Multi-Omics Analysis Provides New Insights into the Interplay Between Gut Microbiota, Fatty Acid Metabolism, and Immune Response in Cultured and Wild Coilia nasus from the Yangtze River Area in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Determination of Muscle Chemical Composition
2.2.1. Proximate Composition Measurement
2.2.2. Amino Acid Content Analysis
2.2.3. Fatty Acid Content Analysis
2.2.4. Antioxidant Capacity Assay
2.3. Determination of Muscle Physicochemical Properties
2.3.1. Texture Analysis
2.3.2. Water-Holding Capacity Measurement
2.4. Muscle Transcriptome Analysis
2.5. Gut Microbiome Analysis
2.6. Statistical Analysis
3. Results
3.1. Muscle Physical and Chemical Properties
3.1.1. Muscle Proximate Composition and Meat Quality
3.1.2. Muscle Amino Acid Composition
3.1.3. Muscle Fatty Acid Composition
3.1.4. Muscle Antioxidant Capacity
3.2. Muscle Transcriptomic Analysis
3.3. Gut Microbiota Analysis
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACAA2 | Acetyl-CoA Acyltransferase 2 |
ACOX | Acyl-CoA Oxidase |
ACSL4 | Acyl-CoA Synthetase Long-Chain Family Member 4 |
ALA | α-Linolenic Acid |
ARA | Arachidonic Acid |
ASV | Amplicon Sequence Variant |
β2M | Beta-2 Microglobulin |
CAT | Catalase |
CPT1 | Carnitine Palmitoyltransferase 1 |
CTSB | Cathepsin B |
DEG | Differential Gene Expression |
DHA | Docosahexaenoic Acid |
DHLA | Dohomo-γ-Linolenic Acid |
EAAs | Essential Amino Acids |
EPA | Eicosapentaenoic Acid |
FAD | Flavin Adenine Dinucleotide |
FAME | Fatty Acid Methyl Ester |
FC | Fold Change |
GO | Gene Ontology |
GSL | Glycosphingolipids |
HMGB1 | High Mobility Group Box 1 |
HSP90 | Heat Shock Protein 90 |
LA | Linolic Acid |
LC -PUFAs | Long-chain Polyunsaturated Fatty Acids |
LEfSe | Linear Discriminant Analysis Effect Size |
LIG3 | DNA Ligase III |
LPS | Lipopolysaccharides |
MCP-1 | Monocyte Chemoattractant Protein 1 |
MDA | Malondialdehyde |
MHC | Major Histocompatibility Complex Class |
NEAA | Non-Essential Amino Acid |
NTH | Endonuclease III-like DNA Glycosylase |
PCA | Principal Component Analysis |
PCoA | Principal Coordinate Analysis |
PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
PUFA | Polyunsaturated Fatty Acid |
P53 | Tumor Protein P53 |
RXR | Retinoid X Receptor |
SEM | Standard Error |
SFA | Saturated Fatty Acids |
SOD | Superoxide Dismutase |
TAA | Total Amino Acid |
T-AOC | Total Antioxidant Capacity |
TPA | Texture Profile Analysis |
UPGMA | Unweighted Pair-Group Method With Arithmetic Means |
WGCNA | Weighted Correlation Network Analysis |
WHC | Water-Holding Capacity |
References
- Strobel, C.; Jahreis, G.; Kuhnt, K. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids Health Dis. 2012, 11, 1–10. Available online: http://www.lipidworld.com/content/11/1/144 (accessed on 11 April 2025). [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef]
- Milosevic, I.; Vujovic, A.; Barac, A.; Djelic, M.; Korac, M.; Radovanovic Spurnic, A.; Gmizic, I.; Stevanovic, O.; Djordjevic, V.; Lekic, N.; et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature. Int. J. Mol. Sci. 2019, 20, 395. [Google Scholar] [CrossRef]
- Grosicki, G.J.; Fielding, R.A.; Lustgarten, M.S. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: Biological basis for a gut-muscle axis. Calcif. Tissue Int. 2018, 102, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Lauretani, F.; Milani, C.; Nouvenne, A.; Tana, C.; Del Rio, D.; Maggio, M.; Ventura, M.; Meschi, T. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: Is there a gut–muscle axis? Nutrients 2017, 9, 1303. [Google Scholar] [CrossRef] [PubMed]
- Giron, M.; Thomas, M.; Dardevet, D.; Chassard, C.; Savary-Auzeloux, I. Gut microbes and muscle function: Can probiotics make our muscles stronger? J. Cachexia Sarcopenia Muscle 2022, 13, 1460–1476. [Google Scholar] [CrossRef] [PubMed]
- Casati, M.; Ferri, E.; Azzolino, D.; Cesari, M.; Arosio, B. Gut microbiota and physical frailty through the mediation of sarcopenia. Exp. Gerontol. 2019, 124, 110639. [Google Scholar] [CrossRef]
- Roh, H.; Kim, A.; Kim, N.; Lee, Y.; Kim, D.H. Multi-omics analysis provides novel insight into immuno-physiological pathways and development of thermal resistance in rainbow trout exposed to acute thermal stress. Int. J. Mol. Sci. 2020, 21, 9198. [Google Scholar] [CrossRef]
- Natnan, M.E.; Mayalvanan, Y.; Jazamuddin, F.M.; Aizat, W.M.; Low, C.F.; Goh, H.H.; Azizan, K.A.; Bunawan, H.; Baharum, S.N. Omics strategies in current advancements of infectious fish disease management. Biology 2021, 10, 1086. [Google Scholar] [CrossRef]
- Chen, X.; Hou, X.; Qian, L.; Ai, T.; Xu, Q.; Xiang, W.; Hu, B.; Wang, J.; Wang, C. Comparison of gut microbiome and plasma metabolome profiles between domesticated and wild Eurasian perch (Perca fluviatilis). Aquac. Res. 2022, 53, 4076–4086. [Google Scholar] [CrossRef]
- Wang, M.; Xu, G.; Tang, Y.; Su, S.; Wang, Y.; Zhu, Z. Investigation of the molecular mechanisms of antioxidant damage and immune response downregulation in liver of Coilia nasus under starvation stress. Front. Endocrinol. 2021, 12, 622315. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, L.; Tang, W.; Wang, X.; Wang, C. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus. Genes Genom. 2017, 39, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.S.; Obach, A.; Arantzamendi, L.; Montero, D.; Robaina, L.; Rosenlund, G. Dietary lipid sources for seabream and seabass: Growth performance, tissue composition and flesh quality. Aquac. Nutr. 2003, 9, 397–407. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Muhammad, A.M.; Yang, C.; Liu, B.; Sun, C.; Miao, L.; Zheng, X.; Pan, L.; Xia, D.; Zhou, Q.L. Comparative analysis of meat quality and hindgut microbiota of cultured and wild bighead carp (Hypophthalmichthys nobilis, Richardson 1845) from the Yangtze River area. Microorganisms 2025, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, M.I.; Makhrov, A.A.; Baydarov, I.V.; Safonova, S.S.; Golod, V.M.; Alekseyev, S.S.; Glushchenko, L.A.; Rudchenko, A.E.; Karpov, V.A.; Sushchik, N.N. Fatty acid composition and contents of fish of genus Salvelinus from natural ecosystems and aquaculture. Biomolecules 2022, 12, 144. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016, 4, e2584. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37, D141–D145. [Google Scholar] [CrossRef]
- Tang, X.; Xu, G.C.; Xu, P.; Gu, R.B.; Le, G.W. A comparison of muscle nutrient composition between wild and cultured Coilia nasus. Chin. J. Anim. Nutr. 2011, 23, 514–520. (In Chinese) [Google Scholar] [CrossRef]
- Tang, X.; Ji, X.; Dai, H.; Xu, G.C.; Gu, R.B. Comparison of flesh quality and antioxidant capacity of muscle in wild and farmed Coilia nasus populations. Sci. Technol. Food Ind. 2021, 32, 193–195+300. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Xiong, J.; Xu, C.; Qin, C.; Zhang, Y.; Yang, L.; Zhi, S.; Feng, J.; Nie, G. Comparison of muscle nutritional composition, texture quality, carotenoid metabolites and transcriptome to underling muscle quality difference between wild-caught and pond-cultured Yellow River carp (Cyprinus carpio haematopterus). Aquaculture 2024, 581, 740392. [Google Scholar] [CrossRef]
- Harlioğlu, A.G.; Aydin, S.; Yilmaz, Ö. Fatty acid, cholesterol and fat-soluble vitamin composition of wild and captive freshwater crayfish (Astacus leptodactylus). Food Sci. Technol. Int. 2012, 18, 93–100. [Google Scholar] [CrossRef]
- Sérot, T.; Gandemer, G.; Demaimay, M. Lipid and fatty acid compositions of muscle from farmed and wild adult turbot. Aquac. Int. 1998, 6, 331–343. [Google Scholar] [CrossRef]
- Özçiçek, E.; Can, E.; Yılmaz, Ö. Comparison of nutrient contents of wild and farmed rainbow trout (Oncorhynchus mykiss, Walbaum 1792) from Keban Dam Lake in Eastern Anatolia region of Turkey. Aquac. Res. 2022, 53, 2457–2463. [Google Scholar] [CrossRef]
- Miao, Z.; Guo, L.; Liu, Y.; Zhao, W.; Zhang, J. Effects of dietary supplementation of chitosan on carcass composition and meat quality in growing Huoyan geese. Poult. Sci. 2020, 99, 3079–3085. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Wang, Z.Y.; Yang, H.M.; Wang, J.M.; Xu, D.; Zhang, R.; Wang, Q. Influence of rearing system on growth performance, carcass traits, and meat quality of Yangzhou geese. Poult. Sci. 2011, 90, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wang, Y.; Chu, J.; Mohsin, A.; Zhuang, Y. Exploring cellular fatty acid composition and intracellular metabolites of osmotic-tolerant mutant Lactobacillus paracasei NCBIO-M2 for highly efficient lactic acid production with high initial glucose concentration. J. Biotechnol. 2018, 286, 27–35. [Google Scholar] [CrossRef]
- Alvarez, M.E.; Savouré, A.; Szabados, L. Proline metabolism as regulatory hub. Trends Plant Sci. 2022, 27, 39–55. [Google Scholar] [CrossRef]
- Handzlik, M.K.; Gengatharan, J.M.; Frizzi, K.E.; McGregor, G.H.; Martino, C.; Rahman, G.; Gonzalez, A.; Moreno, A.M.; Green, C.R.; Guernsey, L.S.; et al. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 2023, 614, 118–124. [Google Scholar] [CrossRef]
- Perry, D.; Nicholls, P.J.; Thompson, J.M. The effect of sire breed on the melting point and fatty acid composition of subcutaneous fat in steers. J. Anim. Sci. 1998, 76, 87–95. [Google Scholar] [CrossRef]
- Dias, C.B.; Garg, R.; Wood, L.G.; Garg, M.L. Saturated fat consumption may not be the main cause of increased blood lipid levels. Med. Hypotheses 2014, 82, 187–195. [Google Scholar] [CrossRef]
- Gershuni, V.M. Saturated fat: Part of a healthy diet. Curr. Nutr. Rep. 2018, 7, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Grimble, R.F. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 2002, 56, S14–S19. [Google Scholar] [CrossRef] [PubMed]
- Novir, S.B.; Tirandaz, A.; Lotfipour, H. Quantum study of DHA, DPA and EPA anticancer fatty acids for microscopic explanation of their biological functions. J. Mol. Liq. 2021, 325, 114646. [Google Scholar] [CrossRef]
- Fuentes, A.; Fernández-Segovia, I.; Serra, J.A.; Barat, J.M. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem. 2010, 119, 1514–1518. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Martínez-Alvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Warner, R.D. The Eating Quality of Meat—IV Water-Holding Capacity and Juiciness. In Lawrie’s Meat Science, 8th ed.; Toldra’, F., Ed.; Woodhead Publishing: Cambridge, UK, 2017; ISBN 9780081006979. [Google Scholar]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Das, L.; Quintana, V.G.; Sweasy, J.B. NTHL1 in genomic integrity, aging and cancer. DNA Repair 2020, 93, 102920. [Google Scholar] [CrossRef]
- Yang, H.; Tracey, K.J. Targeting HMGB1 in inflammation. Biochim. et Biophys. Acta-Gene Regul. Mech. 2010, 1799, 149–156. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, Q.; Zeng, Y.; Tang, Y.; Luo, R. Association between the genetic variants of base excision repair pathway genes and allergic rhinitis susceptibility in Chinese children. World Allergy Organ. J. 2022, 15, 100650. [Google Scholar] [CrossRef]
- Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Pérez, M.J.; Quintanilla, R.A. Therapeutic actions of the thiazolidinediones in Alzheimer’s disease. PPAR Res. 2015, 2015, 957248. [Google Scholar] [CrossRef]
- Martin, H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2009, 669, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Marion-Letellier, R.; Savoye, G.; Ghosh, S. Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharmacol. 2016, 785, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Allred, C.D.; Talbert, D.R.; Southard, R.C.; Wang, X.; Kilgore, M.W. PPARγ1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells. J. Nutr. 2008, 138, 250–256. [Google Scholar] [CrossRef]
- Bassaganya-Riera, J.; Hontecillas, R. CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin. Nutr. 2006, 25, 454–465. [Google Scholar] [CrossRef]
- Fang, I.M.; Yang, C.H.; Yang, C.M. Docosahexaenoic acid reduces linoleic acid induced monocyte chemoattractant protein-1 expression via PPARγ and nuclear factor-κB pathway in retinal pigment epithelial cells. Mol. Nutr. Food Res. 2014, 58, 2053–2065. [Google Scholar] [CrossRef]
- Huang, C.H.; Hou, Y.C.; Yeh, C.L.; Yeh, S.L. A soybean and fish oil mixture with different n-6/n-3 PUFA ratios modulates the inflammatory reaction in mice with dextran sulfate sodium-induced acute colitis. Clin. Nutr. 2015, 34, 1018–1024. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, C.; Yang, L.; Zeng, X.; Hu, Y.; Xue, X.; Dai, Y.; Wei, Z. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα. Cell Commun. Signal. 2022, 20, 48. [Google Scholar] [CrossRef]
- Watkins, P.A.; Ellis, J.M. Peroxisomal acyl-CoA synthetases. Biochim. et Biophys. Acta-Mol. Basis Dis. 2012, 1822, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Huang, Q.; Alvares, K.; Yeldandi, A.V.; Rao, M.S.; Reddy, J.K. Transformation of mammalian cells by overexpressing H2O2-generating peroxisomal fatty acyl-CoA oxidase. Proc. Natl. Acad. Sci. USA 1995, 92, 7080–7084. [Google Scholar] [CrossRef] [PubMed]
- Kotlyarov, S. Immune and metabolic cross-links in the pathogenesis of comorbid non-alcoholic fatty liver disease. World J. Gastroenterol. 2023, 29, 597. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.S.; Shin, N.R.; Lee, J.B.; Kim, M.S.; Whon, T.W.; Hyun, D.W.; Yun, J.H.; Jung, M.J.; Kim, J.Y.; Bae, J.W. Host habitat is the major determinant of the gut microbiome of fish. Microbiome 2021, 9, 166. [Google Scholar] [CrossRef]
- Ying, C.P.; Jiang, M.; You, L.; Tan, J.H.; Yang, Y.P.; Wang, Y.P.; Liu, K. Variations and potential factors of gut prokaryotic microbiome during spawning migration in Coilia nasus. Curr. Microbiol. 2020, 77, 2802–2812. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Nie, Z.; Wang, J.; Sun, Y.; Xu, G. Integration of metagenome and metabolome analysis reveals the correlation of gut microbiota, oxidative stress, and inflammation in Coilia nasus under air exposure stress and salinity mitigation. Comp. Biochem. Physiol. Part D Genom. Proteom. 2024, 49, 101175. [Google Scholar] [CrossRef]
- Balcázar, J.L.; De Blas, I.; Ruiz-Zarzuela, I.; Cunningham, D.; Vendrell, D.; Múzquiz, J.L. The role of probiotics in aquaculture. Vet. Microbiol. 2006, 114, 173–186. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhu, K.; Frank, M.W.; Rock, C.O. A Pseudomonas aeruginosa transcription factor that senses fatty acid structure. Mol. Microbiol. 2007, 66, 622–632. [Google Scholar] [CrossRef]
- Zhu, K.; Choi, K.H.; Schweizer, H.P.; Rock, C.O.; Zhang, Y.M. Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol. Microbiol. 2006, 60, 260–273. [Google Scholar] [CrossRef]
- Khan, M.A.; Aljarbou, A.N.; Aldebasi, Y.H.; Alorainy, M.S.; Rahmani, A.H.; Younus, H.; Khan, A. Liposomal formulation of glycosphingolipids from Sphingomonas paucimobilis induces antitumor immunity in mice. J. Drug Target. 2018, 26, 709–719. [Google Scholar] [CrossRef]
- Lembo-Fazio, L.; Billod, J.M.; Di Lorenzo, F.; Paciello, I.; Pallach, M.; Vaz-Francisco, S.; Holgado, A.; Beyaert, R.; Fresno, M.; Shimoyama, A.; et al. Bradyrhizobium lipid A: Immunological properties and molecular basis of its binding to the myeloid differentiation protein-2/Toll-like receptor 4 complex. Front. Immunol. 2018, 9, 1888. [Google Scholar] [CrossRef]
- Zhou, L.I.; Chen, C.; Xie, J.; Xu, C.; Zhao, Q.; Qin, J.G.; Chen, L.; Li, E. Intestinal bacterial signatures of the “cotton shrimp-like” disease explain the change of growth performance and immune responses in Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish. Immunol. 2019, 92, 629–636. [Google Scholar] [CrossRef]
- Nie, L.; Zhou, Q.J.; Qiao, Y.; Chen, J. Interplay between the gut microbiota and immune responses of ayu (Plecoglossus altivelis) during Vibrio anguillarum infection. Fish Shellfish. Immunol. 2017, 68, 479–487. [Google Scholar] [CrossRef]
- Ho, P.Y.; Nguyen, T.H.; Sanchez, J.M.; DeFelice, B.C.; Huang, K.C. Resource competition predicts assembly of gut bacterial communities in vitro. Nat. Microbiol. 2024, 9, 1036–1048. [Google Scholar] [CrossRef]
Item | Cultured | Wild | p Value |
---|---|---|---|
Proximate composition (Wet weight) | |||
Moisture | 64.13 ± 1.38 | 51.41 ± 1.83 | * |
Crude protein | 20.05 ± 0.49 | 21.95 ± 1.26 | ns |
Lipid | 4.14 ± 0.55 | 10.85 ± 0.80 | * |
Ash | 1.67 ± 0.06 | 1.38 ± 0.07 | * |
Texture | |||
Hardness | 2401.06 ± 325.48 | 2637.10 ± 256.52 | ns |
Springiness | 0.38 ± 0.02 | 0.38 ± 0.01 | ns |
Cohesiveness | 0.39 ± 0.02 | 0.38 ± 0.02 | ns |
Gumminess | 934.80 ± 147.20 | 994.42 ± 73.71 | ns |
Chewiness | 361.81 ± 62.49 | 376.90 ± 26.89 | ns |
Resilience | 0.23 ± 0.02 | 0.21 ± 0.01 | ns |
Shear force | 1.05 ± 0.10 | 0.59 ± 0.03 | * |
Water-holding capacity | |||
Drip loss | 13.66 ± 1.10 | 10.71 ± 0.37 | * |
Cooking loss | 20.78 ± 1.16 | 17.92 ± 0.33 | * |
Amino Acid | Cultured | Wild | p Value |
---|---|---|---|
Essential amino acids | |||
Histidine | 0.323 ± 0.008 | 0.311 ± 0.006 | ns |
Threonine | 0.729 ± 0.015 | 0.701 ± 0.005 | ns |
Arginine | 1.086 ± 0.024 | 1.151 ± 0.005 | ns |
Valine | 0.883 ± 0.020 | 0.874 ± 0.007 | ns |
Methionine | 0.578 ± 0.024 | 0.561 ± 0.008 | ns |
Phenylalanine | 0.806 ± 0.025 | 0.785 ± 0.014 | ns |
Isoleucine | 0.782 ± 0.020 | 0.771 ± 0.013 | ns |
Leucine | 1.466 ± 0.043 | 1.437 ± 0.017 | ns |
Lysine | 1.772 ± 0.060 | 1.711 ± 0.029 | ns |
Non-essential amino acids | |||
Aspartic acid | 2.104 ± 0.053 | 2.008 ± 0.027 | ns |
Glutamic acid | 3.121 ± 0.078 | 3.045 ± 0.036 | ns |
Serine | 0.739 ± 0.018 | 0.688 ± 0.005 | * |
Glycine | 1.004 ± 0.024 | 0.919 ± 0.029 | ns |
Alanine | 1.149 ± 0.019 | 1.118 ± 0.003 | ns |
Tyrosine | 0.467 ± 0.015 | 0.453 ± 0.004 | ns |
Cystines | 0.023 ± 0.001 | 0.022 ± 0.001 | ns |
Proline | 0.399 ± 0.035 | 0.291 ± 0.011 | * |
∑EAA | 8.424 ± 0.235 | 8.031 ± 0.087 | ns |
∑NEAA | 9.007 ± 0.199 | 8.543 ± 0.055 | ns |
∑TAA | 17.431 ± 0.429 | 16.844 ± 0.134 | ns |
Fatty Acid (mg/g) | Cultured | Wild | p Value |
---|---|---|---|
C12:0 | |||
C14:0 | 2.77 ± 0.11 | 2.06 ± 0.09 | * |
C15:0 | 0.70 ± 0.07 | 0.30 ± 0.01 | * |
C16:0 | 25.23 ± 0.33 | 27.42 ± 0.38 | * |
C16:1 | 7.18 ± 0.25 | 6.52 ± 0.45 | ns |
C17:0 | 0.56 ± 0.08 | 0.23 ± 0.02 | * |
C18:0 | 2.92 ± 0.12 | 3.43 ± 0.32 | ns |
C18:1n9t | 0.34 ± 0.02 | 0.27 ± 0.02 | * |
C18:1n9c | 34.47 ± 1.46 | 39.73 ± 1.56 | * |
C18:2n6c (LA) | 6.32 ± 0.92 | 0.77 ± 0.12 | * |
C18:3n3 (ALA) | 2.22 ± 0.17 | 1.10 ± 0.08 | * |
C20:0 | 0.68 ± 0.03 | 0.18 ± 0.02 | * |
C20:1 | 1.76 ± 0.18 | 0.38 ± 0.06 | * |
C20:2 | 0.25 ± 0.01 | 0.14 ± 0.01 | * |
C20:3n6 (DHLA) | 0.56 ± 0.05 | - | |
C20:4n6 (ARA) | 3.56 ± 0.39 | 1.11 ± 0.24 | * |
C20:5n3 (EPA) | 4.08 ± 0.38 | 4.45 ± 0.46 | ns |
C22:1n9 | 0.24 ± 0.01 | 0.69 ± 0.10 | * |
C22:6n3 (DHA) | 6.03 ± 0.54 | 11.02 ± 1.43 | * |
∑ SFA | 32.99 ± 0.34 | 33.76 ± 0.34 | ns |
∑ n-3 PUFA | 12.33 ± 1.01 | 16.57 ±1.83 | ns |
∑ n-6 PUFA | 10.44 ± 0.57 | 1.88 ± 0.34 | * |
∑ n-3 PUFA/n-6 PUFA | 1.21 ± 0.10 | 10.22 ± 0.50 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Liu, K.; Deng, Y.; Wang, Q.; Cao, S.; Zhou, Q. Multi-Omics Analysis Provides New Insights into the Interplay Between Gut Microbiota, Fatty Acid Metabolism, and Immune Response in Cultured and Wild Coilia nasus from the Yangtze River Area in China. Microorganisms 2025, 13, 1711. https://doi.org/10.3390/microorganisms13071711
Yang C, Liu K, Deng Y, Wang Q, Cao S, Zhou Q. Multi-Omics Analysis Provides New Insights into the Interplay Between Gut Microbiota, Fatty Acid Metabolism, and Immune Response in Cultured and Wild Coilia nasus from the Yangtze River Area in China. Microorganisms. 2025; 13(7):1711. https://doi.org/10.3390/microorganisms13071711
Chicago/Turabian StyleYang, Chang, Kai Liu, Yanmin Deng, Qianhui Wang, Shiqian Cao, and Qunlan Zhou. 2025. "Multi-Omics Analysis Provides New Insights into the Interplay Between Gut Microbiota, Fatty Acid Metabolism, and Immune Response in Cultured and Wild Coilia nasus from the Yangtze River Area in China" Microorganisms 13, no. 7: 1711. https://doi.org/10.3390/microorganisms13071711
APA StyleYang, C., Liu, K., Deng, Y., Wang, Q., Cao, S., & Zhou, Q. (2025). Multi-Omics Analysis Provides New Insights into the Interplay Between Gut Microbiota, Fatty Acid Metabolism, and Immune Response in Cultured and Wild Coilia nasus from the Yangtze River Area in China. Microorganisms, 13(7), 1711. https://doi.org/10.3390/microorganisms13071711