Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = exciton lifetime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4833 KiB  
Article
Achieving Ultralong Room-Temperature Phosphorescence in Two-Dimensional Metal-Halide Perovskites by Tuning Alkyl Chain Length
by Suqin Wang, Hui Zhu, Ming Sheng, Bo Shao, Yu He, Zhuang Liu, Min Li and Guangtao Zhou
Inorganics 2025, 13(4), 108; https://doi.org/10.3390/inorganics13040108 - 1 Apr 2025
Cited by 1 | Viewed by 503
Abstract
Two-dimensional (2D) metal-halide perovskites with highly efficient room-temperature phosphorescence (RTP) are rare due to their complex structures and intricate intermolecular interactions. In this study, by varying the alkyl chain length in organic amines, we synthesized two 2D metal-halide perovskites, namely 4-POMACC and 4-POEACC, [...] Read more.
Two-dimensional (2D) metal-halide perovskites with highly efficient room-temperature phosphorescence (RTP) are rare due to their complex structures and intricate intermolecular interactions. In this study, by varying the alkyl chain length in organic amines, we synthesized two 2D metal-halide perovskites, namely 4-POMACC and 4-POEACC, both of which exhibit significant RTP emission. Notably, 4-POMACC demonstrates a stronger green RTP emission with a significantly longer lifetime (254 ms) and a higher photoluminescence quantum yield (9.5%) compared to 4-POEACC. A thorough investigation of structural and optical properties reveals that shorter alkyl chains can enhance the optical performance due to reduced molecular vibrations and more effective exciton recombination. Computational calculations further show that the smaller energy gap between S1 and Tn in 4-POMA facilitates intersystem crossing, thereby improving RTP performance. Based on their remarkable phosphorescence properties, we demonstrated their applications in information encryption. This work offers a novel design strategy that could inspire the development of next-generation RTP materials. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

8 pages, 2232 KiB  
Article
Visualization and Estimation of 0D to 1D Nanostructure Size by Photoluminescence
by Artūrs Medvids, Artūrs Plūdons, Augustas Vaitkevičius, Saulius Miasojedovas and Patrik Ščajev
Nanomaterials 2024, 14(24), 1988; https://doi.org/10.3390/nano14241988 - 12 Dec 2024
Viewed by 865
Abstract
We elaborate a method for determining the 0D–1D nanostructure size by photoluminescence (PL) emission spectrum dependence on the nanostructure dimensions. As observed, the high number of diamond-like carbon nanocones shows a strongly blue-shifted PL spectrum compared to the bulk material, allowing for the [...] Read more.
We elaborate a method for determining the 0D–1D nanostructure size by photoluminescence (PL) emission spectrum dependence on the nanostructure dimensions. As observed, the high number of diamond-like carbon nanocones shows a strongly blue-shifted PL spectrum compared to the bulk material, allowing for the calculation of their top dimensions of 2.0 nm. For the second structure model, we used a sharp atomic force microscope (AFM) tip, which showed green emission localized on its top, as determined by confocal microscopy. Using the PL spectrum, the calculation allowed us to determine the tip size of 1.5 nm, which correlated well with the SEM measurements. The time-resolved PL measurements shed light on the recombination process, providing stretched-exponent decay with a τ0 = 1 ns lifetime, indicating a gradual decrease in exciton lifetime along the height of the cone from the base to the top due to surface and radiative recombination. Therefore, the proposed method provides a simple optical procedure for determining an AFM tip or other nanocone structure sharpness without the need for sample preparation and special expensive equipment. Full article
(This article belongs to the Special Issue Photonics and Optoelectronics with Functional Nanomaterials)
Show Figures

Figure 1

14 pages, 3831 KiB  
Article
A-Site Ion Doping in Cs2AgBiBr6 Double Perovskite Films for Improved Optical and Photodetector Performance
by Yuejia Wu, Yanpeng Meng, Qirun Hu, Songchao Shen, Chengxi Zhang, Ang Bian and Jun Dai
Crystals 2024, 14(12), 1068; https://doi.org/10.3390/cryst14121068 - 12 Dec 2024
Cited by 2 | Viewed by 1533
Abstract
Perovskite materials, as emerging semiconductors, have attracted significant attention for their exceptional optoelectronic properties, tunable bandgaps, ease of fabrication, and cost-effectiveness, making them promising candidates for next-generation optoelectronic devices. The all-inorganic perovskite Cs2AgBiBr6 distinguishes itself from other perovskite materials due [...] Read more.
Perovskite materials, as emerging semiconductors, have attracted significant attention for their exceptional optoelectronic properties, tunable bandgaps, ease of fabrication, and cost-effectiveness, making them promising candidates for next-generation optoelectronic devices. The all-inorganic perovskite Cs2AgBiBr6 distinguishes itself from other perovskite materials due to its remarkable optical absorption and emission properties, excellent stability, prolonged carrier recombination lifetime, and nontoxic characteristics. However, a deeper understanding of its unique luminescent properties and a further optimization of its structure and performance are still necessary. This study systematically investigates the optimization of Cs2AgBiBr6 double perovskite films through A-site Na+ doping. At an optimal Na+ doping concentration of 3.5% (Na0.07Cs1.93AgBiBr6), the film shows 1.4 times and 2.7 times enhancement in light absorption and photoluminescence intensity, compared to the undoped film. Low-temperature spectroscopy measurements indicate that Na0.07Cs1.93AgBiBr6 exhibits higher exciton binding energy and phonon energy. Based on Na0.07Cs1.93AgBiBr6, the photodetectors demonstrate significant performance improvements, with a high photocurrent response of 10−2 A, a photo-to-dark current ratio (PDCR) of 7.57 × 104, a responsivity (R) of 16.23 A/W, a detectivity (D*) of 2.92 × 1012 Jones, a linear dynamic range (LDR) of 98.75 dB, and a fast response time of 943 ms. This work provides a promising strategy for optimizing all-inorganic perovskite materials through doping and offers guidance for enhancing high-performance photodetectors. Full article
(This article belongs to the Special Issue Novel Photoelectric Materials and Their Photophysical Processes)
Show Figures

Figure 1

10 pages, 5775 KiB  
Article
Perovskite Quantum Dot/Zinc Oxide Composite Films for Enhanced Luminance
by Nikita Khairnar, Hyukmin Kwon, Sunwoo Park, Sangwook Park, Hayoon Lee and Jongwook Park
Crystals 2024, 14(11), 937; https://doi.org/10.3390/cryst14110937 - 29 Oct 2024
Cited by 1 | Viewed by 1340
Abstract
We conducted experiments utilizing the scattering effect of zinc oxide (ZnO) to enhance the photoluminescence (PL) intensity of cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs). This study involved investigating the method for creating a CsPbBr3 and ZnO mixture and [...] Read more.
We conducted experiments utilizing the scattering effect of zinc oxide (ZnO) to enhance the photoluminescence (PL) intensity of cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs). This study involved investigating the method for creating a CsPbBr3 and ZnO mixture and determining the optimal mixing ratio. A mixture dispersion of CsPbBr3 and ZnO, prepared at a 1:0.015 weight ratio through shaking, was fabricated into a film using the spin coating method. The PL intensity of this film showed a relative increase of 20% compared to the original CsPbBr3 QD film without ZnO. The scattering effect of ZnO was confirmed through ultraviolet-visible (UV-Vis) absorption and transient PL experiments, and a long-delayed exciton lifetime was observed in the optimized mixture dispersion thin film. The morphology of the fabricated film was characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). For the CsPbBr3-ZnO mixture (1:0.0015) film, crystal domains of approximately 10 nm were observed using TEM. Through AFM analysis, an excellent film roughness of 4.6 nm was observed, further confirming the potential of perovskite QD/ZnO composite films as promising materials for enhanced photoconversion intensity. In future studies, applying this method to other perovskite materials and metal oxides for the optimization of photoconversion composite materials is expected to enable the fabrication of highly efficient perovskite QD/metal oxide composite films. Full article
(This article belongs to the Special Issue Progress and Prospects of Perovskite Films)
Show Figures

Figure 1

11 pages, 607 KiB  
Article
Vertical Electric-Field-Induced Switching from Strong to Asymmetric Strong–Weak Confinement in GaAs Cone-Shell Quantum Dots Using Transparent Al-Doped ZnO Gates
by Ahmed Alshaikh, Jun Peng, Robert Zierold, Robert H. Blick and Christian Heyn
Nanomaterials 2024, 14(21), 1712; https://doi.org/10.3390/nano14211712 - 27 Oct 2024
Viewed by 961
Abstract
The first part of this work evaluates Al-doped ZnO (AZO) as an optically transparent top-gate material for studies on semiconductor quantum dots. In comparison with conventional Ti gates, samples with AZO gates demonstrate a more than three times higher intensity in the quantum [...] Read more.
The first part of this work evaluates Al-doped ZnO (AZO) as an optically transparent top-gate material for studies on semiconductor quantum dots. In comparison with conventional Ti gates, samples with AZO gates demonstrate a more than three times higher intensity in the quantum dot emission under comparable excitation conditions. On the other hand, charges inside a process-induced oxide layer at the interface to the semiconductor cause artifacts at gate voltages above U 1 V. The second part describes an optical and simulation study of a vertical electric-field (F)-induced switching from a strong to an asymmetric strong–weak confinement in GaAs cone-shell quantum dots (CSQDs), where the charge carrier probability densities are localized on the surface of a cone. These experiments are performed at low U and show no indications of an influence of interface charges. For a large F, the measured radiative lifetimes are substantially shorter compared with simulation results. We attribute this discrepancy to an F-induced transformation of the shape of the hole probability density. In detail, an increasing F pushes the hole into the wing part of a CSQD, where it forms a quantum ring. Accordingly, the confinement of the hole is changed from strong, which is assumed in the simulations, to weak, where the local radius is larger than the bulk exciton Bohr radius. In contrast to the hole, an increasing F pushes the electron into the CSQD tip, where it remains in a strong confinement. This means the radiative lifetime for large F is given by an asymmetric confinement with a strongly confined electron and a hole in a weak confinement. To our knowledge, this asymmetric strong–weak confinement represents a novel kind of quantum mechanical confinement and has not been observed so far. Furthermore, the observed weak confinement for the hole represents a confirmation of the theoretically predicted transformation of the hole probability density from a quantum dot into a quantum ring. For such quantum rings, application as storage for photo-excited charge carriers is predicted, which can be interesting for future quantum photonic integrated circuits. Full article
Show Figures

Figure 1

8 pages, 2188 KiB  
Article
Quantum Cone—A Nano-Source of Light with Dispersive Spectrum Distributed along Height and in Time
by Arturs Medvids, Patrik Ščajev and Kazuhiko Hara
Nanomaterials 2024, 14(19), 1580; https://doi.org/10.3390/nano14191580 - 30 Sep 2024
Cited by 1 | Viewed by 968
Abstract
We study a quantum cone, a novel structure composed of multiple quantum dots with gradually decreasing diameters from the base to the top. The dot distribution leads to a dispersive radiated spectrum. The blue edge of the spectrum is determined by the quantum [...] Read more.
We study a quantum cone, a novel structure composed of multiple quantum dots with gradually decreasing diameters from the base to the top. The dot distribution leads to a dispersive radiated spectrum. The blue edge of the spectrum is determined by the quantum confinement of excitons on top of the cones, while the red edge is determined by the bandgap of a semiconductor. We observe the kinetics of photoluminescence by obeying the stretch-exponential law from quantum cones formed on the surface of diamond-like carbon (DLC). They are explained by an increase in the lifetime of excitons along the height of the cone from the top to the base of the cone and an increasing concentration of excitons at the base due to their drift in the quasi-built-in electric field of the quantum cone. The possible visualization of the quantum cone tops of DLC using irradiation by a UV light source is shown. A quantum cone is an innovative nano-source of light because it substitutes for two elements in a conventional spectrometer: a source of light and a dispersive element—an ultrafast monochromator. These features enable the building of a nano-spectrometer to measure the absorbance spectra of virus and molecule particles. Full article
Show Figures

Figure 1

27 pages, 8019 KiB  
Review
Advances in High-Efficiency Blue OLED Materials
by Xiaoxue Yang, Ge Mu, Kangkang Weng and Xin Tang
Photonics 2024, 11(9), 864; https://doi.org/10.3390/photonics11090864 - 13 Sep 2024
Cited by 9 | Viewed by 7626
Abstract
Organic light-emitting diode (OLED) technology has rapidly emerged in the display and lighting sectors due to its high contrast ratio, wide viewing angle, and sleek design. Beyond these attributes, OLEDs have also demonstrated crucial applications in medicine, fashion, sports, and more, leveraging their [...] Read more.
Organic light-emitting diode (OLED) technology has rapidly emerged in the display and lighting sectors due to its high contrast ratio, wide viewing angle, and sleek design. Beyond these attributes, OLEDs have also demonstrated crucial applications in medicine, fashion, sports, and more, leveraging their emissive properties and flexible design. As the cornerstone of full-color displays, blue OLEDs, whose performance directly impacts color rendition and saturation, have garnered significant attention from both scientific researchers and industrial practitioners. Despite the numerous advantages of OLED technology, blue OLEDs still confront formidable challenges in terms of luminous efficiency, durability, and material stability. This review examines the evolution of blue OLED materials over recent years, specifically focusing on three generations: fluorescent, phosphorescent, and thermally activated delayed fluorescence (TADF). Through molecular design, device structure optimization, and the application of innovative technologies, remarkable advancements have been achieved in enhancing the luminous efficiency, lifetime, and color purity of blue OLEDs. However, to advance commercialization, future efforts must not only ensure high efficiency and long lifetime but also improve material stability, environmental sustainability, and reduce development costs. Emerging materials such as thermally activated exciton materials and the application of hyperfluorescent (HF) OLED technology represent vital driving forces for the continuous advancement of blue OLED technology. It is anticipated that significant milestones will continue to be achieved in the development of highly efficient blue OLEDs in the future. Full article
(This article belongs to the Special Issue Organic Photodetectors, Displays, and Upconverters)
Show Figures

Figure 1

11 pages, 2739 KiB  
Article
Pressure-Promoted Triplet-Pair Separation in Singlet-Fission TIPS-Pentacene Nanofilms Revealed by Ultrafast Spectroscopy
by Lu Wang, Ruixue Zhu, Ruihua Pu, Weimin Liu, Yang Lu and Tsu-Chieu Weng
Nanomaterials 2024, 14(18), 1487; https://doi.org/10.3390/nano14181487 - 13 Sep 2024
Cited by 1 | Viewed by 1436
Abstract
Singlet fission (SF), as an effective way to break through the Shockley–Queisser limit, can dramatically improve energy conversion efficiency in solar cell areas. The formation, separation, and relaxation of triplet-pair excitons directly affect the triplet yield, especially triplet-pair separation; thus, how to enhance [...] Read more.
Singlet fission (SF), as an effective way to break through the Shockley–Queisser limit, can dramatically improve energy conversion efficiency in solar cell areas. The formation, separation, and relaxation of triplet-pair excitons directly affect the triplet yield, especially triplet-pair separation; thus, how to enhance the triplet-pair separation rate becomes one of the key points to improve SF efficiency; the decay mechanism where the singlet state is converted into two triplet states is significant for the study of the SF mechanism. Herein, we employ ultrafast transient absorption spectroscopy to study the singlet-fission process of nano-amorphous 6, 13-bis(triisopropylsilylethynyl)-Pentacene (TIPS-pentacene) films in a diamond anvil cell (DAC). A kinetics model related to the structural geometric details, as well as an evaluation of the pressure manipulation impacts, is demonstrated based on the experimental results. The results indicate that pressure manipulation enhanced the triplet-pair separation rates of SF-based materials according to their structural micro-environmental improvement when compressed in DAC, while the triplet-exciton transportation lifetime is prolonged. This work shows that pressure may effectively optimize the structural disorder of SF materials, which were found to improve triplet-pair separation efficiency and potentially offer an effective way to further improve SF efficiency. Full article
(This article belongs to the Special Issue Two-Dimensional Semiconductor Nanostructure and Nanomaterials)
Show Figures

Figure 1

10 pages, 2206 KiB  
Article
Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes
by Gideon Oyibo, Thomas Barrett, Sharadh Jois, Jeffrey L. Blackburn and Ji Ung Lee
Materials 2024, 17(15), 3676; https://doi.org/10.3390/ma17153676 - 25 Jul 2024
Cited by 3 | Viewed by 1124
Abstract
The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron–electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors [...] Read more.
The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron–electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal p-n diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries. Full article
(This article belongs to the Special Issue Fabrication and Application of Carbon Nanotube Films and Fibers)
Show Figures

Figure 1

13 pages, 653 KiB  
Article
GaAs Cone-Shell Quantum Dots in a Lateral Electric Field: Exciton Stark-Shift, Lifetime, and Fine-Structure Splitting
by Ahmed Alshaikh, Robert H. Blick and Christian Heyn
Nanomaterials 2024, 14(14), 1174; https://doi.org/10.3390/nano14141174 - 10 Jul 2024
Viewed by 1292
Abstract
Strain-free GaAs cone-shell quantum dots have a unique shape, which allows a wide tunability of the charge-carrier probability densities by external electric and magnetic fields. Here, the influence of a lateral electric field on the optical emission is studied experimentally using simulations. The [...] Read more.
Strain-free GaAs cone-shell quantum dots have a unique shape, which allows a wide tunability of the charge-carrier probability densities by external electric and magnetic fields. Here, the influence of a lateral electric field on the optical emission is studied experimentally using simulations. The simulations predict that the electron and hole form a lateral dipole when subjected to a lateral electric field. To evaluate this prediction experimentally, we integrate the dots in a lateral gate geometry and measure the Stark-shift of the exciton energy, the exciton intensity, the radiative lifetime, and the fine-structure splitting (FSS) using single-dot photoluminescence spectroscopy. The respective gate voltage dependencies show nontrivial trends with three pronounced regimes. We assume that the respective dominant processes are charge-carrier deformation at a low gate voltage U, a vertical charge-carrier shift at medium U, and a lateral charge-carrier polarization at high U. The lateral polarization forms a dipole, which can either enhance or compensate the intrinsic FSS induced by the QD shape anisotropy, dependent on the in-plane orientation of the electric field. Furthermore, the data show that the biexciton peak can be suppressed by a lateral gate voltage, and we assume the presence of an additional vertical electric field induced by surface charges. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Optoelectronic Devices)
Show Figures

Figure 1

11 pages, 24940 KiB  
Article
Unraveling Electronic and Vibrational Coherences Following a Charge Transfer Process in a Photosystem II Reaction Center
by Junhua Zhou, Xuanchao Zhang, Vandana Tiwari, Chao Mei, Ajay Jha, Pan-Pan Zhang and Hong-Guang Duan
Photonics 2024, 11(6), 519; https://doi.org/10.3390/photonics11060519 - 28 May 2024
Cited by 2 | Viewed by 1496
Abstract
A reaction center is a unique biological system that performs the initial charge separation within a Photosystem II (PSII) multiunit enzyme, which eventually drives the catalytic water-splitting in plants and algae. The possible role of quantum coherences coinciding with the energy and charge [...] Read more.
A reaction center is a unique biological system that performs the initial charge separation within a Photosystem II (PSII) multiunit enzyme, which eventually drives the catalytic water-splitting in plants and algae. The possible role of quantum coherences coinciding with the energy and charge transfer processes in PSII reaction center is one of the active areas of research. Here, we study these quantum coherences by using a numerically exact method on an excitonic dimer model, including linear vibronic coupling and employing optimal parameters from experimental two-dimensional coherent spectroscopic measurements. This enables us to precisely capture the excitonic interaction between pigments and the dissipation of the energy from electronic and charge-transfer (CT) states to the protein environment. We employ the time nonlocal (TNL) quantum master equation to calculate the population dynamics, which yields numerically reliable results. The calculated results show that, due to the strong dissipation, the lifetime of electronic coherence is too short to have direct participation in the charge transfer processes. However, there are long-lived vibrational coherences present in the system at frequencies close to the excitionic energy gap. These are strongly coupled with the electronic coherences, which makes the detection of the electronic coherences with conventional techniques very challenging. Additionally, we unravel the strong excitonic interaction of radical pair (PD1 and PD2) in the reaction center, which results in a long-lived electronic coherence of >100 fs, even at room temperature. Our work provide important physical insight to the charge separation process in PSII reaction center, which may be helpful for better understanding of photophysical processes in other natural and artificial light-harvesting systems. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 7386 KiB  
Article
Crystal Growth, Photoluminescence and Radioluminescence Properties of Ce3+-Doped Ba3Y(PO4)3 Crystal
by Zhenggang Zou, Jiaolin Weng, Chun Liu, Yiyang Lin, Jiawei Zhu, Yijian Sun, Jianhui Huang, Guoliang Gong and Herui Wen
Crystals 2024, 14(5), 431; https://doi.org/10.3390/cryst14050431 - 30 Apr 2024
Cited by 4 | Viewed by 1542 | Correction
Abstract
Inorganic scintillation crystals have been widely used in applications of high-energy physics, nuclear medical imaging, industrial nondestructive inspection, etc. In this work, a single crystal Ba3Y(PO4)3 (BYP) with 1.0 at% Ce3+-doping concentration was first grown by [...] Read more.
Inorganic scintillation crystals have been widely used in applications of high-energy physics, nuclear medical imaging, industrial nondestructive inspection, etc. In this work, a single crystal Ba3Y(PO4)3 (BYP) with 1.0 at% Ce3+-doping concentration was first grown by the Czochralski method, and the electronic structure was calculated using first principles based on density functional theory. In addition, a series of Ce3+-doped BYP phosphors were synthesized, and the fluorescence emission under UV excitation was measured through low-temperature spectroscopy, containing double-peaked emission from 5d–4f transition and self-trapped exciton recombination. A comparison of the UV and X-ray-excited fluorescence spectra reveals the existence of oxygen vacancies as well as F+ centers in the crystal. The air annealing of the crystal effectively reduces the thermoluminescence defects but reduces the emission intensity under UV or X-ray excitation. The BYP:Ce crystal shows a fast decay lifetime of 15.5 ns, and the fast component is as short as 8 ns. The results show that the Ce3+-doped BYP crystal has potential as a kind of scintillator with fast decay properties. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Graphical abstract

19 pages, 9600 KiB  
Article
Charge Carrier Formation following Energy Gap Law in Photo-Activated Organic Materials for Efficient Solar Cells
by Aniket Rana, Nikita Vashistha, Amit Kumar, Mahesh Kumar and Rajiv K. Singh
Energies 2024, 17(9), 2114; https://doi.org/10.3390/en17092114 - 28 Apr 2024
Cited by 2 | Viewed by 1400
Abstract
The charge carrier formation and transport in the pristine polymers as well as in the polymer–fullerene blend is still a hot topic of discussion for the scientific community. In the present work, the carrier generation in some prominent organic molecules has been studied [...] Read more.
The charge carrier formation and transport in the pristine polymers as well as in the polymer–fullerene blend is still a hot topic of discussion for the scientific community. In the present work, the carrier generation in some prominent organic molecules has been studied through ultrafast transient absorption spectroscopy. The identification of the exciton and polaron lifetimes of these polymers has led to device performance-related understanding. In the Energy Gap Law, the slope of the linear fit gradient (γ) of lifetimes vs. bandgap are subjected to the geometrical rearrangements experienced by the polymers during the non-radiative decay from the excited state to the ground state. The value of gradient (γ) for excitons and polarons is found to be −1.1 eV−1 and 1.14 eV−1, respectively. It suggests that the exciton decay to the ground state is likely to involve a high distortion in polymer equilibrium geometry. This observation supports the basis of Stokes shift found in the conjugated polymers due to the high disorder. It provides the possible reasons for the substantial variation in the exciton lifetime. As the bandgap becomes larger, exciton decay rate tends to reduce due to the weak attraction between the holes in the HUMO and electron in the LUMO. The precise inverse action is observed for the polymer–fullerene blend, as the decay of polaron tends to increase as the bandgap of polymer increases. Full article
(This article belongs to the Special Issue New Insights into Solar Cells)
Show Figures

Figure 1

48 pages, 12107 KiB  
Review
Role of Pyramidal Low-Dimensional Semiconductors in Advancing the Field of Optoelectronics
by Ao Jiang, Shibo Xing, Haowei Lin, Qing Chen and Mingxuan Li
Photonics 2024, 11(4), 370; https://doi.org/10.3390/photonics11040370 - 15 Apr 2024
Cited by 9 | Viewed by 3940 | Correction
Abstract
Numerous optoelectronic devices based on low-dimensional nanostructures have been developed in recent years. Among these, pyramidal low-dimensional semiconductors (zero- and one-dimensional nanomaterials) have been favored in the field of optoelectronics. In this review, we discuss in detail the structures, preparation methods, band structures, [...] Read more.
Numerous optoelectronic devices based on low-dimensional nanostructures have been developed in recent years. Among these, pyramidal low-dimensional semiconductors (zero- and one-dimensional nanomaterials) have been favored in the field of optoelectronics. In this review, we discuss in detail the structures, preparation methods, band structures, electronic properties, and optoelectronic applications (photocatalysis, photoelectric detection, solar cells, light-emitting diodes, lasers, and optical quantum information processing) of pyramidal low-dimensional semiconductors and demonstrate their excellent photoelectric performances. More specifically, pyramidal semiconductor quantum dots (PSQDs) possess higher mobilities and longer lifetimes, which would be more suitable for photovoltaic devices requiring fast carrier transport. In addition, the linear polarization direction of exciton emission is easily controlled via the direction of magnetic field in PSQDs with C3v symmetry, so that all-optical multi-qubit gates based on electron spin as a quantum bit could be realized. Therefore, the use of PSQDs (e.g., InAs, GaN, InGaAs, and InGaN) as effective candidates for constructing optical quantum devices is examined due to the growing interest in optical quantum information processing. Pyramidal semiconductor nanorods (PSNRs) and pyramidal semiconductor nanowires (PSNWRs) also exhibit the more efficient separation of electron-hole pairs and strong light absorption effects, which are expected to be widely utilized in light-receiving devices. Finally, this review concludes with a summary of the current problems and suggestions for potential future research directions in the context of pyramidal low-dimensional semiconductors. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

11 pages, 2759 KiB  
Article
Photoluminescence Enhancement and Carrier Dynamics of Charged Biexciton in Monolayer WS2 Coupled with Plasmonic Nanocavity
by Huiqiang Geng, Qirui Liu, Yuxiang Tang and Ke Wei
Photonics 2024, 11(4), 358; https://doi.org/10.3390/photonics11040358 - 12 Apr 2024
Cited by 2 | Viewed by 1791
Abstract
Monolayer two-dimensional transition metal dichalcogenide (TMD)-based materials have become one of the ideal platforms for the study of multibody interactions due to their rich excitonic complexes. The coupling between optical nanocavity and material has become an important means for manipulating the optical properties [...] Read more.
Monolayer two-dimensional transition metal dichalcogenide (TMD)-based materials have become one of the ideal platforms for the study of multibody interactions due to their rich excitonic complexes. The coupling between optical nanocavity and material has become an important means for manipulating the optical properties of materials, but there are few studies on the coupling of nanocavities and the multi-body effect in materials. In this study, we investigate the optical properties of silver nanodisk (Ag ND) arrays covering a monolayer WS2. In the experimental sample, we observed a ~114.3-fold photoluminescence enhancement of charged biexciton in the heterostructure region, as compared to the monolayer WS2 region, a value which is much higher than those for exciton (~2.2-fold) and trion (~16.4-fold), a finding which is attributed to the Fano resonant coupling between monolayer WS2 and the Ag ND. By means of time-resolved spectroscopy, we studied the carrier dynamics in the hybrid system. Our findings reveal that resonant coupling promotes the formation and radiation recombination processes of the charged biexciton, significantly reducing the radiative recombination lifetime by ~15-fold, which is much higher than the measurement in exciton (~2-fold). Our results provide an opportunity to understand the multibody physics of coupling with nanocavities, which could facilitate the application of multi-body excitons in the fields of light-emitting devices and lasers, etc. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

Back to TopTop