Light-Matter Interaction in Nano Systems: Fundamentals and Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanophotonics Materials and Devices".

Deadline for manuscript submissions: closed (20 December 2024) | Viewed by 14792

Special Issue Editors


E-Mail Website
Guest Editor
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
Interests: nanomaterials; energy conversion; upconversion luminescence; nanodevices; optical tweezers

E-Mail Website
Guest Editor
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China
Interests: ultracold quantum gases; optics and lasers; optical lattices; spin-orbit coupling; Feshbach resonance

E-Mail Website
Guest Editor
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Interests: two-dimensional semiconductor; two-dimensional semiconductor heterostructure; synthesis; optical properties; photocatalysis; nanomaterials and nanodevices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Light-matter interactions pervades the disciplines of optical and atomic physics, condensed matter physics, electrical engineering, molecular biology, and medicine with frequency and length scales extending over many orders of magnitude. The interaction at the nanometer scale is particularly important. Combining the outcomes of light-matter interactions and nanotechnology to achieve completely new optical, electrical, and photoelectric capabilities has led to the development of nano-optics and nano-optoelectronics, which have become an essential component of science and technology. Such applications include nanolasers, photonic crystals, semiconductor dots, quantum optics, nanowires, nanowaveguides, and nanomaterials in fiber lasers.

This Special Issue of Nanomaterials aims to bring together research on light-matter interactions with research on nanomaterials. We invite authors to contribute original research articles and review articles to give a fair appraisal of the current state of the art and perspectives on the future of nanophotonics research. Potential topics include, but are not limited to:

  • Nanomaterials;
  • Specially designed nano-structured materials;
  • Light and laser sources;
  • Light trapping and cooling;
  • Optical phenomena in nano-photonic structures;
  • Nanofabrication techniques;
  • Nanoplasmonics;
  • Quantum, nonlinear and nonlocal effects in nanostructures;
  • Photonic crystals;
  • Nanowaveguiding devices;
  • Single-photon sources.

Dr. Zhengkun Fu
Dr. Lianghui Huang
Prof. Dr. Mengtao Sun
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • quantum dots
  • ultrafast spectroscopy
  • light-matter interaction
  • plasmonic
  • low-noise laser
  • optical resonant cavity
  • optical tweezers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 4665 KiB  
Article
High-Quality GaP(111) Grown by Gas-Source MBE for Photonic Crystals and Advanced Nonlinear Optical Applications
by Karine Hestroffer, Kelley Rivoire, Jelena Vučković and Fariba Hatami
Nanomaterials 2025, 15(8), 619; https://doi.org/10.3390/nano15080619 - 18 Apr 2025
Viewed by 151
Abstract
The precise fabrication of semiconductor-based photonic crystals with tailored optical properties is critical for advancing photonic devices. GaP(111) is a material of particular interest due to its high refractive index, wide optical bandgap, and pronounced optical anisotropy, offering unique opportunities for photonic applications. [...] Read more.
The precise fabrication of semiconductor-based photonic crystals with tailored optical properties is critical for advancing photonic devices. GaP(111) is a material of particular interest due to its high refractive index, wide optical bandgap, and pronounced optical anisotropy, offering unique opportunities for photonic applications. Its near-lattice matching with silicon substrates further facilitates integration with existing silicon-based technologies. In this study, we present the growth of high-quality GaP(111) thin films using gas-source molecular-beam epitaxy (GSMBE), achieving atomically smooth terraces for the homo-epitaxy of GaP(111). We demonstrate the fabrication of photonic crystal cavities from GaP(111), employing AlGaP(111) as a sacrificial layer, and achieve a quality factor of 1200 for the cavity mode with resonance around 1500 nm. This work highlights the potential of GaP(111) for advanced photonic architectures, particularly in applications requiring strong light confinement and nonlinear optical processes, such as second-harmonic and sum-frequency generation. Full article
Show Figures

Figure 1

12 pages, 1852 KiB  
Article
High-Efficiency SERS of 4-Mercaptobenzoic Acid and Biphenyl-4,4′-Dithiol via Nanoparticle-on-Mirror Plasmonic Nanocavities
by Wangze Li, Yifan Zhu, Jinze Li, Lei Guo, Xilin Zhou, Xin Xie, Zhengkun Fu, Huan Chen and Hairong Zheng
Nanomaterials 2025, 15(6), 421; https://doi.org/10.3390/nano15060421 - 9 Mar 2025
Viewed by 630
Abstract
Surface-enhanced Raman scattering (SERS) technology has important applications in many fields, such as biomedicine, environmental monitoring, and food safety. Plasmonic nanocavities have the ability to superdiffract localized light and enhance light-matter interactions. As a key SERS active substrate, research on plasmonic nanocavities has [...] Read more.
Surface-enhanced Raman scattering (SERS) technology has important applications in many fields, such as biomedicine, environmental monitoring, and food safety. Plasmonic nanocavities have the ability to superdiffract localized light and enhance light-matter interactions. As a key SERS active substrate, research on plasmonic nanocavities has made significant progress regarding the enhancement mechanism, the utilization of hotspots for the detection of specific molecular groups, and practical applications. However, challenges related to improving the enhancement factor of nanocavity SERS, enhancing the stability and reproducibility of hotspots, and enabling the detection of single-molecule layers remain. In this study, we adopt a bottom-up approach to construct a silver microplate–molecule–multi-sized silver nanosphere nanoparticle-on-mirror (NPoM) nanocavity and achieve the efficient stable enhancement of Raman scattering from 4-mercaptobenzoic acid and biphenyl-4,4′-dithiol molecules via the electromagnetic mechanism. By characterizing the fabricated nanocavity using dark-field scattering and micro-confocal Raman scattering, we observed that the Raman scattering intensity in the NPoM nanocavity was enhanced by a factor of 103 compared to that of individual silver nanospheres. Furthermore, we achieved the efficient stabilization of SERS by precisely tuning the size of the silver nanospheres to match their resonance frequency with the Raman shift of the target molecules. This approach offers a valuable reference for the detection of various single-molecule layers and demonstrates significant potential for applications in biosensing and chemical analysis. Full article
Show Figures

Figure 1

16 pages, 3114 KiB  
Article
Enhanced Persistent Luminescence from Cr3+-Doped ZnGa2O4 Nanoparticles upon Immersion in Simulated Physiological Media
by Clement Lee, David Park, Wai-Tung Shiu, Yihong Liu and Lijia Liu
Nanomaterials 2025, 15(3), 247; https://doi.org/10.3390/nano15030247 - 6 Feb 2025
Viewed by 902
Abstract
Near-infrared persistent luminescence (PersL) nanoparticles (NPs) have great potential in biomedical applications due to their ability to continuously emit tissue-penetrating light. Despite numerous reports on the distribution, biological safety and other consequences of PersL NPs in vitro and in vivo, there has been [...] Read more.
Near-infrared persistent luminescence (PersL) nanoparticles (NPs) have great potential in biomedical applications due to their ability to continuously emit tissue-penetrating light. Despite numerous reports on the distribution, biological safety and other consequences of PersL NPs in vitro and in vivo, there has been a lack of studies on the optical properties of these NPs in the physiological environment. In light of this, we investigated the effects of short-term immersion of the prominent Cr3+-doped ZnGa2O4 (CZGO) NPs in a simulated physiological environment for up to 48 h. This paper reports the changes in the structural and optical properties of CZGO NPs after their immersion in a phosphate-buffered saline (PBS) solution for pre-determined time intervals. Interestingly, the luminescence intensity and lifetime noticeably improved upon exposure to the PBS media, which is unusual among existing nanomaterials explored as bioimaging probes. After 48 h of immersion in the PBS solution, the CZGO NPs were approximately twice as bright as the non-immersed sample. X-ray spectroscopic techniques revealed the formation of ZnO, which results in an improvement in observed luminescence. Full article
Show Figures

Figure 1

12 pages, 16546 KiB  
Article
Silica Waveguide Thermo-Optic Mode Switch with Bimodal S-Bend
by Zhentao Yao, Manzhuo Wang, Yue Zhang, Zhaoyang Sun, Xiaoqiang Sun, Yuanda Wu and Daming Zhang
Nanomaterials 2024, 14(24), 1991; https://doi.org/10.3390/nano14241991 (registering DOI) - 12 Dec 2024
Viewed by 687
Abstract
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. [...] Read more.
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. Standard CMOS processing of ultraviolet photolithography, chemical vapor deposition, and plasma etching are adopted in fabrication. Detailed characterizations on the prepared switch are performed to confirm the precise fabrication. The measurement results show that within the wavelength range from 1530 to 1575 nm, for the E11 mode input, the switch exhibits an extinction ratio of ≥13.1 dB and a crosstalk ≤−22.8 dB at an electrical driving power of 284.8 mW, while for the E21 mode input, the extinction ratio is ≥15.5 dB and the crosstalk is ≤−18.1 dB at an electrical driving power of 282.4 mW. These results prove the feasibility of multimode S-bends in mode switching. The favorable performance of the demonstrated switch promises good potential for on-chip mode routing. Full article
Show Figures

Figure 1

11 pages, 607 KiB  
Article
Vertical Electric-Field-Induced Switching from Strong to Asymmetric Strong–Weak Confinement in GaAs Cone-Shell Quantum Dots Using Transparent Al-Doped ZnO Gates
by Ahmed Alshaikh, Jun Peng, Robert Zierold, Robert H. Blick and Christian Heyn
Nanomaterials 2024, 14(21), 1712; https://doi.org/10.3390/nano14211712 - 27 Oct 2024
Viewed by 856
Abstract
The first part of this work evaluates Al-doped ZnO (AZO) as an optically transparent top-gate material for studies on semiconductor quantum dots. In comparison with conventional Ti gates, samples with AZO gates demonstrate a more than three times higher intensity in the quantum [...] Read more.
The first part of this work evaluates Al-doped ZnO (AZO) as an optically transparent top-gate material for studies on semiconductor quantum dots. In comparison with conventional Ti gates, samples with AZO gates demonstrate a more than three times higher intensity in the quantum dot emission under comparable excitation conditions. On the other hand, charges inside a process-induced oxide layer at the interface to the semiconductor cause artifacts at gate voltages above U 1 V. The second part describes an optical and simulation study of a vertical electric-field (F)-induced switching from a strong to an asymmetric strong–weak confinement in GaAs cone-shell quantum dots (CSQDs), where the charge carrier probability densities are localized on the surface of a cone. These experiments are performed at low U and show no indications of an influence of interface charges. For a large F, the measured radiative lifetimes are substantially shorter compared with simulation results. We attribute this discrepancy to an F-induced transformation of the shape of the hole probability density. In detail, an increasing F pushes the hole into the wing part of a CSQD, where it forms a quantum ring. Accordingly, the confinement of the hole is changed from strong, which is assumed in the simulations, to weak, where the local radius is larger than the bulk exciton Bohr radius. In contrast to the hole, an increasing F pushes the electron into the CSQD tip, where it remains in a strong confinement. This means the radiative lifetime for large F is given by an asymmetric confinement with a strongly confined electron and a hole in a weak confinement. To our knowledge, this asymmetric strong–weak confinement represents a novel kind of quantum mechanical confinement and has not been observed so far. Furthermore, the observed weak confinement for the hole represents a confirmation of the theoretically predicted transformation of the hole probability density from a quantum dot into a quantum ring. For such quantum rings, application as storage for photo-excited charge carriers is predicted, which can be interesting for future quantum photonic integrated circuits. Full article
Show Figures

Figure 1

8 pages, 2188 KiB  
Article
Quantum Cone—A Nano-Source of Light with Dispersive Spectrum Distributed along Height and in Time
by Arturs Medvids, Patrik Ščajev and Kazuhiko Hara
Nanomaterials 2024, 14(19), 1580; https://doi.org/10.3390/nano14191580 - 30 Sep 2024
Cited by 1 | Viewed by 837
Abstract
We study a quantum cone, a novel structure composed of multiple quantum dots with gradually decreasing diameters from the base to the top. The dot distribution leads to a dispersive radiated spectrum. The blue edge of the spectrum is determined by the quantum [...] Read more.
We study a quantum cone, a novel structure composed of multiple quantum dots with gradually decreasing diameters from the base to the top. The dot distribution leads to a dispersive radiated spectrum. The blue edge of the spectrum is determined by the quantum confinement of excitons on top of the cones, while the red edge is determined by the bandgap of a semiconductor. We observe the kinetics of photoluminescence by obeying the stretch-exponential law from quantum cones formed on the surface of diamond-like carbon (DLC). They are explained by an increase in the lifetime of excitons along the height of the cone from the top to the base of the cone and an increasing concentration of excitons at the base due to their drift in the quasi-built-in electric field of the quantum cone. The possible visualization of the quantum cone tops of DLC using irradiation by a UV light source is shown. A quantum cone is an innovative nano-source of light because it substitutes for two elements in a conventional spectrometer: a source of light and a dispersive element—an ultrafast monochromator. These features enable the building of a nano-spectrometer to measure the absorbance spectra of virus and molecule particles. Full article
Show Figures

Figure 1

9 pages, 2473 KiB  
Article
SnO2-Based Interfacial Engineering towards Improved Perovskite Solar Cells
by Bing’e Li, Chuangping Liu and Xiaoli Zhang
Nanomaterials 2024, 14(17), 1406; https://doi.org/10.3390/nano14171406 - 28 Aug 2024
Cited by 1 | Viewed by 1175
Abstract
Interfacial engineering is of great concern in photovoltaic devices. Metal halide perovskite solar cells (PSCs) have garnered much attention due to their impressive development in power conversion efficiencies (PCEs). Benefiting from high electron mobility and good energy-level alignment with perovskite, aqueous SnO2 [...] Read more.
Interfacial engineering is of great concern in photovoltaic devices. Metal halide perovskite solar cells (PSCs) have garnered much attention due to their impressive development in power conversion efficiencies (PCEs). Benefiting from high electron mobility and good energy-level alignment with perovskite, aqueous SnO2 as an electron transport layer has been widely used in n-i-p perovskite solar cells. However, the interfacial engineering of an aqueous SnO2 layer on PSCs is still an obscure and confusing process. Herein, we proposed the preparation of n-i-p perovskite solar cells with different concentrations of SnO2 as electron transport layers and achieved optimized PCE with an efficiency of 20.27%. I Interfacial engineering with regard to the SnO2 layer is investigated by observing the surface morphology, space charge-limited current (SCLC) with the use of an electron-only device, and time-resolved photoluminescence (TRPL) of perovskite films. Full article
Show Figures

Figure 1

11 pages, 3380 KiB  
Article
Cavity-Induced Optical Nonreciprocity Based on Degenerate Two-Level Atoms
by Chuan-Zhao Qi, Jia-Rui Zheng, Yuan-Hang Tong, Ruo-Nan Li, Dan Wang, Liang-Hui Huang and Hai-Tao Zhou
Nanomaterials 2024, 14(15), 1236; https://doi.org/10.3390/nano14151236 - 23 Jul 2024
Viewed by 1425
Abstract
We developed and experimentally realized a scheme of optical nonreciprocity (ONR) by using degenerate two-level atoms embedded in an optical ring cavity. For the degenerate transition Fg = 4 ↔ Fe = 3, we first studied the cavity-transmission property in different [...] Read more.
We developed and experimentally realized a scheme of optical nonreciprocity (ONR) by using degenerate two-level atoms embedded in an optical ring cavity. For the degenerate transition Fg = 4 ↔ Fe = 3, we first studied the cavity-transmission property in different coupling field configurations and verified that under the strong-coupling regime, the single-dark-state peak formed by electromagnetically induced transparency (EIT) showed ONR. The stable ground-state Zeeman coherence for Λ-chains involved in the degenerate two-level system was found to be important in the formation of intracavity EIT. However, different from the three-level atom–cavity system, in the degenerate two-level system, the ONR effect based on intracavity EIT occurred only at a low probe intensity, because the cavity–atom coupling strength was weakened in the counter-propagating probe and coupling field configuration. Furthermore, ONR transmission with a high contrast and linewidth-narrowing was experimentally demonstrated. Full article
Show Figures

Figure 1

12 pages, 2620 KiB  
Article
The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds
by Zixin Wang, Wenjin Zhou, Min Yang, Yong Yang, Jianyong Hu, Chengbing Qin, Guofeng Zhang, Shaoding Liu, Ruiyun Chen and Liantuan Xiao
Nanomaterials 2024, 14(1), 53; https://doi.org/10.3390/nano14010053 - 24 Dec 2023
Cited by 3 | Viewed by 2332
Abstract
Surface-enhanced Raman scattering (SERS) has garnered substantial attention due to its ability to achieve single-molecule sensitivity by utilizing metallic nanostructures to amplify the exceedingly weak Raman scattering process. However, the introduction of metal nanostructures can induce a background continuum which can reduce the [...] Read more.
Surface-enhanced Raman scattering (SERS) has garnered substantial attention due to its ability to achieve single-molecule sensitivity by utilizing metallic nanostructures to amplify the exceedingly weak Raman scattering process. However, the introduction of metal nanostructures can induce a background continuum which can reduce the ultimate sensitivity of SERS in ways that are not yet well understood. Here, we investigate the impact of laser irradiation on both Raman scattering and backgrounds from self-assembled monolayers within nanoparticle-on-mirror plasmonic nanocavities with variable geometry. We find that laser irradiation can reduce the height of the monolayer by inducing an irreversible change in molecular conformation. The resulting increased plasmon confinement in the nanocavities not only enhances the SERS signal, but also provides momentum conservation in the inelastic light scattering of electrons, contributing to the enhancement of the background continuum. The plasmon confinement can be modified by changing the size and the geometry of nanoparticles, resulting in a nanoparticle geometry-dependent background continuum in SERS. Our work provides new routes for further modifying the geometry of plasmonic nanostructures to improve SERS sensitivity. Full article
Show Figures

Figure 1

Review

Jump to: Research

44 pages, 9817 KiB  
Review
Microfluidics and Nanofluidics in Strong Light–Matter Coupling Systems
by Evelyn Granizo, Irina Kriukova, Pedro Escudero-Villa, Pavel Samokhvalov and Igor Nabiev
Nanomaterials 2024, 14(18), 1520; https://doi.org/10.3390/nano14181520 - 19 Sep 2024
Cited by 2 | Viewed by 2418
Abstract
The combination of micro- or nanofluidics and strong light–matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. [...] Read more.
The combination of micro- or nanofluidics and strong light–matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light–matter coupling is achieved by placing a dipole (e.g., an atom or a molecule) into a confined electromagnetic field, with molecular transitions being in resonance with the field and the coupling strength exceeding the average dissipation rate. Despite intense research and encouraging results in this field, some challenges still need to be overcome, related to the fabrication of nano- and microscale optical cavities, stability, scaling up and production, sensitivity, signal-to-noise ratio, and real-time control and monitoring. The goal of this paper is to summarize recent developments in micro- and nanofluidic systems employing strong light–matter coupling. An overview of various methods and techniques used to achieve strong light–matter coupling in micro- or nanofluidic systems is presented, preceded by a brief outline of the fundamentals of strong light–matter coupling and optofluidics operating in the strong coupling regime. The potential applications of these integrated systems in sensing, optofluidics, and quantum technologies are explored. The challenges and prospects in this rapidly developing field are discussed. Full article
Show Figures

Figure 1

25 pages, 10028 KiB  
Review
Ultrafast Laser Processing for High-Aspect-Ratio Structures
by Muyang Qin, Xinjing Zhao, Hanyue Fan, Ruizhe Leng, Yanhao Yu, Aiwu Li and Bingrong Gao
Nanomaterials 2024, 14(17), 1428; https://doi.org/10.3390/nano14171428 - 31 Aug 2024
Cited by 4 | Viewed by 2169
Abstract
Over the past few decades, remarkable breakthroughs and progress have been achieved in ultrafast laser processing technology. Notably, the remarkable high-aspect-ratio processing capabilities of ultrafast lasers have garnered significant attention to meet the stringent performance and structural requirements of materials in specific applications. [...] Read more.
Over the past few decades, remarkable breakthroughs and progress have been achieved in ultrafast laser processing technology. Notably, the remarkable high-aspect-ratio processing capabilities of ultrafast lasers have garnered significant attention to meet the stringent performance and structural requirements of materials in specific applications. Consequently, high-aspect-ratio microstructure processing relying on nonlinear effects constitutes an indispensable aspect of this field. In the paper, we review the new features and physical mechanisms underlying ultrafast laser processing technology. It delves into the principles and research achievements of ultrafast laser-based high-aspect-ratio microstructure processing, with a particular emphasis on two pivotal technologies: filamentation processing and Bessel-like beam processing. Furthermore, the current challenges and future prospects for achieving both high precision and high aspect ratios simultaneously are discussed, aiming to provide insights and directions for the further advancement of high-aspect-ratio processing. Full article
Show Figures

Figure 1

Back to TopTop