Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (399)

Search Parameters:
Keywords = extrinsic approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 414 KiB  
Article
A New Statistical Modelling Approach to Explain Willingness-to-Try Seafood Byproducts Using Elicited Emotions
by Silvia Murillo, Ryan Ardoin, Bin Li and Witoon Prinyawiwatkul
Foods 2025, 14(15), 2676; https://doi.org/10.3390/foods14152676 - 30 Jul 2025
Viewed by 64
Abstract
Seafood processing byproducts (SB) such as bones and skin can be safely used as food ingredients to increase profitability for the seafood sector and provide nutritional value. An online survey of 716 US adult seafood consumers was conducted to explore SB trial intent, [...] Read more.
Seafood processing byproducts (SB) such as bones and skin can be safely used as food ingredients to increase profitability for the seafood sector and provide nutritional value. An online survey of 716 US adult seafood consumers was conducted to explore SB trial intent, responsiveness to health and safety information, and associated elicited emotions (nine-point Likert scale). Consumers’ SB-elicited emotions were defined as those changing in reported intensity (from a baseline condition) after the delivery of SB-related information (dependent t-tests). As criteria for practical significance, a raw mean difference of >0.2 units was used, and Cohen’s d values were used to classify effect sizes as small, medium, or large. Differences in willingness-to-try, responsiveness to safety and health information, and SB-elicited emotions were found based on self-reported gender and race, with males and Hispanics expressing more openness to SB consumption. SB-elicited emotions were then used to model consumers’ willingness-to-try foods containing SB via logistic regression modeling. Traditional stepwise variable selection was compared to variable selection using raw mean difference > 0.2 units and Cohen’s d > 0.50 constraints for SB-elicited emotions. Resulting models indicated that extrinsic information considered at the point of decision-making determined which emotions were relevant to the response. These new approaches yielded models with increased Akaike Information Criterion (AIC) values (lower values indicate better model fit) but could provide simpler and more practically meaningful models for understanding which emotions drive consumption decisions. Full article
Show Figures

Figure 1

18 pages, 4696 KiB  
Article
Audouin’s Gull Colony Itinerancy: Breeding Districts as Units for Monitoring and Conservation
by Massimo Sacchi, Barbara Amadesi, Adriano De Faveri, Gilles Faggio, Camilla Gotti, Arnaud Ledru, Sergio Nissardi, Bernard Recorbet, Marco Zenatello and Nicola Baccetti
Diversity 2025, 17(8), 526; https://doi.org/10.3390/d17080526 - 28 Jul 2025
Viewed by 212
Abstract
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we [...] Read more.
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we identified five spatial breeding units of increasing hierarchical scale—Breeding Sites, Colonies, Districts, Regions and Marine Sectors—which reflect biologically meaningful boundaries beyond simple geographic proximity. To determine the most appropriate scale for monitoring local populations, we applied multievent capture–recapture models and examined variation in survival and site fidelity across these units. Audouin’s gulls frequently change their location at the Breeding Site and Colony levels from one year to another, without apparent survival costs. In contrast, dispersal beyond Districts boundaries was found to be rare and associated with reduced survival rates, indicating that breeding Districts represent the most relevant biological unit for identifying local populations. The survival disadvantage observed in individuals leaving their District likely reflects increased extrinsic mortality in unfamiliar environments and the selective dispersal of lower-quality individuals. Within breeding Districts, birds may benefit from local knowledge and social information, supporting demographic stability and higher fitness. Our findings highlight the value of adopting a District-based framework for long-term monitoring and conservation of this endangered species. At this scale, demographic trends such as population growth or decline emerge more clearly than when assessed at the level of singular colonies. This approach can enhance our understanding of population dynamics in other mobile species and support more effective conservation strategies aligned with natural population structure. Full article
(This article belongs to the Special Issue Ecology, Diversity and Conservation of Seabirds—2nd Edition)
Show Figures

Graphical abstract

12 pages, 2409 KiB  
Review
Tumors of the Parapharyngeal Space Presenting with Obstructive Sleep Apnea: A Case Report and Literature Review
by Luca Cerri, Francesco Giombi, Michele Cerasuolo, Gian Marco Pace, Anna Losurdo, Giuseppe Lunardi, Francesco Grecchi, Elena Volpini and Luca Malvezzi
J. Pers. Med. 2025, 15(8), 331; https://doi.org/10.3390/jpm15080331 - 28 Jul 2025
Viewed by 208
Abstract
Introduction: Obstructive sleep apnea syndrome (OSAS) is caused by anatomical and non-anatomical factors which lead to upper airway (UA) obstruction during sleep. Intrinsic UA collapse is the most frequent determinant of OSA. In the era of personalized medicine, adopting a tailored diagnostic [...] Read more.
Introduction: Obstructive sleep apnea syndrome (OSAS) is caused by anatomical and non-anatomical factors which lead to upper airway (UA) obstruction during sleep. Intrinsic UA collapse is the most frequent determinant of OSA. In the era of personalized medicine, adopting a tailored diagnostic approach is essential to rule out secondary causes of UA collapse, particularly those stemming from extrinsic anatomical factors. Although being rarely considered in the differential diagnosis, space-occupying lesions of deep cervical spaces such as the parapharyngeal space (PPS) may be responsible for airway obstruction and lead to OSAS. Objective: This study aimed to present an atypical case of OSAS caused by extrinsic PPS compression, outlining the relevance of modern personalized medicine in the diagnostic and therapeutic protocols, and to enhance understanding through a comprehensive literature review. Methods: A 60-year-old female presented with sleep-disordered complaints and was diagnosed with severe OSAS after polysomnography. At physical examination, a swelling of the right posterior oropharyngeal mucosa was noticed. Imaging confirmed the suspicion of a PPS tumor, and transcervical resection was planned. Case presentation was adherent to the CARE checklist. A comprehensive literature review was conducted using the most reliable scientific databases. Results: Surgery was uneventful, and the patient made a full recovery. The histopathology report was consistent with the diagnosis of pleomorphic adenoma. Postoperative outcomes showed marked improvement in polysomnographic parameters and symptom burden. Conclusions: Parapharyngeal space tumors are a rare, often overlooked cause of OSA. This case highlights the role of a personalized head and neck assessment in OSA patients, particularly in identifying structural causes and offering definitive surgical management when indicated. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

15 pages, 2993 KiB  
Article
A Joint LiDAR and Camera Calibration Algorithm Based on an Original 3D Calibration Plate
by Ziyang Cui, Yi Wang, Xiaodong Chen and Huaiyu Cai
Sensors 2025, 25(15), 4558; https://doi.org/10.3390/s25154558 - 23 Jul 2025
Viewed by 265
Abstract
An accurate extrinsic calibration between LiDAR and cameras is essential for effective sensor fusion, directly impacting the perception capabilities of autonomous driving systems. Although prior calibration approaches using planar and point features have yielded some success, they suffer from inherent limitations. Specifically, methods [...] Read more.
An accurate extrinsic calibration between LiDAR and cameras is essential for effective sensor fusion, directly impacting the perception capabilities of autonomous driving systems. Although prior calibration approaches using planar and point features have yielded some success, they suffer from inherent limitations. Specifically, methods that rely on fitting planar contours using depth-discontinuous points are prone to systematic errors, which hinder the precise extraction of the 3D positions of feature points. This, in turn, compromises the accuracy and robustness of the calibration. To overcome these challenges, this paper introduces a novel 3D calibration plate incorporating the gradient depth, localization markers, and corner features. At the point cloud level, the gradient depth enables the accurate estimation of the 3D coordinates of feature points. At the image level, corner features and localization markers facilitate the rapid and precise acquisition of 2D pixel coordinates, with minimal interference from environmental noise. This method establishes a rigorous and systematic framework to enhance the accuracy of LiDAR–camera extrinsic calibrations. In a simulated environment, experimental results demonstrate that the proposed algorithm achieves a rotation error below 0.002 radians and a translation error below 0.005 m. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 1544 KiB  
Review
Resistance Mechanisms to BCMA Targeting Bispecific Antibodies and CAR T-Cell Therapies in Multiple Myeloma
by Brandon Tedder and Manisha Bhutani
Cells 2025, 14(14), 1077; https://doi.org/10.3390/cells14141077 - 15 Jul 2025
Viewed by 647
Abstract
B-cell maturation antigen (BCMA)-targeted therapies including both chimeric antigen receptor (CAR) T-cell therapies and bispecific antibodies (BsAbs), have revolutionized the treatment landscape for relapsed/refractory multiple myeloma (MM), offering both deep and durable responses, even in heavily pretreated patients. Despite these advances, most patients [...] Read more.
B-cell maturation antigen (BCMA)-targeted therapies including both chimeric antigen receptor (CAR) T-cell therapies and bispecific antibodies (BsAbs), have revolutionized the treatment landscape for relapsed/refractory multiple myeloma (MM), offering both deep and durable responses, even in heavily pretreated patients. Despite these advances, most patients ultimately experience relapse. This is likely related to the development of resistance mechanisms that limit the long-term efficacy and durability of BCMA-targeted approaches. In this review, we examine the current landscape of BCMA-directed therapies, including Idecabtagene Vileucel, Ciltacabtagene Autoleucel, Teclistamab, and Elranatamab and explore the multifactorial mechanisms driving resistance. These mechanisms include tumor-intrinsic factors, host-related and tumor-extrinsic factors, and factors related to the tumor-microenvironment itself. We outline emerging strategies to overcome resistance, such as dual-targeting therapies, γ-secretase inhibitors, immune-checkpoint blockade, armored CAR T constructs, and novel combination regimens. Additionally, we discuss the role of therapy sequencing, emphasizing how prior exposure to BsAbs or CAR T-cell therapies may influence the efficacy of subsequent treatments. A deeper understanding of resistance biology, supported by integrated immune and genomic profiling, is essential to optimizing therapeutic durability and ultimately improve patient outcomes for patients with MM. Full article
(This article belongs to the Special Issue Novel Insights into Molecular Mechanisms and Therapy of Myeloma)
Show Figures

Figure 1

29 pages, 1189 KiB  
Review
Decoding Skin Aging: A Review of Mechanisms, Markers, and Modern Therapies
by Jorge Naharro-Rodriguez, Stefano Bacci, Maria Luisa Hernandez-Bule, Alfonso Perez-Gonzalez and Montserrat Fernandez-Guarino
Cosmetics 2025, 12(4), 144; https://doi.org/10.3390/cosmetics12040144 - 10 Jul 2025
Viewed by 1544
Abstract
Skin aging is a multifactorial process driven by both intrinsic mechanisms—such as telomere shortening, oxidative stress, hormonal decline, and impaired autophagy—and extrinsic influences including ultraviolet radiation, pollution, smoking, and diet. Together, these factors lead to the structural and functional deterioration of the skin, [...] Read more.
Skin aging is a multifactorial process driven by both intrinsic mechanisms—such as telomere shortening, oxidative stress, hormonal decline, and impaired autophagy—and extrinsic influences including ultraviolet radiation, pollution, smoking, and diet. Together, these factors lead to the structural and functional deterioration of the skin, manifesting as wrinkles, pigmentation disorders, thinning, and reduced elasticity. This review provides an integrative overview of the biological, molecular, and clinical dimensions of skin aging, emphasizing the interplay between inflammation, extracellular matrix degradation, and senescence-associated signaling pathways. We examine histopathological hallmarks and molecular markers and discuss the influence of genetic and ethnic variations on aging phenotypes. Current therapeutic strategies are explored, ranging from topical agents (e.g., retinoids, antioxidants, niacinamide) to procedural interventions such as lasers, intense pulsed light, photodynamic therapy, microneedling, and injectable biostimulators. Special attention is given to emerging approaches such as microneedle delivery systems, with mention of exosome-based therapies. The review underscores the importance of personalized anti-aging regimens based on biological age, phototype, and lifestyle factors. As the field advances, integrating mechanistic insights with individualized treatment selection will be key to optimizing skin rejuvenation and preserving long-term dermal health. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

14 pages, 1449 KiB  
Review
Apoptosis in Cardiac Conditions Including Cirrhotic Cardiomyopathy
by Fengxue Yu, Dae Gon Ryu, Ki Tae Yoon, Hongqun Liu and Samuel S. Lee
Int. J. Mol. Sci. 2025, 26(13), 6423; https://doi.org/10.3390/ijms26136423 - 3 Jul 2025
Viewed by 383
Abstract
Apoptosis is a highly regulated process of programmed cell death and plays a crucial pathogenic role in a variety of conditions including cardiovascular diseases. There are two pathways leading to apoptosis, the intrinsic and extrinsic pathways. In the intrinsic pathway, also known as [...] Read more.
Apoptosis is a highly regulated process of programmed cell death and plays a crucial pathogenic role in a variety of conditions including cardiovascular diseases. There are two pathways leading to apoptosis, the intrinsic and extrinsic pathways. In the intrinsic pathway, also known as the mitochondria-mediated pathway, the cell kills itself because it senses cell stress. Mitochondria account for 30% of cardiomyocyte volume, and therefore, the heart is vulnerable to apoptosis. The extrinsic pathway, also known as the death receptor-mediated pathway, is initiated by death receptors, members of the tumor necrosis factor receptor gene superfamily. Excessive apoptosis is involved in cardiac dysfunction in different cardiac conditions, including heart failure, ischemic heart disease, and cirrhotic cardiomyopathy. The last entity is a serious cardiac complication of patients with cirrhosis. To date, there is no effective treatment for cirrhotic cardiomyopathy. The conventional treatments for non-cirrhotic heart failure such as vasodilators are not applicable due to the generalized peripheral vasodilatation in cirrhotic patients. Exploring new approaches for the treatment of cirrhotic cardiomyopathy is therefore of utmost importance. Since apoptosis plays an essential role in the pathogenesis and progression of cardiovascular conditions, anti-apoptotic treatment could potentially prevent/attenuate the development and progression of cardiac diseases. Anti-apoptotic treatment may also apply to cirrhotic cardiomyopathy. The present review summarizes apoptotic mechanisms in different cardiac diseases, including cirrhotic cardiomyopathy, and potential therapies to regulate apoptosis in these conditions. Full article
(This article belongs to the Special Issue Cirrhosis: From Molecular Mechanisms to Therapeutic Strategies)
Show Figures

Figure 1

27 pages, 3660 KiB  
Article
Vision-Based Detection, Localization, and Optimized Path Planning for Rebar Intersections in Automated Construction
by Chengxiang Li, Weimin Zhang, Fangxing Li, Meijun Guo and Shicheng Fan
Appl. Sci. 2025, 15(13), 7186; https://doi.org/10.3390/app15137186 - 26 Jun 2025
Viewed by 286
Abstract
The accurate detection and precise spatial localization of rebar intersection points are essential for advancing automation in construction tasks, such as robotic rebar tying. This paper presents a vision-based methodology that integrates RGB-D sensing, camera calibration, and coordinate transformation techniques to robustly detect [...] Read more.
The accurate detection and precise spatial localization of rebar intersection points are essential for advancing automation in construction tasks, such as robotic rebar tying. This paper presents a vision-based methodology that integrates RGB-D sensing, camera calibration, and coordinate transformation techniques to robustly detect and localize rebar crossing points. A structured detection framework efficiently extracts intersection coordinates from RGB-D imagery, subsequently mapping these points to a global reference frame using extrinsic camera calibration parameters. To achieve comprehensive site coverage and optimize operational efficiency, the path planning challenge is reformulated as a sequencing optimization problem of the identified intersections. We propose a greedy optimization algorithm that generates smooth, snake-like traversal paths in an efficient manner. Experimental validation confirms the effectiveness of our approach, demonstrating detection accuracy exceeding 99%, an average processing time below 125 ms per intersection point, and a maximum coordinate transformation error under 2 mm. The presented solution offers a lightweight, precise, and scalable framework, significantly facilitating the integration of vision-based methods into automated construction workflows. Full article
Show Figures

Figure 1

24 pages, 1404 KiB  
Review
Hippocampal Neurogenesis in Alzheimer’s Disease: Multimodal Therapeutics and the Neurogenic Impairment Index Framework
by Li Ma, Qian Wei, Ming Jiang, Yanyan Wu, Xia Liu, Qinghu Yang, Zhantao Bai and Liang Yang
Int. J. Mol. Sci. 2025, 26(13), 6105; https://doi.org/10.3390/ijms26136105 - 25 Jun 2025
Viewed by 645
Abstract
Alzheimer’s disease (AD) is characterized by progressive cognitive decline strongly associated with impaired adult hippocampal neurogenesis (AHN). Mounting evidence suggests that this impairment results from both the intrinsic dysfunction of neural stem cells (NSCs)—such as transcriptional alterations in quiescent states—and extrinsic niche disruptions, [...] Read more.
Alzheimer’s disease (AD) is characterized by progressive cognitive decline strongly associated with impaired adult hippocampal neurogenesis (AHN). Mounting evidence suggests that this impairment results from both the intrinsic dysfunction of neural stem cells (NSCs)—such as transcriptional alterations in quiescent states—and extrinsic niche disruptions, including the dysregulation of the Reelin signaling pathway and heightened neuroinflammation. Notably, AHN deficits may precede classical amyloid-β and Tau pathology, supporting their potential as early biomarkers of disease progression. In this review, we synthesize recent advances in therapeutic strategies aimed at restoring AHN, encompassing pharmacological agents, natural products, and non-pharmacological interventions such as environmental enrichment and dietary modulation. Emerging approaches—including BDNF-targeted nanocarriers, NSC-derived extracellular vesicles, and multimodal lifestyle interventions—highlight the translational promise of enhancing neurogenesis in models of familial AD. We further propose the Neurogenesis Impairment Index (NII)—a novel composite metric that quantifies hippocampal neurogenic capacity relative to amyloid burden, while adjusting for demographic and cognitive variables. By integrating neurogenic potential, cognitive performance, and pathological load, NII provides a framework for stratifying disease severity and guiding personalized therapeutic approaches. Despite ongoing challenges—such as interspecies differences in neurogenesis rates and the limitations of stem cell-based therapies—this integrative perspective offers a promising avenue to bridge mechanistic insights with clinical innovation in the development of next-generation AD treatments. Full article
Show Figures

Figure 1

21 pages, 5545 KiB  
Article
Evaluation of the Antitumor and Antiproliferative Potential of Synthetic Peptides Derived from IsCT1, Associated with Cisplatin, in Squamous Cell Carcinoma of the Oral Cavity
by Laertty Garcia de Sousa Cabral, Cyntia Silva de Oliveira, Vani Xavier Oliveira, Ellen Paim de Abreu Paulo, Jean-Luc Poyet and Durvanei Augusto Maria
Molecules 2025, 30(12), 2594; https://doi.org/10.3390/molecules30122594 - 15 Jun 2025
Viewed by 481
Abstract
Head and neck squamous cell carcinoma (SCC), particularly in the oral cavity, is among the most prevalent and lethal forms of cancer globally. Current therapeutic strategies, predominantly involving cisplatin, face challenges like chemoresistance and toxicity to normal cells, justifying the exploration of new [...] Read more.
Head and neck squamous cell carcinoma (SCC), particularly in the oral cavity, is among the most prevalent and lethal forms of cancer globally. Current therapeutic strategies, predominantly involving cisplatin, face challenges like chemoresistance and toxicity to normal cells, justifying the exploration of new approaches. This study evaluates the antitumor, antiproliferative, and immunomodulatory potential of a synthetic peptide derived from IsCT1 (Isalo scorpion cytotoxic peptide), named AC-AFPK-IsCT1, in combination with cisplatin in oral squamous cell carcinoma cellular models. Tumor and normal cells were treated with varying concentrations of cisplatin and peptide, and the cytotoxicity was measured through an MTT assay, while apoptosis and cell cycle alterations were assessed via flow cytometry. Interestingly, the combination of AC-AFPK-IsCT1 with cisplatin exhibited higher specificity for tumor cells, significantly reducing IC50 values compared to cisplatin used as a single agent. Moreover, the combination treatment induced pronounced S-phase cell cycle arrest and enhanced apoptotic activity, evidenced by the upregulation of caspase-3, caspase-8, and p53, while maintaining low toxicity in normal fibroblast cells. The peptide also modulated the mitochondrial membrane potential, further contributing to the activation of intrinsic apoptotic pathways. The data suggest that AC-AFPK-IsCT1 potentiates the antitumor effects of cisplatin by engaging both intrinsic and extrinsic apoptotic pathways while preserving normal cell viability. These findings underscore the potential of combining cisplatin with AC-AFPK-IsCT1 as a promising therapeutic strategy for improving the efficacy of chemotherapy in SCC, reducing systemic toxicity, and overcoming chemoresistance. Full article
Show Figures

Figure 1

11 pages, 1166 KiB  
Article
Faculty and Student Perspectives on Launching a Post-Pandemic Medical School: A Philippine Case Study
by Eugene John Balmores and Generaldo Maylem
Int. Med. Educ. 2025, 4(2), 21; https://doi.org/10.3390/ime4020021 - 7 Jun 2025
Viewed by 1161
Abstract
The COVID-19 pandemic disrupted medical education as the shift from face-to-face to remote teaching raised concerns about learning outcomes and well-being. However, while established schools’ adaptations have been widely studied, the challenges faced by new institutions in the pandemic’s aftermath remain underexplored. This [...] Read more.
The COVID-19 pandemic disrupted medical education as the shift from face-to-face to remote teaching raised concerns about learning outcomes and well-being. However, while established schools’ adaptations have been widely studied, the challenges faced by new institutions in the pandemic’s aftermath remain underexplored. This research provides a valuable case study examining the motivations and concerns of faculty and students at a newly established medical school in the Philippines during its inaugural academic year. Employing a mixed-methods design, data were obtained via validated Likert-based questionnaires assessing motivation and survey questions eliciting concerns. Descriptive and inferential approaches were utilized to analyze data. Results show that faculty motivations were primarily intrinsic, whereas students were driven by a mix of intrinsic and extrinsic factors. Subgroup analyses revealed no difference in motivational profiles across demographic characteristics. Faculty were primarily concerned with their readiness for academic roles, use of modern teaching technologies, and ensuring effective student learning. Students’ concerns focused on training quality, institutional capacity, and the uncertainties of being the pioneer batch. Despite the pioneer cohort’s small size, this study highlighted the importance of understanding faculty and student motivations and concerns, already shaped by post-pandemic realities, to provide targeted support for new medical programs in the evolving post-pandemic landscape. Full article
Show Figures

Figure 1

31 pages, 7046 KiB  
Article
5-Ene-2-arylaminothiazol-4(5H)-ones Induce Apoptosis in Breast Cancer Cells
by Rostyslav Dudchak, Magdalena Podolak, Ivan Sydorenko, Robert Czarnomysy, Agnieszka Gornowicz, Olexandr Karpenko, Serhii Holota, Anna Bielawska, Krzysztof Bielawski and Roman Lesyk
Cells 2025, 14(12), 861; https://doi.org/10.3390/cells14120861 - 7 Jun 2025
Viewed by 823
Abstract
As breast cancer remains a significant challenge for the current medical field, molecules with a 4-thiazolidinone scaffold can become promising candidates for addressing the increasing threat of cancer. This study aims to develop and evaluate the novel 4-thiazolidinone derivatives with anticancer potential. New [...] Read more.
As breast cancer remains a significant challenge for the current medical field, molecules with a 4-thiazolidinone scaffold can become promising candidates for addressing the increasing threat of cancer. This study aims to develop and evaluate the novel 4-thiazolidinone derivatives with anticancer potential. New compounds were synthesized through two different pathways, one as a two-step process and the other as a one-pot method. The second approach fits the requirements of cost-effective methodologies and allows for the reduction of synthetic steps, reagents, and reaction time. The obtained data from in vitro research showed a potent cytotoxic activity of the novel structures in micromolar concentrations against MCF-7 breast cancer cells. Further investigations into their anticancer activity revealed that the tested compounds induced apoptosis through intrinsic and extrinsic pathways, which was evidenced by their capability to reduce the mitochondrial membrane potential and induce the activation of caspases 7, 8, 9, and 10. A more detailed analysis uncovered that one of the novel compounds can affect the expression of key apoptotic proteins, tumor protein P53 (p53), cytochrome C, and Bax in treated cells. Additionally, these compounds displayed an enhanced generation of reactive oxygen species (ROS) in MCF-7 cells, which suggests that ROS-mediated mechanisms can take part in the anticancer potential of the synthesized compounds. Full article
Show Figures

Graphical abstract

30 pages, 1845 KiB  
Review
Early Life Stress and Gut Microbiome Dysbiosis: A Narrative Review
by Alejandro Borrego-Ruiz and Juan J. Borrego
Stresses 2025, 5(2), 38; https://doi.org/10.3390/stresses5020038 - 5 Jun 2025
Cited by 1 | Viewed by 2193
Abstract
Background: Exposure to early life stress significantly increases the risk of psychopathology later in life. However, the impact of early life stress on the gut microbiome and its potential role in mental health outcomes remains insufficiently understood. This narrative review examines the current [...] Read more.
Background: Exposure to early life stress significantly increases the risk of psychopathology later in life. However, the impact of early life stress on the gut microbiome and its potential role in mental health outcomes remains insufficiently understood. This narrative review examines the current knowledge on how early life stress and its associated consequences may affect the gut microbiome, with a particular focus on conditions such as anxiety, depression, and post-traumatic stress disorder. Method: A comprehensive literature search was conducted in the PubMed and Web of Science databases between January and February 2025, covering studies published between 2015 and 2025. Results: Early life stress can profoundly impact cognitive function and neurodevelopment, with maternal early-life nutrition playing a significant role in modulating the effects of prenatal and postnatal stress. Early life stress influences the gut microbiome, disrupting its composition and function by altering the synthesis of microbial metabolites, neurotransmitters, and the activation of key metabolic pathways. However, the precise role of the gut microbiome in modulating stress responses during childhood and adolescence has not yet been fully elucidated. Conclusions: Several studies have demonstrated an association between early life stress and the gut microbiome. However, causality has not yet been established due to the numerous intrinsic and extrinsic factors influencing the microbiome-gut–brain axis. In the coming years, research on key microbial regulators, such as short-chain fatty acids, amino acids, and psychobiotics, may represent a promising approach for addressing central nervous system alterations linked to early life stress. Thus, further studies will be necessary to evaluate their potential as therapeutic agents. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

26 pages, 852 KiB  
Article
Beyond the Drafting Table; Women’s Journey in Architecture as a STEM Career
by Francis O. Okeke, Chinelo A. Ozigbo, Emeka J. Mba, Ikechukwu W. Ozigbo, Peter I. Oforji, Rosemary C. Nnaemeka-Okeke, Chioma A. Okeke, Shuang Guo and Benignus U. Ugwu
Architecture 2025, 5(2), 33; https://doi.org/10.3390/architecture5020033 - 27 May 2025
Viewed by 537
Abstract
Architecture as a STEM career presents a promising yet challenging path for women pursuing professional growth in the field, as they remain under-represented, particularly in leadership roles and professional practice, despite their increasing presence in architectural education. This study investigates the experiences, motivations, [...] Read more.
Architecture as a STEM career presents a promising yet challenging path for women pursuing professional growth in the field, as they remain under-represented, particularly in leadership roles and professional practice, despite their increasing presence in architectural education. This study investigates the experiences, motivations, and challenges faced by women in architecture in the educational setting of Nigeria. Using a quantitative research approach, data were collected from 137 respondents through structured questionnaires, representing a 97.93% response rate. The findings reveal that passion for design and creativity (73.7%) was the predominant motivation for women choosing architecture. While 80.5% of respondents reported experiencing or observing gender-related challenges, these were not ranked as primary barriers when specific obstacles were identified; instead, financial constraints, limited resource access, and work–life balance emerged as the most significant challenges. Remarkably, 89.5% of participants expressed satisfaction with architecture as a career choice, with no reported dissatisfaction. Creativity (28%), continuous learning (24.2%), and societal impact (20%) were found to be the most rewarding aspects of their architectural careers. Statistical analyses revealed no significant association between academic level and career satisfaction or between institution attended and experiences of gender-related challenges. The correlation analysis demonstrated that intrinsic motivators like passion for design have stronger relationships with career satisfaction than extrinsic factors like financial stability or family influence. These findings contribute to understanding women’s experiences in architectural education in Nigeria and have implications for educational institutions, professional organizations, and policymakers seeking to enhance women’s participation and advancement in architecture. The research highlights the importance of addressing structural barriers while nurturing the creative and professional aspects that draw women to the field. Full article
Show Figures

Figure 1

14 pages, 3710 KiB  
Article
An Extrinsic Optical Fiber Sensor Probe with Micrometer Size via a C-Shaped Waveguide with a Core of MIP
by Chiara Marzano, Rosalba Pitruzzella, Francesco Arcadio, Filipa Sequeira, Luca Pasquale Renzullo, Alessandra Cutaia, Catarina Cardoso Novo, Ricardo Oliveira, Maria Pesavento, Luigi Zeni, Giancarla Alberti, Nunzio Cennamo and Rogerio Nunes Nogueira
Sensors 2025, 25(10), 3250; https://doi.org/10.3390/s25103250 - 21 May 2025
Cited by 1 | Viewed by 557
Abstract
Optical–chemical sensors based on optical fibers can be made in reflection or transmission schemes. In the reflection scheme, the sensing area is typically present at the end of the fiber, and the light source and the detector are placed on the same side [...] Read more.
Optical–chemical sensors based on optical fibers can be made in reflection or transmission schemes. In the reflection scheme, the sensing area is typically present at the end of the fiber, and the light source and the detector are placed on the same side of the fiber. This approach can be exploited to achieve chemical probes useful in several application fields where remote sensing is required. In this work, to obtain an extrinsic optical fiber chemical sensor in a reflection scheme, two optical fibers are used to monitor a chemically sensitive region achieved by a C-shaped waveguide with a molecularly imprinted polymer (MIP) as a core between the optical fibers. The proposed micrometer-sized probe is developed and tested as a proof of concept via a MIP for 2-Furaldehyde (2-FAL) detection of interest in food and industrial applications. The experimental results of the proposed sensing approach showed several advantages, such as a nanomolar detection limit and an ultra-wide concentration detection range due to different kinds of MIP recognition sites in the optical path between the fibers. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop