energies-logo

Journal Browser

Journal Browser

New Insights into Solar Cells

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A2: Solar Energy and Photovoltaic Systems".

Deadline for manuscript submissions: closed (17 April 2024) | Viewed by 2346

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemistry, Imperial College London, London W12 0BZ, UK
Interests: trap states in solar cells; organic photodiodes; indoor application of solar cells

E-Mail Website
Guest Editor
Institut National de la Recherche Scientifique, University of Windsor, Windsor, ON, Canada
Interests: nanomaterials; photovoltaic; luminescent materials; upconversion; lanthanide-doped materials

E-Mail Website
Guest Editor
Photovoltaic Metrology Section, Advanced Materials and Devices Metrology Division, CSIR- National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
Interests: organic and perovskite solar cells

Special Issue Information

Dear Colleagues,

The Guest Editors are inviting submissions for a Special Issue of Energies on the subject area of “New Insights into Solar Cells”.

In recent years, many novel materials and device concepts have been developed for efficient solar cell applications. Therefore, this Special Issue aspires to collect regular and review articles focusing on new understandings of solar cells using different emerging materials with various device structures to achieve the most effective pathway for substantial cost reductions and higher efficiency.

This Special Issue is not limited to device fabrication but also includes theory, modelling, characterization techniques, and synthesis of nanomaterials and hybrid nanostructures for all types of solar cell/photo detectors applications.

Dr. Aniket Rana
Dr. Pawan Kumar
Dr. Rajiv K. Singh
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photovoltaic effect
  • solar cell
  • semiconductor nanoparticles
  • theory and device modeling
  • organic/perovskite materials

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 11019 KiB  
Article
Charge Carrier Formation following Energy Gap Law in Photo-Activated Organic Materials for Efficient Solar Cells
by Aniket Rana, Nikita Vashistha, Amit Kumar, Mahesh Kumar and Rajiv K. Singh
Energies 2024, 17(9), 2114; https://doi.org/10.3390/en17092114 - 28 Apr 2024
Viewed by 240
Abstract
The charge carrier formation and transport in the pristine polymers as well as in the polymer–fullerene blend is still a hot topic of discussion for the scientific community. In the present work, the carrier generation in some prominent organic molecules has been studied [...] Read more.
The charge carrier formation and transport in the pristine polymers as well as in the polymer–fullerene blend is still a hot topic of discussion for the scientific community. In the present work, the carrier generation in some prominent organic molecules has been studied through ultrafast transient absorption spectroscopy. The identification of the exciton and polaron lifetimes of these polymers has led to device performance-related understanding. In the Energy Gap Law, the slope of the linear fit gradient (γ) of lifetimes vs. bandgap are subjected to the geometrical rearrangements experienced by the polymers during the non-radiative decay from the excited state to the ground state. The value of gradient (γ) for excitons and polarons is found to be −1.1 eV−1 and 1.14 eV−1, respectively. It suggests that the exciton decay to the ground state is likely to involve a high distortion in polymer equilibrium geometry. This observation supports the basis of Stokes shift found in the conjugated polymers due to the high disorder. It provides the possible reasons for the substantial variation in the exciton lifetime. As the bandgap becomes larger, exciton decay rate tends to reduce due to the weak attraction between the holes in the HUMO and electron in the LUMO. The precise inverse action is observed for the polymer–fullerene blend, as the decay of polaron tends to increase as the bandgap of polymer increases. Full article
(This article belongs to the Special Issue New Insights into Solar Cells)

Review

Jump to: Research

24 pages, 5464 KiB  
Review
Polyaniline-Based Ink for Inkjet Printing for Supercapacitors, Sensors, and Electrochromic Devices
by Ekta Kundra Arora, Vibha Sharma, Aravind Ravi, Akanksha Shahi, Shweta Jagtap, Arindam Adhikari, Jatis Kumar Dash, Pawan Kumar and Rajkumar Patel
Energies 2023, 16(18), 6716; https://doi.org/10.3390/en16186716 - 20 Sep 2023
Cited by 5 | Viewed by 1554
Abstract
In recent years, there has been a huge surge in interest in improving the efficiency of smart electronic and optoelectronic devices via the development of novel materials and printing technologies. Inkjet printing, known to deposit ‘ink on demand’, helps to reduce the consumption [...] Read more.
In recent years, there has been a huge surge in interest in improving the efficiency of smart electronic and optoelectronic devices via the development of novel materials and printing technologies. Inkjet printing, known to deposit ‘ink on demand’, helps to reduce the consumption of materials. Printing inks on various substrates like paper, glass, and fabric is possible, generating flexible devices that include supercapacitors, sensors, and electrochromic devices. Newer inks being tested and used include formulations of carbon nanoparticles, photochromic dyes, conducting polymers, etc. Among the conducting polymers, PANI has been well researched. It can be synthesized and doped easily and allows for the easy formation of composite conductive inks. Doping and the addition of additives like metal salts, oxidants, and halide ions tune its electrical properties. PANI has a large specific capacitance and has been researched for its applications in supercapacitors. It has been used as a sensor for pH and humidity as well as a biosensor for sweat, blood, etc. The response is generated by a change in its electrical conductivity. This review paper presents an overview of the investigations on the formulation of the inks based on conductive polymers, mainly centered around PANI, and inkjet printing of its formulations for a variety of devices, including supercapacitors, sensors, electrochromic devices, and patterning on flexible substrates. It covers their performance characteristics and also presents a future perspective on inkjet printing technology for advanced electronic, optoelectronic, and other conductive-polymer-based devices. We believe this review provides a new direction for next-generation conductive-polymer-based devices for various applications. Full article
(This article belongs to the Special Issue New Insights into Solar Cells)
Show Figures

Graphical abstract

Back to TopTop