acid | 0.1802 ± 0.0003 |
5 | 15.42 | 353 | 741 | 301, 609, 591, 723, 741 | - | - | Quercetin-O-pentoside-O-deoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 4.7 ± 0.1 |
6 | 16.69 | 595 | 300, 301, 445, 463, 475, 505 | 271, 255, 151, 179 | - | Quercetin-O-hexosyl-pentoside | Quercetin-3-O-rutinoside | 0.29 ± 0.01 | |
7 | 16.99 | 595 | 300, 301, 463 | 271, 255, 179, 151 | - | Quercetin-O-hexosyl-pentoside | Quercetin-3-O-rutinoside | 0.215 ± 0.003 | |
8 | 17.41 | 351 | 609 | 301 | 107, 151, 179, 255 | - | Quercetin-O-deoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 5.7 ± 0.2 |
9 | 17.61 | 352 | 609 | 301 | 179, 151 | - | Quercetin-3-O-rutinoside (rutin) | Quercetin-3-O-rutinoside | 4.51 ± 0.02 |
10 | 18.43 | 353 | 755 | 315, 605, 609, 623 | 300 | - | Isorhamnetin-O-deoxyhexoside-hexoside-pentoside | Quercetin-3-O-rutinoside | 2.2 ± 0.1 |
11 | 19.13 | 579 | 285, 459, 429, 447 | 151, 257, 229 | - | Kaempferol-O-hexoside-pentoside | Quercetin-3-O-rutinoside | 0.4465 ± 0.0003 | |
12 | 19.53 | 593 | 285 | 257, 229 | - | Kaempferol-O-deoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 1.132 ± 0.002 | |
13 | 20.16 | 609 | 315 | 300 | - | Isorhamnetin-O-hexoside-pentoside | Quercetin-3-O-rutinoside | 0.549 ± 0.001 | |
14 | 20.99 | 593 | 285 | 257, 229 | - | Kaempferol-3-O-rutinoside | Quercetin-3-O-rutinoside | 0.214 ± 0.002 | |
15 | 21.26 | 353 | 623 | 315 | 300 | - | Isorhamnetin-O-deoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 3.3 ± 0.2 |
16 | 21.83 | 623 | 315 | 300 | - | Isorhamnetin-O-deoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 0.41 ± 0.03 | |
Total phenolic acids | 0.3728 ± 0.0002 a | ||||||||
Total flavonoids | 24 ± 1 b | ||||||||
Total phenolics | 24 ± 1 c | ||||||||
Musa Acuminata var. Dwarf Cavendish (Banana inflorescence—MAD) | |||||||||
Peak | Rt (min) | λmax (nm) | [M−H]− (m/z) | MS2 | MS3 | MS4 | Tentative identification | Calibration Curve | Quantification mg/g extract |
1 | 5.64 | 314 | 487 | 163, 307, 341 | - | p-Coumaric acid dihexoside | p-Coumaric acid | 0.212 ± 0.006 | |
2 | 8.55 | 315 | 529 | 487, 469, 307, 163 | 163, 145 | - | p-Coumaroyl-acetyl-sucrose | p-Coumaric acid | 0.347 ± 0.007 |
3 | 14.12 | 315 | 571 | 529, 511, 307 | 307, 469, 487, 163 | - | p-Coumaroyl-di-acetyl-sucrose isomer | p-Coumaric acid | 0.128 ± 0.001 |
4 | 14.32 | 352 | 755 | 301, 591, 489, 373 | 179, 151, 255 | - | Quercetin-O-deoxyhexosyl-deoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 0.15 ± 0.01 |
5 | 14.96 | 571 | 529, 307, 511 | 488, 163 | - | p-Coumaroyl-di-acetyl-sucrose isomer | p-Coumaric acid | 0.129 ± 0.004 | |
6 | 15.84 | 315 | 571 | 529, 307 | 307, 487, 469, 163 | - | p-Coumaroyl-di-acetyl-sucrose isomer | p-Coumaric acid | 2.50 ± 0.02 |
7 | 17.68 | 609 | 301 | 179, 151, 227, 273 | - | Quercetin-3-O-rutinoside (rutin) | Quercetin-3-O-rutinoside | 0.106 ± 0.003 | |
8 | 20.24 | 315 | 613 | 571, 308, 425, 461 | 307, 529 | - | p-Coumaroyl-tri-acetyl-sucrose isomer | p-Coumaric acid | 0.064 ± 0.003 |
9 | 22.05 | 314 | 613 | 571, 307, 529, 512 | 529, 307 | - | p-Coumaroyl-tri-acetyl-sucrose isomer | p-Coumaric acid | 0.44 ± 0.02 |
10 | 24.74 | 315 | 613 | 571 | 529, 307 | 487, 469 | p-Coumaroyl-tri-acetyl-sucrose isomer | p-Coumaric acid | 0.79 ± 0.02 |
11 | 28.76 | 315 | 655 | 613, 307 | 571 | 529, 307 | p-Coumaroyl-tetra-acetyl-sucrose isomer | p-Coumaric acid | 0.178 ± 0.005 |
12 | 30.98 | 315 | 655 | 613 | 571, 553, 307 | 529 | p-Coumaroyl-tetra-acetyl-sucrose isomer | p-Coumaric acid | 1.26 ± 0.02 |
13 | 37.05 | 315 | 697 | 655, 613, 595 | 613, 595 | 571 | p-Coumaroyl-penta-acetyl-sucrose isomer | p-Coumaric acid | 0.240 ± 0.004 |
Total phenolic acids | 6.3 ± 0.1 a | ||||||||
Total flavonoids | 0.26 ± 0.01 a | ||||||||
Total phenolics | 6.5 ± 0.1 b | ||||||||
Musa Acuminata var. Platina (Banana inflorescence—MAP) | |||||||||
Peak | Rt (min) | λmax (nm) | [M−H]− (m/z) | MS2 | MS3 | Tentative identification | Curve | Calibration Curve | Quantification mg/g extract |
1 | 5.64 | 314 | 487 | 163, 307, 341, | - | p-Coumaric acid dihexoside | p-Coumaric acid | 0.0509 ± 0.0002 | |
2 | 6.93 | 611 | 285, 485, 501 | 241, 217 | - | Luteolin derivative | L7G | 0.1332 ± 0.0008 | |
3 | 14.42 | 352 | 755 | 301, 591, 489, 373 | 179, 151, 255 | - | Quercetin-O-deoxyhexosyl-deoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 0.35 ± 0.01 |
4 | 15.84 | 315 | 571 | 529, 307 | 307, 487, 469, 163 | - | p-Coumaroyl-di-acetyl-sucrose isomer | p-Coumaric acid | 0.1355 ± 0.0003 |
5 | 17.68 | 609 | 301 | 179, 151, 227, 273 | - | Quercetin-3-O-rutinoside (rutin) | Quercetin-3-O-rutinoside | 1.32 ± 0.02 | |
6 | 20.9 | 593 | 285, 441 | - | - | Kaempferol-3-O-rutinoside | Quercetin-3-O-rutinoside | 0.1129 ± 0.0003 | |
7 | 24.11 | 315 | 613 | 571 | 529, 307 | 487, 469 | p-Coumaroyl-tri-acetyl-sucrose | p-Coumaric acid | 0.0576 ± 0.0001 |
8 | 28.76 | 315 | 655 | 613, 307 | 571 | 529, 307 | p-Coumaroyl-tetra-acetyl-sucrose | p-Coumaric acid | 0.019 ± 0.001 |
9 | 30.39 | 315 | 655 | 613, 307 | 571 | 529, 307 | p-Coumaroyl-tetra-acetyl-sucrose | p-Coumaric acid | 0.0457 ± 0.0001 |
10 | 37.05 | 315 | 697 | 655, 613, 595 | 613, 595 | 571 | p-Coumaroyl-penta-acetyl-sucrose isomer | p-Coumaric acid | 0.0469 ± 0.0002 |
Total phenolic acids | 2.09 ± 0.01 a | ||||||||
Total Flavonoids | 0.1867 ± 0.0005 a | ||||||||
Total phenolics | 2.278 ± 0.009 a,b | ||||||||
Musa Acuminata var. Conquista (Banana inflorescence MAC) | |||||||||
Peak | Rt (min) | λmax (nm) | [M−H]− (m/z) | MS2 | MS3 | MS4 | Tentative identification | Calibration Curve | Results mg/g extract |
1 | 5.64 | 314 | 487 | 163, 307, 341 | - | - | p-Coumaric acid dihexoside | p-Coumaric acid | 0.0706 ± 0.0003 |
2 | 6.93 | 611 | 285, 485, 501 | 241, 217 | - | Luteolin derivative | L7G | 0.274 ± 0.001 | |
3 | 7.94 | 353 | 173, 179, 191, 135 | - | - | 5-O-Caffeoylquinic acid | Chlorogenic acid | 0.134 ± 0.003 | |
4 | 14.42 | 352 | 755 | 301, 591, 489, 373 | 179, 151, 255 | - | Quercetin-O-deoxyhexosyl-deoxyhexosyl-hexoside | Quercetin-3-O-rutinoside | 0.37 ± 0.01 |
5 | 15.84 | 315 | 571 | 529, 307 | 307, 487, 469, 163 | - | p-Coumaroyl-di-acetyl-sucrose | p-Coumaric acid | 0.158 ± 0.002 |
6 | 17.68 | 609 | 301 | 179, 151, 227, 273 | - | Quercetin-3-O-rutinoside (rutin) | Quercetin-3-O-rutinoside | 1.8 ± 0.1 | |
7 | 20.9 | 593 | 285, 441 | - | - | Kaempferol-3-O-rutinoside | Quercetin-3-O-rutinoside | 0.1352 ± 0.0004 | |
8 | 24.11 | 315 | 613 | 571 | 529, 307 | 487, 469 | p-Coumaroyl-tri-acetyl-sucrose | p-Coumaric acid | 0.054 ± 0.002 |
9 | 28.76 | 315 | 655 | 613, 307 | 571 | 529, 307 | p-Coumaroyl-tetra-acetyl-sucrose | p-Coumaric acid | 0.020 ± 0.001 |
10 | 30.39 | 315 | 655 | 613, 307 | 571 | 529, 307 | p-Coumaroyl-tetra-acetyl-sucrose | p-Coumaric acid | 0.0426 ± 0.0005 |
11 | 35.48 | 315 | 697 | 655, 613, 595 | 613, 595 | 571 | p-Coumaroyl-penta-acetyl-sucrose | p-Coumaric acid | 0.0210 ± 0.0001 |
12 | 37.05 | 315 | 697 | 655, 613, 595 | 613, 595 | 571 | p-Coumaroyl-penta-acetyl-sucrose isomer | p-Coumaric acid | 0.064 ± 0.001 |
Total phenolic acids | 0.56 ± 0.01 | ||||||||
Total flavonoids | 2.4 ± 0.1 | ||||||||
Total phenolics | 3.0 ± 0.1 |
Antioxidant Activity | ||||||
---|---|---|---|---|---|---|
Parameters | PA | XS | SB | MAD | MAC | MAP |
Total Phenols | 14.1 ± 0.7 b | 12.1 ± 0.7 b | 38 ± 3 c | 6.0 ± 0.3 a | 6.9 ± 0.3 a | 5.0 ± 0.3 a |
DPPH | 95.2 ± 2 f | 44.5 ± 0.5 b | 84.00 ± 0.01 e | 76.5 ± 0.5 d | 61.2 ± 0.4 c | 82.8 ± 0.9 e |
FRAP | 1911 ± 56 c | 2530 ± 17 d | 4086 ± 412 e | 612 ± 20 b | 772 ± 18 b | 573 ± 52 b |
CAA | >2000 | >2000 | 511 ± 21 | >2000 | >2000 | >2000 |
Cytotoxicity (IC50 µg/mL) | ||||||
Caco2 | 290 ± 3 b | >400 | 111 ± 2 a | 326 ± 8 c | >400 | >400 |
MCF7 | >400 | >400 | 190 ± 6 | >400 | >400 | >400 |
AGS | >400 | >400 | 255 ± 5 a | >400 | 336 ± 4 b | >400 |
HeLa | >400 | >400 | 217 ± 2 | >400 | >400 | >400 |
Vero | >400 | >400 | >400 | >400 | >400 | >400 |
Anti-inflammatory Activity (IC50 µg/mL) | ||||||
RAW264.7 | >400 | >400 | 140.0 ± 0.9a | >400 | >400 | >400 |
Food Bacteria (mg/mL) | Positive Control | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XS | SB | PA | MAD | MAP | MAC | AG | Streptomicin 1mg/mL | Methicilin 1mg/mL | Ampicillin 20mg/mL | ||||
Gram-negative bacteria | MIC/MBC | ||||||||||||
Enterobacter Cloacae | 10/10 | 10/10 | 10/10 | >10/>10 | >10/>10 | >10/>10 | 10/>10 | 0.007 | 0.007 | n.d. | n.d. | 0.15 | 0.15 |
Escherichia coli | 10/>10 | 10/>10 | 10/>10 | >10/>10 | 10/>10 | 10/>10 | 5/>10 | 0.01 | 0.01 | n.d. | n.d. | 0.15 | 0.15 |
Pseudomonas aeruginosa | >10/>10 | 10/10 | 10/10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | 0.06 | 0.06 | n.d. | n.d. | 0.63 | 0.63 |
Salmonella enterocolitica | 10/10 | 10/10 | 10/10 | 10/10 | 10/10 | 05/10 | 2.5/>10 | 0.007 | 0.007 | n.d. | n.d. | 0.15 | 0.15 |
Yersinia enterocolitica | 5/>10 | 0.6/2.5 | 10/10 | 5/5 | 2.5/10 | 2.5/5 | 10/>10 | 0.007 | 0.007 | n.d. | n.d. | 0.15 | 0.15 |
Gram-positive bacteria | MIC/MBC | ||||||||||||
Bacillus cereus | 10/>10 | 5/>10 | 10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | 0.007 | 0.007 | n.d. | n.d. | n.d. | n.d. |
Listeria monocytogenes | 10/>10 | 10/>10 | 5/>10 | 10/>10 | 2.5/>10 | >10/>10 | 10/>10 | 0.007 | 0.007 | n.d. | n.d. | 0.15 | 0.15 |
Staphylococcus aureus | 10/>10 | 5/>10 | 5/>10 | >10/>10 | >10/>10 | >10/>10 | 5/>10 | 0.007 | 0.007 | 0.007 | 0.007 | 0.15 | 0.15 |
Clinical Bacteria (mg/mL) | Positive control | ||||||||||||
XS | SB | PA | MAD | MAP | MAC | AG | Ampicillin | Imipenem | Vancomycin | ||||
(20mg/mL) | (1mg/mL) | (1mg/mL) | |||||||||||
Gram-negative bacteria | MIC/MBC | ||||||||||||
Escherichia coli | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.d. | n.d. |
Klebsiella pneumoniae | >10/>10 | >10/>10 | >10/>10 | >10/>10 | 10/>10 | >10/>10 | >10/>10 | 10 | >10 | <0.0078 | <0.0078 | n.d. | n.d. |
Morganella morganii | 2.5/>10 | 5/>10 | 5/>10 | 10/>10 | >10/>10 | >10/>10 | 10/>10 | >10 | >10 | <0.0078 | <0.0078 | n.d. | n.d. |
Proteus mirabilis | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | <015 | <0.15 | <0.0078 | <0.0078 | n.d. | n.d. |
Pseudomonas aeruginosa | 10/>10 | 10/>10 | 5/>10 | >10/>10 | >10/>10 | 5/>10 | >10/>10 | >10 | >10 | 0.5 | 1 | n.d. | n.d. |
Gram-positive bacteria | MIC/MBC | ||||||||||||
Enterococcus faecalis | 2.5/>10 | 10/>10 | 10/>10 | >10/>10 | 10/>10 | >10/>10 | >10/>10 | <0.15 | <0.15 | n.d. | n.d. | <0.0078 | <0.0078 |
Listeria monocytogenes | 5/>10 | 10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.d. | n.d. |
MRSA | 2.5/2.5 | 10/10 | 2.5/10 | >10/>10 | >10/>10 | 10/>10 | >10/>10 | <0.15 | <0.15 | n.d. | n.d. | 0.25 | 0.5 |
P. Acnes | 10/>10 | 10/>10 | 10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | 0.07 | 0.07 | n.d. | n.d. | 0.25 | 0.5 |
Epidermites | 10/>10 | 10/>10 | 10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | <0.15 | <0.15 | n.d. | n.d. | 0.25 | 0.5 |
Antifungal activity (mg/mL) | Positive control | ||||||||||||
MIC/MFC | Ketoconazole | ||||||||||||
Aspergillus brasiliensis | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | >10/>10 | 10/>10 | 0.06/0.125 | |||||
Aspergillus fumigatus | >10/>10 | >10/>10 | 10/>10 | >10/>10 | 10/>10 | 10/>10 | 10/>10 | 0.5/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, I.; Salgado, J.M.R.T.; Lopes, J.K.; Carocho, M.; da Silveira, T.F.F.; Garcia, V.A.d.S.; Calhelha, R.C.; Santos-Buelga, C.; Barros, L.; Heleno, S.A. Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications. Sustainability 2025, 17, 6718. https://doi.org/10.3390/su17156718
de Oliveira I, Salgado JMRT, Lopes JK, Carocho M, da Silveira TFF, Garcia VAdS, Calhelha RC, Santos-Buelga C, Barros L, Heleno SA. Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications. Sustainability. 2025; 17(15):6718. https://doi.org/10.3390/su17156718
Chicago/Turabian Stylede Oliveira, Izamara, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros, and Sandrina A. Heleno. 2025. "Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications" Sustainability 17, no. 15: 6718. https://doi.org/10.3390/su17156718
APA Stylede Oliveira, I., Salgado, J. M. R. T., Lopes, J. K., Carocho, M., da Silveira, T. F. F., Garcia, V. A. d. S., Calhelha, R. C., Santos-Buelga, C., Barros, L., & Heleno, S. A. (2025). Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications. Sustainability, 17(15), 6718. https://doi.org/10.3390/su17156718