Charge Carrier Formation following Energy Gap Law in Photo-Activated Organic Materials for Efficient Solar Cells
Abstract
:1. Introduction
2. Experimental Methods
Ultrafast Transient Absorption Spectroscopy
3. Result and Discussion
3.1. Organic Donor and Acceptor Molecules for Solar Cells
3.2. Ultrafast Transient Photophysics of Organic Donor and Acceptor Molecules
3.2.1. DTS(FBTTh2)2 and DTS(FBTTh2)2:PC[70]BM
3.2.2. PCE10 and PCE10:PC[70]BM
3.2.3. PCDTBT and PCDTBT:PC[70]BM
3.2.4. PBDTT-DPP and PBDTT-DPP:PC[70]BM
3.2.5. PC[60]BM and PC[70]BM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahnel, C. Heliatek Sets New Organic Photovoltaic World Record Efficiency of 13.2%-Heliatek—The Future Is Light. Heliatek, 8 February 2016; 2–3. [Google Scholar]
- Clarke, T.M.; Durrant, J.R. Charge Photogeneration in Organic Solar Cells. Chem. Rev. 2010, 110, 6736–6767. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef]
- Kurrle, D.; Pflaum, J. Exciton Diffusion Length in the Organic Semiconductor Diindenoperylene. Appl. Phys. Lett. 2008, 92, 133306. [Google Scholar] [CrossRef]
- Hammed, W.A.; Yahya, R.; Bola, A.L.; Mahmud, H.N.M.E. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells. Energies 2013, 6, 5847–5868. [Google Scholar] [CrossRef]
- Dennler, G.; Mozer, A.J.; Juška, G.; Pivrikas, A.; Österbacka, R.; Fuchsbauer, A.; Sariciftci, N.S. Charge Carrier Mobility and Lifetime versus Composition of Conjugated Polymer/Fullerene Bulk-Heterojunction Solar Cells. Org. Electron. 2006, 7, 229–234. [Google Scholar] [CrossRef]
- Deibe, C.; Strobe, T.; Dyakonov, V. Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells. Adv. Mater. 2010, 22, 4097–4111. [Google Scholar] [CrossRef]
- Dimitrov, S.; Schroeder, B.; Nielsen, C.; Bronstein, H.; Fei, Z.; McCulloch, I.; Heeney, M.; Durrant, J. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. Polymers 2016, 8, 14. [Google Scholar] [CrossRef]
- Wilson, J.S.; Chawdhury, N.; Al-Mandhary, M.R.A.; Younus, M.; Khan, M.S.; Raithby, P.R.; Köhler, A.; Friend, R.H. The Energy Gap Law for Triplet States in Pt-Containing Conjugated Polymers and Monomers. J. Am. Chem. Soc. 2001, 123, 9412–9417. [Google Scholar] [CrossRef]
- Rim, S.; Fink, R.F.; Schöneboom, J.C.; Erk, P.; Peumans, P. Effect of Molecular Packing on the Exciton Diffusion Length in Organic Solar Cells. Appl. Phys. Lett. 2007, 91, 173504. [Google Scholar] [CrossRef]
- Singh, T.B.; Sariciftci, N.S.; Yang, H.; Yang, L.; Plochberger, B.; Sitter, H. Correlation of Crystalline and Structural Properties of C60 Thin Films Grown at Various Temperature with Charge Carrier Mobility. Appl. Phys. Lett. 2007, 90, 213512. [Google Scholar] [CrossRef]
- Bratsch, S.G. Revised Mulliken Electronegativities: II. Applications and Limitations. J. Chem. Educ. 1988, 65, 223. [Google Scholar] [CrossRef]
- High-efficiency, S.; Coughlin, J.E.; Henson, Z.B.; Welch, G.C.; Bazan, G.C. Design and Synthesis of Molecular Donors for Solution-Processed High-Efficiency Organic Solar Cells. Acc. Chem. Res. 2014, 47, 257–270. [Google Scholar]
- Chen, Y.; Wan, X.; Long, G. High Performance Photovoltaic Applications Using Solution-Processed Small Molecules. Acc. Chem. Res. 2013, 46, 2645–2655. [Google Scholar] [CrossRef]
- Van Der Poll, T.S.; Love, J.A.; Nguyen, T.Q.; Bazan, G.C. Non-Basic High-Performance Molecules for Solution-Processed Organic Solar Cells. Adv. Mater. 2012, 24, 3646–3649. [Google Scholar] [CrossRef] [PubMed]
- Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletête, M.; Durocher, G.; Tao, Y.; Leclerc, M. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. J. Am. Chem. Soc. 2008, 130, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Henson, Z.B.; Zalar, P.; Chen, X.; Welch, G.C.; Nguyen, T.-Q.; Bazan, G.C. Towards Environmentally Friendly Processing of Molecular Semiconductors. J. Mater. Chem. A Mater. 2013, 1, 11117. [Google Scholar] [CrossRef]
- Ernst, A.; Gobbi, L.; Vasella, A. Orthogonally Protected Dialkynes. Tetrahedron Lett. 1996, 37, 7959–7962. [Google Scholar] [CrossRef]
- Tilley, J.W.; Zawoiski, S. A Convenient Palladium-Catalyzed Coupling Approach to 2,5-Disubstituted Pyridines. J. Org. Chem. 1988, 53, 386–390. [Google Scholar] [CrossRef]
- Handy, S.T.; Wilson, T.; Muth, A. Disubstituted Pyridines: The Double-Coupling Approach. J. Org. Chem. 2007, 72, 8496–8500. [Google Scholar] [CrossRef]
- Wei, G.; Wang, S.; Renshaw, K.; Thompson, M.E.; Forrest, S.R. Solution-Processed Squaraine Bulk Heterojunction Photovoltaic Cells. ACS Nano 2010, 4, 1927–1934. [Google Scholar] [CrossRef]
- Cai, S.; Chen, L.; Zha, D.; Chen, Y. A Novel Planar D-A Alternating Copolymer with D-A Integrated Structures Exhibiting H-Aggregate Behaviors for Polymer Solar Cells. J. Polym. Sci. A Polym. Chem. 2013, 51, 624–634. [Google Scholar] [CrossRef]
- Bredas, J.-L.; Norton, J.E.; Cornil, J.; Coropceanu, V. Molecular Understanding of Organic Solar Cells: The Challenges. Acc. Chem. Res. 2009, 42, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, X.; Zou, Y.; Xiao, L.; Xu, X.; He, Y.; Li, L.; Li, Y. Benzo[1,2-B:4,5-B′]Difuran-Based Donor–Acceptor Copolymers for Polymer Solar Cells. Macromolecules 2012, 45, 6898–6905. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Adv. Mater. 2010, 22, E125–E138. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. J. Am. Chem. Soc. 2009, 131, 7792–7799. [Google Scholar] [CrossRef]
- To, C.H.; Ng, A.; Dong, Q.; Djurišić, A.B.; Zapien, J.A.; Chan, W.K.; Surya, C. Effect of PTB7 Properties on the Performance of PTB7:PC71 BM Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 13198–13207. [Google Scholar] [CrossRef]
- Son, H.J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L. Synthesis of Fluorinated Polythienothiophene-Co-Benzodithiophenes and Effect of Fluorination on the Photovoltaic Properties. J. Am. Chem. Soc. 2011, 133, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, K.; Gong, X.; Heeger, A.J. Correction: Low Bandgap Semiconducting Polymers for Polymeric Photovoltaics. Chem. Soc. Rev. 2016, 45, 4847. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T.P.; Cao, Y. Single-Junction Polymer Solar Cells with High Efficiency and Photovoltage. Nat. Photonics 2015, 9, 174–179. [Google Scholar] [CrossRef]
- McKillop, A.; Turrell, A.G.; Young, D.W.; Taylor, E.C. Thallium in Organic Synthesis. 58. Regiospecific Intermolecular Oxidative Dehydrodimerization of Aromatic Compounds to Biaryls Using Thallium(III) Trifluoroacetate. J. Am. Chem. Soc. 1980, 102, 6504–6512. [Google Scholar] [CrossRef]
- Aylward, J.B. Boron Trifluoride–Lead Tetra-Acetate: The Oxidation of Some Benzenoid Compounds. J. Chem. Soc. B 1967, 1268–1270. [Google Scholar] [CrossRef]
- Dou, L.; You, J.; Yang, J.; Chen, C.C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer. Nat. Photonics 2012, 6, 180–185. [Google Scholar] [CrossRef]
- Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudi, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258, 1474–1476. [Google Scholar] [CrossRef] [PubMed]
- Herath, N.; Das, S.; Keum, J.K.; Zhu, J.; Kumar, R.; Ivanov, I.N.; Sumpter, B.G.; Browning, J.F.; Xiao, K.; Gu, G.; et al. Peculiarity of Two Thermodynamically-Stable Morphologies and Their Impact on the Efficiency of Small Molecule Bulk Heterojunction Solar Cells. Sci. Rep. 2015, 5, 13407. [Google Scholar] [CrossRef] [PubMed]
- Wise, A.J.; Precit, M.R.; Papp, A.M.; Grey, J.K. Effect of Fullerene Intercalation on the Conformation and Packing of Poly-(2-Methoxy-5-(3’-7’-Dimethyloctyloxy)-1,4-Phenylenevinylene). ACS Appl. Mater. Interfaces 2011, 3, 3011–3019. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, K.G.; Beenken, W.J.D.; Zaushitsyn, Y.; Yartsev, A.; Andersson, M.; Pullerits, T.; Sundström, V. The Electronic States of Polyfluorene Copolymers with Alternating Donor-Acceptor Units. J. Chem. Phys. 2004, 121, 12613–12617. [Google Scholar] [CrossRef] [PubMed]
- Sharenko, A.; Gehrig, D.; Laquai, F.; Nguyen, T.-Q. The Effect of Solvent Additive on the Charge Generation and Photovoltaic Performance of a Solution-Processed Small Molecule:Perylene Diimide Bulk Heterojunction Solar Cell. Chem. Mater. 2014, 26, 4109–4118. [Google Scholar] [CrossRef]
- Hwang, I.W.; Soci, C.; Moses, D.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C.J.; Heeger, A.J. Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material. Adv. Mater. 2007, 19, 2307–2312. [Google Scholar] [CrossRef]
- Tong, M.; Coates, N.E.; Moses, D.; Heeger, A.J.; Beaupré, S.; Leclerc, M. Charge Carrier Photogeneration and Decay Dynamics in the Poly(2,7-Carbazole) Copolymer PCDTBT and in Bulk Heterojunction Composites with PC70BM. Phys. Rev. B 2010, 81, 125210. [Google Scholar] [CrossRef]
- Keiderling, C.; Dimitrov, S.; Durrant, J.R. Exciton and Charge Generation in PC60 BM Thin Films. J. Phys. Chem. C 2017, 121, 14470–14475. [Google Scholar] [CrossRef]
- Lee, C.H.; Yu, G.; Moses, D.; Srdanov, V.I.; Wei, X.; Vardeny, Z.V. Transient and Steady-State Photoconductivity of a Solid C60 Film. Phys. Rev. B 1993, 48, 8506–8509. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Guo, J.; Ohkita, H.; Ito, S. Formation of Methanofullerene Cation in Bulk Heterojunction Polymer Solar Cells Studied by Transient Absorption Spectroscopy. Adv. Funct. Mater. 2008, 18, 2555–2562. [Google Scholar] [CrossRef]
- Bernardo, B.; Cheyns, D.; Verreet, B.; Schaller, R.D.; Rand, B.P.; Giebink, N.C. Delocalization and Dielectric Screening of Charge Transfer States in Organic Photovoltaic Cells. Nat. Commun. 2014, 5, 3245. [Google Scholar] [CrossRef]
- Rana, A.; Gupta, N.; Lochan, A.; Sharma, G.D.; Chand, S.; Kumar, M.; Singh, R.K. Charge Carrier Dynamics and Surface Plasmon Interaction in Gold Nanorod-Blended Organic Solar Cell. J. Appl. Phys. 2016, 120, 063102. [Google Scholar] [CrossRef]
Polymers | Eg (eV) | Exciton (ps) | ke = 1/(τexciton) | Polaron (ps) | kp = 1/(τpolaron) |
---|---|---|---|---|---|
PCE10 | 1.6 | 124 | 0.008064516 | 1536 | 0.000651042 |
PBDTT-DPP | 1.7 | 266 | 0.003759398 | 1890 | 0.000529101 |
DTFS(FBTTh2)2 | 1.8 | 95 | 0.010526316 | 1452 | 0.000688705 |
PCDTBT | 1.9 | 649 | 0.001540832 | 1111 | 0.00090009 |
P3HT [45] | 2.0 | 187 | 0.005347594 | 708 | 0.001412429 |
PC[60]BM | 2.3 | 1186 | 0.00084317 | – | – |
PC[70]BM | 1.8 | 867 | 0.001153403 | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, A.; Vashistha, N.; Kumar, A.; Kumar, M.; Singh, R.K. Charge Carrier Formation following Energy Gap Law in Photo-Activated Organic Materials for Efficient Solar Cells. Energies 2024, 17, 2114. https://doi.org/10.3390/en17092114
Rana A, Vashistha N, Kumar A, Kumar M, Singh RK. Charge Carrier Formation following Energy Gap Law in Photo-Activated Organic Materials for Efficient Solar Cells. Energies. 2024; 17(9):2114. https://doi.org/10.3390/en17092114
Chicago/Turabian StyleRana, Aniket, Nikita Vashistha, Amit Kumar, Mahesh Kumar, and Rajiv K. Singh. 2024. "Charge Carrier Formation following Energy Gap Law in Photo-Activated Organic Materials for Efficient Solar Cells" Energies 17, no. 9: 2114. https://doi.org/10.3390/en17092114
APA StyleRana, A., Vashistha, N., Kumar, A., Kumar, M., & Singh, R. K. (2024). Charge Carrier Formation following Energy Gap Law in Photo-Activated Organic Materials for Efficient Solar Cells. Energies, 17(9), 2114. https://doi.org/10.3390/en17092114