Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Keywords = exotic tree species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2384 KiB  
Article
Legacy and Luxury Effects: Dual Drivers of Tree Diversity Dynamics in Beijing’s Urbanizing Residential Areas (2006–2021)
by Xi Li, Jicun Bao, Yue Li, Jijie Wang, Wenchao Yan and Wen Zhang
Forests 2025, 16(8), 1269; https://doi.org/10.3390/f16081269 - 3 Aug 2025
Viewed by 142
Abstract
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. [...] Read more.
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. In this study we selected 20 residential settlements and 7 key socio-economic properties to investigate the change trend of tree diversity (2006–2021) and its socio-economic driving factors in Beijing. Our results demonstrate significant increases in total, native, and exotic tree species richness between 2006 and 2021 (p < 0.05), with average increases of 36%, 26%, and 55%, respectively. Total and exotic tree Shannon-Wiener indices, as well as exotic tree Simpson’s index, were also significantly higher in 2021 (p < 0.05). Housing prices was the dominant driver shaping total and exotic tree diversity, showing significant positive correlations with both metrics. In contrast, native tree diversity exhibited a strong positive association with neighborhood age. Our findings highlight two dominant mechanisms: legacy effect, where older neighborhoods preserve native diversity through historical planting practices, and luxury effect, where affluent communities drive exotic species proliferation through ornamental landscaping initiatives. These findings elucidate the dual dynamics of legacy conservation and luxury-driven cultivation in urban forest development, revealing how historical contingencies and contemporary socioeconomic forces jointly shape tree diversity patterns in urban ecosystems. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

18 pages, 1193 KiB  
Article
The Importance of Native Trees and Forests: Smallholder Farmers’ Views in South-Western Rwanda
by Franklin Bulonvu, Gérard Imani, Myriam Mujawamariya, Beth A. Kaplin, Patrick Mutabazi and Aida Cuni-Sanchez
Forests 2025, 16(8), 1234; https://doi.org/10.3390/f16081234 - 26 Jul 2025
Viewed by 527
Abstract
Despite increasing interest in including indigenous and local people in forest restoration initiatives, their views on which species are most useful, or reasons behind not planting native tree species are often ignored. Focused on south-western Rwanda, this study addressed these knowledge gaps. We [...] Read more.
Despite increasing interest in including indigenous and local people in forest restoration initiatives, their views on which species are most useful, or reasons behind not planting native tree species are often ignored. Focused on south-western Rwanda, this study addressed these knowledge gaps. We carried out 12 focus group discussions with village elders to determine the following: main benefits provided by native forests, the native species they prefer for different uses, and the main barriers to species’ cultivation. Then, considering other key information from the literature, we performed a ranking exercise to determine which native species had the greatest potential for large-scale tree planting initiatives. Our results show that native forests provide 17 benefits to local communities, some of which cannot be replaced by plantations with exotic species. Among the 26 tree species identified as most useful for timber, firewood, medicine and fodder, ten were ranked as with the greatest potential for restoration initiatives. Of these, two had not been included in recent experimental plantations using native species in Rwanda, and none were considered among the priority species for domestication in Africa. Overall, our study highlights the need to better connect the ecological and social dimension of forest reforestation initiatives in multiple contexts. Full article
Show Figures

Figure 1

20 pages, 4381 KiB  
Article
Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities
by Vladimir Kornienko, Valeriya Reuckaya, Alyona Shkirenko, Besarion Meskhi, Anastasiya Olshevskaya, Mary Odabashyan, Victoria Shevchenko and Svetlana Teplyakova
Plants 2025, 14(13), 2052; https://doi.org/10.3390/plants14132052 - 4 Jul 2025
Viewed by 392
Abstract
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study [...] Read more.
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study included determining the level of anthropogenic load of the territory; conducting dendrological studies to assess morphometric and allometric parameters, age structure, and condition of P. bolleana stands under the influence of environmental factors; as well as completing biomechanical studies to assess and predict the mechanical stability of stands. A total of 1109 plants growing in areas with increased anthropogenic load and in the control areas were studied. The model territories of the study were located in the city of Donetsk on Fallen Communards Avenue (length of field routes: 2.6 km) and Ilyicha Avenue (length of field routes: 9.7 km). Control plantings grew on the territory of the Donetsk botanical garden and residential (dormitory) districts of the city. The age structure of P. bolleana plantations remained uniform throughout the city for 50–55 years due to the fact that the landscaping was under a single state program. In the steppe zone in the south of the East European Plain, with a high level of anthropogenic load and severe natural climatic factors, the critical age of P. bolleana (55 years) was determined. The condition of plantations and their morphometric indices correlate with the level of anthropogenic load of the city (H, Dbase, DBH). Under control conditions, the plants are in good condition with signs of weakening (2 points). Under conditions of increased anthropogenic load, the plants are in a severely weakened condition (3 points). A total of 25% of the plants in the sample are in critical condition (4–5 points). The main damages to the crowns and trunks of plants include core rot, mechanical damage to bark and tissues, the development of core rot through the affected skeletal branch, crown thinning, and drying. P. bolleana trees are valued for their crown area and ability to retain dust particles from the air. The analysis of experimentally obtained data on the crown area showed that in the initial phases of ontogenesis, the average deviation in the crown area of plants does not depend on the place of growth. Due to artificial narrowing and sanitary pruning of the crown, as well as skeletal branches dying along the busiest highways, the values do not exceed 22–23 m2 on average, with an allometric coefficient of 0.35–0.37. When comparing this coefficient in the control areas, the crown area in areas with a high level of anthropogenic load is 36 ± 11% lower. For trees growing under the conditions of the anthropogenic load of an industrial city and having reached the critical age, mechanical resistance varied depending on the study area and load level. At sites with a high level of pollution of the territory, a significant decrease in indicators was revealed in comparison with the control (mcr—71%, EI—75%, RRB—43%). Having analyzed all the obtained data, we can conclude that, until the age of 50–55 years, P. bolleana retains good viability, mechanical resistance, and general allometric ratios, upon which the stability of the whole plant depends. Even with modern approaches and tendencies toward landscaping with exotic introductions, it is necessary to keep P. bolleana as the main species in dendrobanocenoses. Full article
(This article belongs to the Special Issue Plants for Biodiversity and Sustainable Cities)
Show Figures

Figure 1

15 pages, 27708 KiB  
Article
Defoliation of Norway Spruce by Spruce Budworm (Lepidoptera: Tortricidae) and Protection Using Bacillus thuringiensis
by Alvaro Fuentealba, Richard Berthiaume, Simon Fortier, Louis Morneau and Éric Bauce
Forests 2025, 16(7), 1056; https://doi.org/10.3390/f16071056 - 25 Jun 2025
Viewed by 307
Abstract
Norway spruce (Picea abies (L.) Karst.) has been widely planted beyond its natural range due to its fast growth rate and valuable wood. In Québec, over 200 million seedlings have been planted since 1964. Several of these plantations are now facing a [...] Read more.
Norway spruce (Picea abies (L.) Karst.) has been widely planted beyond its natural range due to its fast growth rate and valuable wood. In Québec, over 200 million seedlings have been planted since 1964. Several of these plantations are now facing a new potential threat, i.e., spruce budworm (Choristoneura fumiferana (Clem.)) infestations. Despite contrasting results, Norway and white spruce (P. glauca [Moench] Voss) apparently sustain a similar degree of budworm defoliation. The main study objective is to quantify defoliation in Norway spruce caused by spruce budworm. We also evaluate the efficacy of Bacillus thuringiensis Berliner spp. kurstaki (Btk) in protecting this exotic host tree. Annual defoliation was assessed in plantations of Norway, white, and black spruce (P. mariana [Mill.] BSP) between 2018 and 2022 in the Bas-Saint-Laurent region. Additional surveys were conducted in Norway and white spruce plantations in the Gaspésie and Côte-Nord to evaluate Btk efficacy. We show that both species exhibit similar defoliation levels, though Norway spruce sometimes sustains greater damage (e.g., 35% vs. 10% in 2019). Btk formulations showed low efficacy in protecting Norway spruce foliage (≥49.32% defoliation in treated plantations). Further studies are needed to understand factors influencing Btk efficacy on this host. Full article
(This article belongs to the Special Issue Monitoring and Control of Forest Pests)
Show Figures

Figure 1

18 pages, 2086 KiB  
Article
Eucalyptus globulus Afforestation Reduces Invertebrate Richness and Diversity in Streams
by Anais Rivas-Torres, Manuel A. S. Graça, Andrea Landeira-Dabarca, Maruxa Álvarez, Leandro Juen and Adolfo Cordero-Rivera
Hydrobiology 2025, 4(2), 16; https://doi.org/10.3390/hydrobiology4020016 - 12 Jun 2025
Viewed by 496
Abstract
Intensive forestry, particularly the establishment of monospecific plantations with exotic species, can deeply impact the ecological functioning of forest streams, where riparian leaf litter is the primary source of energy. In this study, we investigated the effects of Eucalyptus globulus afforestation on macroinvertebrate [...] Read more.
Intensive forestry, particularly the establishment of monospecific plantations with exotic species, can deeply impact the ecological functioning of forest streams, where riparian leaf litter is the primary source of energy. In this study, we investigated the effects of Eucalyptus globulus afforestation on macroinvertebrate communities in 20 streams in Galicia (NW Spain) with varying levels of accumulated eucalypt leaf litter. Sampling was done in autumn 2020 and spring 2021. In autumn, six streams had leaf litter composed of >50% of eucalypt leaves, a proportion that increased to 12 streams in spring. A total of 24,705 individuals were found in autumn and 12,529 in spring, belonging to 125 taxa. Although some taxa decreased their abundance with an increase in the proportion of eucalypt litter, variability in overall macroinvertebrate abundance was mainly explained by season, stream flow, and water temperature. However, species richness and diversity were significantly lower in streams mainly subsided by Eucalyptus litter compared to those dominated by native riparian vegetation. Macroinvertebrate abundance, richness, and diversity peaked in autumn, coinciding with the influx of deciduous litterfall and lower proportion of eucalypt litter. The lower quality, low-nutrient content, and presence of feeding deterrents in Eucalyptus leaf litter compared to native deciduous tree species likely drive these observed patterns, underscoring the importance of preserving native riparian forests to sustain stream biodiversity, even in managed landscapes dominated by Eucalyptus plantations. Full article
Show Figures

Figure 1

14 pages, 645 KiB  
Review
Overview and Recent Advances in Bioassays to Evaluate the Potential of Entomopathogenic Fungi Against Ambrosia Beetles
by Jesús Enrique Castrejón-Antonio and Patricia Tamez-Guerra
Insects 2025, 16(6), 615; https://doi.org/10.3390/insects16060615 - 10 Jun 2025
Viewed by 1072
Abstract
Ambrosia beetles, known for their symbiotic relationship with fungi cultivated within the tissues of host trees, have become significant pests, particularly when they serve as vectors for pathogenic fungi such as Raffaelea lauricola. Given the regulatory and environmental constraints for chemical application [...] Read more.
Ambrosia beetles, known for their symbiotic relationship with fungi cultivated within the tissues of host trees, have become significant pests, particularly when they serve as vectors for pathogenic fungi such as Raffaelea lauricola. Given the regulatory and environmental constraints for chemical application as a tool for their control, entomopathogenic fungi (EPF) represent a promising pest management alternative. This review presents an overview of bioassays assessing the pathogenicity and virulence of EPF against ambrosia beetles. Most studies have been performed in vivo (artificial diet) under laboratory conditions, focusing on exotic species and testing EPF genera such as Beauveria, Metarhizium, Isaria, and Purpureocillium. However, variations in inoculation methods, environmental conditions, and fungal formulations, have led to diverse results. In addition, the complex biology of these insects, particularly their dependence on symbiotic fungi, represents significant methodological challenges. Field trials (in situ bioassays) are still scarce, and there is a need to move toward standardized protocols and more objective experimental models that consider not only insects’ behavior but also ecological factors. Bridging this gap is essential for successfully implementing EPF-based strategies to assess ambrosia beetles’ biocontrol. Full article
Show Figures

Figure 1

23 pages, 4356 KiB  
Article
Understory Forage Quality for Grazing Animals in Chilean Patagonian Forests
by Thomas Brisard, Amelie Brisard, Mónica D. R. Toro-Manríquez, Soraya Villagrán Chacón, Pablo Jesús Marín-García, Lola Llobat, Guillermo Martínez Pastur, Sabina Miguel Maluenda and Alejandro Huertas Herrera
Land 2025, 14(5), 1081; https://doi.org/10.3390/land14051081 - 16 May 2025
Viewed by 581
Abstract
Native forests provide forage for grazing animals. We investigated whether native and exotic vegetation promotes the potential animal load (PAL, ind ha−1 yr−1) for cattle (Bos taurus, ~700 kg) and sheep (Ovis aries, ~60 kg) in [...] Read more.
Native forests provide forage for grazing animals. We investigated whether native and exotic vegetation promotes the potential animal load (PAL, ind ha−1 yr−1) for cattle (Bos taurus, ~700 kg) and sheep (Ovis aries, ~60 kg) in contrasting native forest types and canopy cover (closed, semi-open, open). This study was conducted in Chilean Patagonia (−44° to −49° SL). Vegetation cover (%) and growth habit data (trees, shrubs, forbs, graminoids, ferns, lianas, lichens, and bryophytes) were collected from 374 plots (>5 ha) in different environments: coihue (Nothofagus dombeyi, CO), lenga (N. pumilio, LE), mixed Nothofagus forests (MI), ñirre (N. antarctica, ÑI), evergreen forest (SV), and open land (OL). We combine this data with literature and laboratory analyses (e.g., crude protein, %) to develop PAL values for seasons. Data sampling was evaluated using descriptive analyses and uni- and multi-variate analyses (ANOVA, MCA, GLM). Results showed that closed forests had more native species (~56.6%) compared to open forests (~33.3%), while OL had higher cover of exotic species (~68.6%). LE presented the highest native species cover (~58.0%) and ÑI presented the highest exotic species cover (~53.0%). Closed forests had fewer exotic species than semi-open and open forests, which supported higher cover of native plants (p < 0.01). Forbs were the dominant growth habit in closed forests, while graminoids were dominant in OL (~45.8%). Multivariate analyses showed that LE and CO were associated with lower PAL values, explaining 91.2% variance. GLMs showed that the PAL increased in ÑI and the spring season, with forbs and graminoids having positive effects and shrubs and trees having negative effects (r2 = 0.57–0.67). Our analyses also showed that exotic species dominated environment types with a high PAL, particularly during spring and summer, when cover increased. This indicates a trade-off between forage production in forests with exotic plants. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

41 pages, 10191 KiB  
Review
Impact of Land-Use Change on Vascular Epiphytes: A Review
by Thorsten Krömer, Helena J. R. Einzmann, Glenda Mendieta-Leiva and Gerhard Zotz
Plants 2025, 14(8), 1188; https://doi.org/10.3390/plants14081188 - 11 Apr 2025
Cited by 1 | Viewed by 1045
Abstract
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use [...] Read more.
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use changes due to their reliance on host trees and specific microclimatic conditions. While tree species in secondary forests recover relatively quickly, epiphyte recolonization is slower, especially in humid montane regions, where species richness may decline by up to 96% compared to primary or old-growth forests. A review of nearly 300 pertinent studies has revealed a geographic bias toward the Neotropics, with limited research from tropical Asia, Africa, and temperate regions. The studies can be grouped into four main areas: 1. trade, use and conservation, 2. ecological effects of climate and land-use change, 3. diversity in human-modified habitats, and 4. responses to disturbance. In agricultural and timber plantations, particularly those using exotic species like pine and eucalyptus, epiphyte diversity is significantly reduced. In contrast, most native tree species and shade-grown agroforestry systems support higher species richness. Traditional polycultures with dense canopy cover maintain up to 88% of epiphyte diversity, while intensive management practices, such as epiphyte removal in coffee and cacao plantations, cause substantial biodiversity losses. Conservation strategies should prioritize preserving old-growth forests, maintaining forest fragments, and minimizing intensive land management. Active restoration, including the translocation of fallen epiphytes and planting vegetation nuclei, is more effective than passive approaches. Future research should include long-term monitoring to understand epiphyte dynamics and assess the broader impacts of epiphyte loss on biodiversity and ecosystem functioning. Full article
Show Figures

Figure 1

21 pages, 1685 KiB  
Article
Seasonal and Spatial Patterns of Bird Communities in a Highly Disturbed Atlantic Riparian Corridor
by Joel Neves, Luís Reino, João Faria and Joana Santana
Forests 2025, 16(4), 641; https://doi.org/10.3390/f16040641 - 7 Apr 2025
Viewed by 411
Abstract
Land use changes pose major threats to ecosystems, particularly affecting vulnerable habitats, such as riparian forests. These transitional habitats play a crucial role in supporting biodiversity, particularly avian communities. Despite their recognised importance, studies on the land use effects on bird communities in [...] Read more.
Land use changes pose major threats to ecosystems, particularly affecting vulnerable habitats, such as riparian forests. These transitional habitats play a crucial role in supporting biodiversity, particularly avian communities. Despite their recognised importance, studies on the land use effects on bird communities in the riparian corridors of southern Europe remain scarce. Here, we aimed to investigate the seasonal variation of the effects of land use on avian communities in an Atlantic riparian area in northern Portugal and whether bird assemblages can be used as bioindicators of riparian ecosystems’ quality. To achieve this, we conducted bird surveys during three periods of the birds’ life cycle: post-nuptial migration, wintering and breeding. Bird species were grouped into assemblages reflecting diet, foraging stratum, phenology and preferred habitat affinities. To analyse the effect of land use, we modelled the abundance of the respective bird assemblages with the land use gradients obtained through principal component analysis. A total of 62 bird species were identified (73% observed during post-breeding migration, 77% in winter and 68% during breeding). Among these, 45 species (73%) were residents, while 17 species (27%) were short- or long-distance migrants. All bird assemblages showed seasonal differences in species richness, with the exception of granivores, forest species, resident, ground- and understorey foragers, and in abundance, with the exception of invertivores, farmland birds and tree foragers. The predicted abundances of farmland birds, ground-feeding birds and granivores often showed positive associations with gradients reflecting anthropogenic land uses (e.g., farmlands and acacia stands) and negative relationships with natural land uses (e.g., deciduous riparian forests, pine and oakwood). Conversely, invertivores’ and tree foragers’ abundances were positively related to natural land uses and negatively related to anthropogenic ones. Furthermore, we highlight the negative effects of exotic tree species on the bird community and the effects caused by adjacent land uses on riparian habitats. Our results are consistent with studies showing that the grouping of birds by functional characteristics can serve as an indicator of disturbance in riparian corridors. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

16 pages, 2926 KiB  
Article
Floristic Inventory and Diversity of Urban Green Spaces in the Municipality of Assemini (Sardinia, Italy)
by Marco Sarigu, Lina Podda, Giacomo Calvia, Andrea Lallai and Gianluigi Bacchetta
Plants 2025, 14(7), 1102; https://doi.org/10.3390/plants14071102 - 2 Apr 2025
Viewed by 712
Abstract
Urban greenery is a key component of green infrastructure, contributing to environmental sustainability and urban well-being. Between 2019 and 2020, a comprehensive inventory of ornamental flora was conducted in Assemini (Sardinia, Italy), documenting 198 vascular plant taxa, including 155 exotic, 41 native, and [...] Read more.
Urban greenery is a key component of green infrastructure, contributing to environmental sustainability and urban well-being. Between 2019 and 2020, a comprehensive inventory of ornamental flora was conducted in Assemini (Sardinia, Italy), documenting 198 vascular plant taxa, including 155 exotic, 41 native, and 2 cryptogenic species from 65 families. Among the exotic species, most were neophytes (63%), and 14% were archaeophytes. In terms of life forms, scapose phanerophytes, with a tree-like growth habit, dominated (45%), while Mediterranean and American chorotypes were the most represented, each accounting for 21%. A total of 7356 plants were recorded, comprising trees (61.3%), shrubs (32.3%), and climbers (5.7%), belonging to 90 shrub, 89 tree, and 19 climber taxa. The highest number of plants was found in “Green Areas” and “Schools”, which also exhibited the greatest biodiversity, with 136 different taxa each. The most planted species were Quercus ilex, Nerium oleander, and Olea europaea. The survey also identified 21 allergenic, 36 toxic, and 35 mechanically harmful species, primarily located in “Green Areas” and “Schools”. Biodiversity analysis using the Shannon Index revealed significant diversity, with Fabaceae, Apocynaceae, and Fagaceae emerging as the most represented families. These findings highlight the importance of plant inventories in urban green space management for sustainable planning. Well-maintained green spaces can enhance ecological resilience, improve public health, and promote social cohesion in future urban developments. Full article
Show Figures

Figure 1

23 pages, 4763 KiB  
Article
Anthropogenic Disturbances in Northwestern Virunga Forest Amid Armed Conflict
by Charles Mumbere Musavandalo, Pyrus Flavien Ebouel Essouman, Serge Shakanye Ndjadi, Julien Bwazani Balandi, Timothée Besisa Nguba, Carlo Sodalo, Jean-Pierre Mate Mweru, Kouagou Raoul Sambieni and Jan Bogaert
Land 2025, 14(4), 732; https://doi.org/10.3390/land14040732 - 29 Mar 2025
Viewed by 840
Abstract
This study focuses on identifying and assessing the extent of anthropogenic disturbance factors directly affecting the forests of northwestern Virunga. It posits that the army camps within the forest are a hotspot for expanding human activities in the context of armed conflict. A [...] Read more.
This study focuses on identifying and assessing the extent of anthropogenic disturbance factors directly affecting the forests of northwestern Virunga. It posits that the army camps within the forest are a hotspot for expanding human activities in the context of armed conflict. A multiscalar approach was used to examine disturbances across multiple levels to capture their complex interaction and to avoid oversimplified interpretations. This approach included an analysis of the dynamics and spatial structure of the forest cover from 2016 to 2023, along with an inventory of the local disturbance factors. The study focused on seven study sites hosting army camps, namely Mikuha, Lahe, Pk26, and Ngite within Virunga National Park, as well as Mamundioma, PK2, and Kinziki in its periphery. The findings show that the installation of army camps did not lead to significant forest fragmentation. Except for Mamundioma, all the other sites showed an increase in forest areas, due to the aggregation of remaining forest patches during periods of insecurity. However, this trend toward passive forest restoration does not offset disturbances. It merely reflects a slowdown in the conversion of forest areas to other land uses. Nine anthropogenic factors contribute to forest disturbances, with cash crops (74.17%), food crops (72.50%), and trees cut down for energy (61.61%) being the most prominent. Other contributing factors include carbonization (31.67%), fire use (30.00%), sawn timber (26.67%), path creation (17.50%), exotic tree species introduction (10.00%), and the establishment of invasive species (11.67%). Spatial analysis provides a partial explanation for such forest disturbances. Its exhaustive description would require a mix of spatial data and field observations. Full article
Show Figures

Figure 1

19 pages, 2197 KiB  
Article
Urban Tree Species Capturing Anthropogenic Volatile Organic Compounds—Impact on Air Quality
by Mauricio Araya, Javier Vera and Margarita Préndez
Atmosphere 2025, 16(4), 356; https://doi.org/10.3390/atmos16040356 - 21 Mar 2025
Viewed by 474
Abstract
Tropospheric ozone (O3) and other pollutants significantly affect Chile’s Metropolitan Region, posing risks to human health. As a secondary pollutant and a major photochemical oxidant, O3 formation is driven by anthropogenic volatile organic compounds (AVOCs) from the residential and transport [...] Read more.
Tropospheric ozone (O3) and other pollutants significantly affect Chile’s Metropolitan Region, posing risks to human health. As a secondary pollutant and a major photochemical oxidant, O3 formation is driven by anthropogenic volatile organic compounds (AVOCs) from the residential and transport sectors, the main sources of gaseous emissions. This study evaluated the AVOC capture capacity of leaf material from two tree species, Quillaja saponaria (native species) and Robinia pseudoacacia (exotic species), as potential urban biomonitors. Leaf samples were collected near nine SINCA official monitoring stations and the Antumapu University Campus, stored frozen, and analyzed by HS-SPME-GC/MSD for AVOC quantification. Photochemical reactivity and O3 formation potential were assessed using equivalent propylene concentration (Prop-Equiv) and Ozone Formation Potential (OFP) methods. The results showed that both species captured atmospheric AVOCs, confirming their role as bioindicators. However, Q. saponaria adsorbed significantly higher AVOC concentrations and exhibited greater tropospheric O3 formation potential than R. pseudoacacia. Given the AVOC adsorption capacity of both tree species, they could be used as biomonitors for styrene and also as a biomonitor for toluene in the case of Q. saponaria. This research highlights the importance of selecting tree capacity to improve urban air quality. Full article
Show Figures

Figure 1

8 pages, 1260 KiB  
Proceeding Paper
Early Detection of Invasive Species on Roadside Slopes in An-Dean Patagonian Forests of Austrocedrus chilensis (Argentina)
by Giselle Ailin Chichizola, Sofía Laura Gonzalez and Adriana Edit Rovere
Environ. Earth Sci. Proc. 2024, 31(1), 18; https://doi.org/10.3390/eesp2024031018 - 7 Mar 2025
Viewed by 791
Abstract
The invasion of exotic plants threatens biodiversity, affecting ecosystem services and ecological processes in native ecosystems. Road construction creates new environments and contributes to the introduction and spread of exotic and invasive plants. This study aimed to evaluate the representation of different functional [...] Read more.
The invasion of exotic plants threatens biodiversity, affecting ecosystem services and ecological processes in native ecosystems. Road construction creates new environments and contributes to the introduction and spread of exotic and invasive plants. This study aimed to evaluate the representation of different functional groups (annual/biannual herbs and grasses, perennial herbs and grasses, shrubs, trees) in the invasion of exotic species within the assemblage on roadside slopes in the Austrocedrus chilensis forest in northwest Andean Patagonia, Argentina. Roadside slopes (RS) and nearby reference areas (RA) were selected, and the cover of native, exotic, and invasive species from the functional groups was evaluated in 1 m2 plots using the Braun-Blanquet method. It was found that invasive perennial herbs and grasses predominated on RS, with a cover (19.6 ± 3.0%) higher than that of RA (8.9 ± 1.5%). Agrostis capillaris and Rumex acetosella were the most abundant invasive species. Native shrubs and perennial herbs and grasses were predominant on RS, with Baccharis rhomboidalis and Acaena pinnatifida being the most abundant. This study demonstrates that the roadside slopes of the Austrocedrus chilensis forest harbor invasive exotic species that can invade nearby natural areas. Early detection of these species is important for proper management and control, thus promoting the conservation of biodiversity in forest environments. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Forests)
Show Figures

Figure 1

13 pages, 3042 KiB  
Article
Activity Patterns of Native Carnivores in Central Chile: Are They Influenced by Landscape Type?
by Diego Ramírez-Alvarez, Kathia Arenas-Rodríguez, Melanie Kaiser and Constanza Napolitano
Diversity 2025, 17(3), 156; https://doi.org/10.3390/d17030156 - 25 Feb 2025
Viewed by 524
Abstract
Landscapes can be selectively used by different carnivore species, leading to habitat specialization, which acts as a limiting resource for maintaining healthy populations. Between 1 March 2021 and 31 March 2022, we set up 30 camera traps in three different landscapes of central [...] Read more.
Landscapes can be selectively used by different carnivore species, leading to habitat specialization, which acts as a limiting resource for maintaining healthy populations. Between 1 March 2021 and 31 March 2022, we set up 30 camera traps in three different landscapes of central Chile: (a) Mediterranean coastal sclerophyllous forest (SF), (b) Mediterranean coastal thorn forest (TF), and (c) exotic monoculture tree plantations (MP), with a total capture effort of 10,046 camera-days (3098 TF, 3446 MP, and 3502 SF). We described the daily activity patterns for each native carnivore species recorded in each landscape, based on the density of independent records per hour of the day. We assessed the overlap between the activity patterns of each carnivore species in the different macrohabitats based on their coefficient of overlapping (Δ). We identified 9120 carnivore records, corresponding to 3888 independent events: 3140 for Lycalopex fox species, 276 for guiña Leopardus guigna, 434 for skunk Conepatus chinga, and 38 for the lesser grison Galictis cuja. Our study revealed differences of activity patterns with high to medium overlap, among landscape types for C. chinga and Lycalopex spp.—for skunk, between native forests and exotic monoculture tree plantations, and for foxes, among all landscape types. The carnivore community of the highly anthropized central Chile is mostly composed of habitat generalists and habitat specialists with high adaptability to landscape fragmentation, which has been crucial for their long-term survival. Full article
Show Figures

Graphical abstract

13 pages, 4761 KiB  
Article
Growth Rate, Tree Rings, and Wood Anatomy of a Tropical Cloud Forest Tree Invader
by Guadalupe Williams-Linera, Milton H. Díaz-Toribio and Guillermo Angeles
Forests 2025, 16(2), 258; https://doi.org/10.3390/f16020258 - 30 Jan 2025
Viewed by 1033
Abstract
The presence of shade-tolerant tree invaders has been recently noted in tropical and temperate forest understories. Maximum growth rate is an important trait for exotic trees becoming invaders in a forest. This study aimed to determine the growth rate of Eriobotrya japonica in [...] Read more.
The presence of shade-tolerant tree invaders has been recently noted in tropical and temperate forest understories. Maximum growth rate is an important trait for exotic trees becoming invaders in a forest. This study aimed to determine the growth rate of Eriobotrya japonica in a secondary cloud forest in central Veracruz, Mexico. The objectives of this study were to determine wood density, tree ring boundaries and number, and their relationship to diameter at breast height (DBH) and climate data. Tree ring counts were obtained using Python-based software with subsequent visual validation. Growth rates were measured using diametric tape, dendrometric bands, and the pinning method. The number of rings increased with DBH, presenting values ranging from 14 to 27. Tree rings were delimited by fibers that were five times narrower in the ring limit zone than in the intra-ring zone. The growth ring delimitation zones were formed when vascular cambium activity stalled during the relatively dry-cold season (January–February). The growth rate of E. japonica was statistically similar (ca. 0.2 mm yr−1) regardless of the method employed to measure it. Relative growth rate was low (0.02 cm cm−1 yr−1). Wood density (0.76 g cm−3) values lay within the upper values for mature forest trees. Eriobotrya japonica is a potential invader, with traits such as high wood density and a relatively low growth rate, which are characteristic of the shade-tolerant tree species. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop