Crystal Growth, Photoluminescence and Radioluminescence Properties of Ce3+-Doped Ba3Y(PO4)3 Crystal
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Details
2.2. Computational Details
3. Results and Discussion
3.1. Lattice and Electronic Band Structure of BYP:Ce3+ Crystal
3.2. Phase and PL Properties of the BYP:xCe3+ Phosphors
3.3. Photo- and Radio-Luminescence Properties of BYP:Ce3+ Crystal
3.4. XPS Analysis of BYP:Ce3+ Crystal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yanagida, T.; Yoshikawa, A.; Yokota, Y.; Kamada, K.; Usuki, Y.; Yamamoto, S.; Miyake, M.; Baba, M.; Kumagai, K.; Sasaki, K.; et al. Development of Pr:LuAG scintillator array and assembly for positron emission mammography. IEEE Trans. Nucl. Sci. 2010, 57, 1492–1495. [Google Scholar] [CrossRef]
- Michail, C.; Liaparinos, P.; Kalyvas, N.; Kandarakis, I.; Fountos, G.; Valais, I. Phosphors and Scintillators in Biomedical Imaging. Crystals 2024, 14, 169. [Google Scholar] [CrossRef]
- Alekhin, M.S.; Patton, G.; Dujardin, C.; Douissard, P.A.; Lebugle, M.; Novotny, L.; Stampanoni, M. Stimulated scintillation emission depletion X-ray imaging. Opt. Express 2017, 25, 654–669. [Google Scholar] [CrossRef]
- Bross, A.D. Applications for large solid scintillator detectors in neutrino and particle astrophysics. Nucl. Phys. B 2012, 229, 363–367. [Google Scholar] [CrossRef]
- Cieślak, M.J.; Gamage, K.A.A.; Glover, R. Critical Review of Scintillating Crystals for Neutron Detection. Crystals 2019, 9, 480. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Kurosawa, S.; Kamada, K.; Takahashi, H.; Fukazawa, Y.; Nikl, M.; Chani, V. Temperature dependence of scintillation properties of bright oxide scintillators for well-logging. Jpn. J. Appl. Phys. 2013, 52, 076401. [Google Scholar] [CrossRef]
- Rodnyi, P.; Dorenbos, P.; Van Eijk, C.W.E. Energy loss in inorganic scintillators. Phys. Status Solidi B 1995, 187, 15. [Google Scholar] [CrossRef]
- Weber, M. Scintillation: Mechanisms and new crystals. Nucl. Instrum. Meth. A 2004, 527, 9–14. [Google Scholar] [CrossRef]
- Dorenbos, P. Scintillation mechanisms in Ce3+ doped halide scintillators. Phys. Status Solidi A 2005, 202, 195–200. [Google Scholar] [CrossRef]
- Weber, M.; Derenzo, S.; Moses, W. Measurements of ultrafast scintillation rise times: Evidence of energy transfer mechanisms. J. Lumin. 2000, 87–89, 830–832. [Google Scholar] [CrossRef]
- Gektin, A.; Korzhik, M. Inorganic Scintillators for Detector Systems; Springer: Berlin, Germany, 2005. [Google Scholar]
- Nikl, M.; Yoshikawa, A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar]
- Nakauchi, D.; Okada, G.; Kawano, N.; Kawaguchi, N.; Yanagida, T. Luminescent and scintillation properties of Ce-doped Tb3Al5O12 crystal grown from Al-rich composition. Appl. Phys. Exp. 2017, 10, 072601. [Google Scholar] [CrossRef]
- Yanagida, T. Study of rare-earth-doped scintillators. Opt. Mater. 2013, 35, 1987–1992. [Google Scholar] [CrossRef]
- Wu, G.; Yu, P.; Fan, M.; Chen, F.; Wang, Z.; Cheng, X.; Yu, F.; Zhao, X. Growth and spectroscopic properties of a novel Tm3+-doped YSr3(PO4)3 disordered crystal. J. Lumin. 2023, 263, 119974. [Google Scholar] [CrossRef]
- Rao, L.; Chen, Y.; Huang, J.; Gong, X.; Lin, Y.; Luo, Z.; Huang, Y. Spectroscopic properties and 1.5–1.6 μm laser operation of Er: Yb: YSr3(PO4)3 crystal. J. Lumin. 2022, 241, 118441. [Google Scholar] [CrossRef]
- Wu, J.; Huang, J.; Huang, Y.; Gong, X.; Lin, Y.; Luo, Z.; Chen, Y. Continuous-wave and passively Q-switched pulsed 1.5 µm Er:Yb:Ba3Gd(PO4)3 lasers. Opt. Express 2022, 30, 38848–38855. [Google Scholar] [CrossRef]
- Guo, N.; Lü, W.; Jia, Y.; Lv, W.; Zhao, Q.; You, H. Eu2+ & Mn2+-Coactivated Ba3Gd(PO4)3 Orange-Yellow-Emitting Phosphor with Tunable Color Tone for UV-Excited White LEDs. Chem. Phys. Chem. 2013, 14, 192–197. [Google Scholar]
- Blasse, G. New Compounds with Eulytine Structure: Crystal Chemistry and Luminescence. J. Solid State Chem. 1970, 2, 27–30. [Google Scholar] [CrossRef]
- Barbier, J. Structural Refinements of Eulytite-Type Ca3Bi(PO4)3 and Ba3La(PO4)3. J. Solid State Chem. 1992, 101, 249–256. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, P.; Li, J.; Yang, Q.; Lv, L.; Zhao, Y. A novel yellow luminescent material Ba3Y(PO4)3:Eu2+. J. Alloys Compd. 2013, 578, 118–120. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Y.; Tian, X.; Dong, G.; Yu, Q. Luminescence properties of phosphate phosphor Ba3Y (PO4)3: Sm3+. J. Solid State Chem. 2015, 225, 19–23. [Google Scholar] [CrossRef]
- Li, K.; Liang, S.; Shang, M.; Lian, H.; Lin, J. Photoluminescence and Energy Transfer Properties with Y+SiO4 Substituting Ba+PO4 in Ba3Y(PO4)3:Ce3+/Tb3+, Tb3+/Eu3+ Phosphors for w-LEDs. Inorg. Chem. 2016, 55, 7593–7604. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Ding, Y.; Peng, Z.; Tian, X.; Yu, Q.; Dong, G. A white light emitting luminescent material Ba3Y (PO4)3:Dy3+. Ceram. Int. 2014, 40, 10125–10129. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, W.; Li, P.; Li, X.; Bao, Q.; Liu, J.; Qiu, K.; Meng, X.; Yang, Z.; Wang, Z. A single-phase white light emitting phosphor Ba3Y(PO4)3:Ce3+/Tb3+/Mn2+: Luminescence, energy transfer and thermal stability. RSC Adv. 2019, 9, 30406–30418. [Google Scholar] [CrossRef]
- Rajesh, M.; Srinivas, M.; John Sushma, N.; Sanjay Kanna Sharma, T.; Mallikarjuna, K.; Deva Prasad Raju, B. Synthesis and luminescence properties of Pr3+ ion-doped Ba3Y(PO4)3 phosphors. Luminescence 2021, 36, 1991–1996. [Google Scholar] [CrossRef] [PubMed]
- Takebuchi, Y.; Koshimizu, M.; Ichiba, K.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Scintillation Properties of Ba3RE(PO4)3 Single Crystals (RE = Y, La, Lu). Materials 2023, 16, 4502. [Google Scholar] [CrossRef]
- Ezawa, H.; Takebuchi, Y.; Ichiba, K.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Evaluation of scintillation and dosimetric properties of undoped and Tb-doped Ba3Y(PO4)3 single crystals. Opt. Mater. 2024, 147, 114665. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Grau-Crespo, R.; Hamad, S.; Catlow, C.R.A.; de Leeuw, N.H. Symmetry-adapted configurational modelling of fractional site occupancy in solids. J. Phys. Condens. Matter. 2007, 19, 256201. [Google Scholar] [CrossRef]
- Chakma, U.; Kumer, A.; Al Mashud, A.; Hossain, S.; Alam, M.; Islam, S.; Shaikh, R.; Jony, I.J.; Islam, J. Investigation of electronic structure, optical properties, map of electrostatic potential, and toxicity of HfO2, Hf0.88Si0.12O2, Hf0.88Ge0.12O2 and Hf0.88Sn0.12O2 by computational and virtual screening. J. Comput. Electron. 2023, 22, 1–16. [Google Scholar] [CrossRef]
- Lin, L.; Ning, L.; Zhou, R.; Jiang, C.; Peng, M.; Huang, Y.; Chen, J.; Huang, Y.; Tao, Y.; Liang, H. Site Occupation of Eu2+ in Ba2−xSrxSiO4 (x = 0−1.9) and Origin of Improved Luminescence Thermal Stability in the Intermediate Composition. Inorg. Chem. 2018, 57, 7090–7096. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Shi, Q.; Huang, Y.; Ivanovskikh, K.V.; Pustovarov, V.A.; Wang, L.; Cui, C.; Huang, P. Luminescence properties and host sensitization study of Ba3La(PO4)3:Ce3+ with (V)UV and X-ray excitation. J. Alloys Compd. 2020, 817, 152704. [Google Scholar] [CrossRef]
- Zheng, R.; Chen, J.; Deng, Y.; Chang, Y.; Liu, Y.; Cheng, R.; Xie, Q.; Xiao, P. Study on the inhomogeneity of LYSO crystal boules grown by the CZ method for PET applications. J. Cryst. Growth 2020, 546, 125708. [Google Scholar] [CrossRef]
- Nikl, M.; Babin, V.; Pejchal, J.; Laguta, V.V.; Buryi, M.; Mares, J.A.; Kamada, K.; Kurosawa, S.; Yoshikawa, A.; Panek, D.; et al. The Stable Ce4+ Center: A New Tool to Optimize Ce-Doped Oxide Scintillators. IEEE Trans. Nucl. Sci. 2016, 63, 433–438. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Z.; Dai, J.; Chen, H.; Shi, Y.; Kou, H.; Wang, T.; Vedda, A.; Beitlerova, A.; Kucerkova, R.; et al. The influence of air annealing on the microstructure and scintillation properties of Ce,Mg:LuAG ceramics. J. Am. Ceram. Soc. 2019, 102, 1805–1813. [Google Scholar] [CrossRef]
- Dantelle, G.; Boulon, G.; Guyot, Y.; Testemale, D.; Guzik, M.; Kurosawa, S.; Kamada, K.; Yoshikawa, A. Research on Efficient Fast Scintillators: Evidence and X-Ray Absorption Near Edge Spectroscopy Characterization of Ce4+ in Ce3+, Mg2+-Co-Doped Gd3Al2Ga3O12 Garnet Crystal. Phys. Status Solidi B 2020, 257, 1900510. [Google Scholar] [CrossRef]
- Katsumata, T.; Toyomane, S.; Tonegawa, A.; Kanai, Y.; Kaneyama, U.; Shakuno, K.; Sakai, R.; Komuro, S.; Morikawa, T. Characterization of trap levels in long-duration phosphor crystals. J. Cryst. Growth 2002, 361, 237–239. [Google Scholar] [CrossRef]
- Shalgaonkar, C.; Narlikar, A. A review of the recent methods for determining trap depth from glow curves. J. Mater. Sci. 1972, 7, 1465–1471. [Google Scholar]
- Guo, C.; Tang, Q.; Zhang, C.; Huang, D.; Su, Q. Thermoluminescent properties of Eu2+ and RE3+ co-doped phosphors CaGa2S4: Eu2+, RE3+ (RE = Ln, excluding Pm, Eu and Lu). J. Lumin. 2007, 126, 333. [Google Scholar]
- Kumar, U.; Padhyay, S.U.; Alvi, P.A. Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 Ruddlesden popper oxide. Physic B 2021, 604, 412708. [Google Scholar] [CrossRef]
- Cole, K.M.; Kirk, D.W.; Thorpe, S.J. Surface Y2O3 layer formed on air exposed Y powder characterized by XPS. Surf. Sci. Spectra 2020, 27, 024010. [Google Scholar] [CrossRef]
- Boukhvalov, D.; Zhidkov, I.; Kukharenko, A.; Cholakh, S.; Menéndez, J.; Fernández-García, L.; Kurmaev, E. Interaction of graphene oxide with barium titanate in composite: XPS and DFT studies. J. Alloys Compd. 2020, 840, 155747. [Google Scholar] [CrossRef]
- Paparazzo, E. Use and mis-use of x-ray photoemission spectroscopy Ce3d spectra of Ce2O3 and CeO2. J. Phys. Condens. Matter 2020, 32, 099501. [Google Scholar] [CrossRef]
Atom | x | y | z | Ueq |
---|---|---|---|---|
Ba1 | 0.68719(12) | 0.81281(12) | 0.18719(12) | 0.0375(9) |
Y1 | 0.68719(12) | 0.81281(12) | 0.18719(12) | 0.0375(9) |
P1 | 0.6250 | 0.5000 | 0.2500 | 0.0355(18) |
O1 | 0.546(2) | 0.604(2) | 0.202(4) | 0.172(16) |
BYP:Ce Crystal | Temperature/K | Trap Depth E/eV | Intensity/a.u. |
---|---|---|---|
as-grown | 601 | 1.202 | 1.01 × 105 |
677 | 1.354 | 7.32 × 105 | |
air-annealed | 622 | 1.244 | 7.25 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Weng, J.; Liu, C.; Lin, Y.; Zhu, J.; Sun, Y.; Huang, J.; Gong, G.; Wen, H. Crystal Growth, Photoluminescence and Radioluminescence Properties of Ce3+-Doped Ba3Y(PO4)3 Crystal. Crystals 2024, 14, 431. https://doi.org/10.3390/cryst14050431
Zou Z, Weng J, Liu C, Lin Y, Zhu J, Sun Y, Huang J, Gong G, Wen H. Crystal Growth, Photoluminescence and Radioluminescence Properties of Ce3+-Doped Ba3Y(PO4)3 Crystal. Crystals. 2024; 14(5):431. https://doi.org/10.3390/cryst14050431
Chicago/Turabian StyleZou, Zhenggang, Jiaolin Weng, Chun Liu, Yiyang Lin, Jiawei Zhu, Yijian Sun, Jianhui Huang, Guoliang Gong, and Herui Wen. 2024. "Crystal Growth, Photoluminescence and Radioluminescence Properties of Ce3+-Doped Ba3Y(PO4)3 Crystal" Crystals 14, no. 5: 431. https://doi.org/10.3390/cryst14050431
APA StyleZou, Z., Weng, J., Liu, C., Lin, Y., Zhu, J., Sun, Y., Huang, J., Gong, G., & Wen, H. (2024). Crystal Growth, Photoluminescence and Radioluminescence Properties of Ce3+-Doped Ba3Y(PO4)3 Crystal. Crystals, 14(5), 431. https://doi.org/10.3390/cryst14050431