Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (514)

Search Parameters:
Keywords = eutectic solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2763 KB  
Article
Design and Characterization of Ceritinib Eutectic Solvent Systems for Pharmaceutical Formulation
by Iva Zokić, Dragana Pacina, Lara Krmelić, Valentina Erceg, Martina Miloloža Nikolić, Dajana Kučić Grgić and Jasna Prlić Kardum
Crystals 2026, 16(1), 77; https://doi.org/10.3390/cryst16010077 (registering DOI) - 22 Jan 2026
Viewed by 16
Abstract
One of the main challenges facing the pharmaceutical industry today is the low solubility of active pharmaceutical ingredients (APIs), which leads to low bioavailability, reduced therapeutic efficacy, and the need for higher drug doses. Eutectic solvents (ES) offer a promising solution by effectively [...] Read more.
One of the main challenges facing the pharmaceutical industry today is the low solubility of active pharmaceutical ingredients (APIs), which leads to low bioavailability, reduced therapeutic efficacy, and the need for higher drug doses. Eutectic solvents (ES) offer a promising solution by effectively dissolving APIs, creating API-ES systems that can significantly improve drug solubility and delivery. In this study, three distinct ESs were prepared by combining various components, with their successful formation confirmed through Fourier Transform Infrared Spectroscopy. Key physicochemical properties, including the density, viscosity, and pH of the prepared solvents, were subsequently determined. Ceritinib (CRT), an API utilized in the treatment of non-small cell lung cancer, was then incorporated into the prepared ESs to yield the API-ES systems. A comparative analysis was conducted to assess the release profiles of pure CRT versus CRT within the API-ES systems. Furthermore, the permeability and diffusion coefficient of the drug within these systems were also determined. The results conclusively demonstrated that the formation of the API-ES system increased the solubility of CRT in water. This achievement represents a vital initial step toward optimizing the delivery of this drug and highlights the significant potential for developing a novel, improved pharmaceutical formulation. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

22 pages, 2752 KB  
Review
Capric Acid-Based Therapeutic Deep Eutectic Systems: A Focused Review Within the Framework of Deep Eutectic Solvents
by Faisal Al-Akayleh, Ahmed S. A. Ali Agha, Ali R. Olaimat and Giuseppe Biagini
Pharmaceuticals 2026, 19(1), 159; https://doi.org/10.3390/ph19010159 - 15 Jan 2026
Viewed by 241
Abstract
Background/Objectives: Capric acid (CA)–therapeutic deep eutectic systems (THEDES) are emerging as a distinct class of biofunctional matrices capable of reshaping drug solubilization, permeability, and bioactivity. Methods: Relevant studies on CA–THEDES were identified through targeted database searches and screened for evidence on [...] Read more.
Background/Objectives: Capric acid (CA)–therapeutic deep eutectic systems (THEDES) are emerging as a distinct class of biofunctional matrices capable of reshaping drug solubilization, permeability, and bioactivity. Methods: Relevant studies on CA–THEDES were identified through targeted database searches and screened for evidence on their design, mechanisms, and pharmaceutical performance. Results: This review synthesizes current evidence on their structural design, mechanistic behavior, and pharmaceutical performance, revealing several unifying principles. Across multiple drug classes, CA consistently drives strong, directional hydrogen bonding and drug amorphization, resulting in marked solubility enhancement and stabilization of non-crystalline or supersaturated states relative to crystalline drugs or conventional solvent systems. Its amphiphilic C10 chain further contributes to membrane fluidization, which explains the improved transdermal and transmucosal permeation repeatedly observed in CA-THEDES. Additionally, synergistic antimicrobial and anticancer effects reported in several systems confirm that CA acts not only as a solvent component but as a bioactive co-therapeutic. Collectively, the reviewed data show that CA serves as a structurally determinant element whose dual hydrogen-bonding and membrane-interacting roles underpin the high pharmaceutical performance of these systems. However, gaps remain in long-term stability, toxicological profiling, and regulatory classification. Emerging Artificial Intelligence (AI) and Machine Learning (ML)-guided predictive approaches offer promising solutions by enabling rational selection of eutectic partners, optimal ratios, and property optimization through computational screening. Conclusions: Overall, CA-THEDES represent a rationally designable platform for next-generation drug delivery, where solvent functionality and therapeutic activity converge within a single, green formulation system. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

31 pages, 8520 KB  
Article
The ESTPHAD Concept: An Optimised Set of Simplified Equations to Estimate the Equilibrium Liquidus and Solidus Temperatures, Partition Ratios and Liquidus Slopes for Quick Access to Equilibrium Data in Solidification Software Part III: Ternary Eutectic-Type Equilibrium Phase Diagram
by Gergely Kőrösy, András Roósz, Ádám Végh and Tamás Mende
Metals 2026, 16(1), 80; https://doi.org/10.3390/met16010080 - 11 Jan 2026
Viewed by 156
Abstract
The liquidus and solidus temperatures, the initial temperature of the solidification of binary eutectics, and the partition ratios of the solid solution at the Al corner of the ternary eutectic-type Al-Si-Cu alloy system were calculated using the thermodynamically based ESTPHAD method. It is [...] Read more.
The liquidus and solidus temperatures, the initial temperature of the solidification of binary eutectics, and the partition ratios of the solid solution at the Al corner of the ternary eutectic-type Al-Si-Cu alloy system were calculated using the thermodynamically based ESTPHAD method. It is shown that these data can be calculated from the liquidus and solidus data of the two binary equilibrium phase diagrams (first estimation), the binary phase diagram and the eutectic valleys in the ternary system (second estimation), as well as the binary phase diagram, the eutectic valleys, and one (third estimation) and more (fourth estimation) liquidus and solidus temperatures of the ternary equilibrium phase diagram with varying precisions. A database calculated with Thermo-Calc software (version 4.1.0.4995), was used for the calculations. Full article
Show Figures

Figure 1

13 pages, 2308 KB  
Article
Eutectogels as Delivery Media for Therapeutic Metal Complexes: What Are the Benefits?
by Varvara O. Veselova, Svetlana V. Revtovich, Vitalia V. Kulikova, Arina D. Filippova, Kseniya A. Koshenskova, Nikolay N. Efimov, Irina A. Lutsenko and Marina A. Uvarova
Gels 2026, 12(1), 65; https://doi.org/10.3390/gels12010065 - 11 Jan 2026
Viewed by 273
Abstract
Drugs and drug candidate compounds commonly suffer from poor solubility and permeability. One promising strategy to mediate these drawbacks is use of novel solvents, such as deep eutectic compositions. The present research aims to determine the applicability of this approach for therapeutic metal [...] Read more.
Drugs and drug candidate compounds commonly suffer from poor solubility and permeability. One promising strategy to mediate these drawbacks is use of novel solvents, such as deep eutectic compositions. The present research aims to determine the applicability of this approach for therapeutic metal complexes on the example of [Cu(Fur)2(Phen)] (Fur = furoate-anion, Phen = 1,10-phenantroline) and [Cu(Fur)2(Neoc)(H2O)] (Fur = furoate-anion, Neoc = 2,9-dimetyl-1,10-phenanthroline) with molar weight of appx. 500 Da. Interaction of the metal complexes with the deep eutectic solvent (DES) reline was studied using electron paramagnetic resonance (EPR). Minimal inhibitory concentrations of the complexes dissolved in DES and dimethyl sulfoxide (DMSO) were determined and found to be equivalent in both solvents. That is, use of reline as a solvent did not alter the functional properties of the metal complexes. Changes in the transdermal permeation of the complexes in DMSO and DES were assessed using a Franz diffusion cell. It was discovered that depending on the structure of the complex, the permeability might either increase (from 15 to 30%) or decrease (from 13 to 8%) with changes in the solvent, and this can be used to develop dosing strategies. Therapeutic eutectogels were successfully produced by impregnating SiO2 nanoparticles with the metal complex solution in DES, facilitating convenient topical application. Full article
(This article belongs to the Special Issue Current Research on Eutectogels)
Show Figures

Figure 1

19 pages, 2498 KB  
Article
Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems
by Rahul Agrawal, Kashif Mushtaq, Daniel López Pedrajas, Iqra Irfan and Breogán Pato-Doldán
Nanoenergy Adv. 2026, 6(1), 4; https://doi.org/10.3390/nanoenergyadv6010004 - 9 Jan 2026
Viewed by 142
Abstract
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology [...] Read more.
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology is a promising solution but has challenges such as solar intermittency. This challenge can be solved by integrating SHDH with the phase change material as a solar energy storage medium. Therefore, a novel nano-enhanced binary eutectic phase change material (NEPCM) was developed in this project. PCM consisting of 70 wt.% stearic acid (ST) and 30 wt.% suberic acid (SBU) with a varying concentration of silicon carbide (SiC) nanoparticles (NPs) (0.1 to 3 wt.%) was synthesized specifically considering the need of SHDH application. The systematic thermophysical characterization was conducted to investigate their energy storage capacity, thermal durability, and performance consistency over repeated cycles. DSC analysis revealed that the addition of SiC NPs preserved the thermal stability of the NEPCM, while the phase transition temperature remained nearly unchanged with a variation of less than 0.74%. The value of latent heat is inversely related to the nanoparticle concentration, i.e., from 142.75 kJ/kg for the base PCM to 131.24 kJ/kg at 3 wt.% loading. This corresponds to reductions in latent heat ranging between 0.98% and 8.06%. The FTIR measurement confirms that no chemical reactions or no new functional groups were formed. All original functional groups of ST and SBU remained intact, showing that incorporating the SiC NP to the PCM lead to physical interactions (e.g., hydrogen bonding or surface adsorption). The TGA analysis showed that the SiC NPs in the NEPCM act as supporting material, and its nano-doping enhanced the final degradation temperature and thermal stability. There was negligible change in thermal conductivity for nanoparticle loadings of 0.1% and 0.4%; however, it increased progressively by 5.2%, 10.8%, 23.12%, and 25.8% at nanoparticle loadings of 0.7%, 1%, 2%, and 3%, respectively, at 25 °C. Thermal reliability was analyzed through a DSC thermal cycling test which confirmed the suitability of the material for the desired applications. Full article
(This article belongs to the Special Issue Innovative Materials for Renewable and Sustainable Energy Systems)
Show Figures

Figure 1

14 pages, 4275 KB  
Article
Modification of Commercial Pt/C via Deep Eutectic Solvent-Assisted Solvothermal Strategy for Efficient Selective Hydrogenation of Furfural Under Mild Conditions
by Tianran Kong, Annan Zhao, Yinghui Zhang, Zongxuan Bai, Hongying Lü and Kaixuan Yang
Processes 2026, 14(2), 223; https://doi.org/10.3390/pr14020223 - 8 Jan 2026
Viewed by 202
Abstract
Efficient conversion of biomass-based platform molecules into high-value derivatives is recognized as one formidable challenge in biomass upgrading. In this work, a one-pot deep eutectic solvents-assisted solvothermal method was developed for the modification of the commercial Pt/C catalysts by introducing a secondary metal [...] Read more.
Efficient conversion of biomass-based platform molecules into high-value derivatives is recognized as one formidable challenge in biomass upgrading. In this work, a one-pot deep eutectic solvents-assisted solvothermal method was developed for the modification of the commercial Pt/C catalysts by introducing a secondary metal (M = Sn, Bi, Ge, Sb, Pb). The structural and electronic properties of the catalysts were precisely tuned. Among the screened metals, the addition of Sn yielded the most significant improvement in catalytic activity. The optimized PtSn0.5/C-140 catalyst achieved superior furfural (FAL) conversion and furfuryl alcohol (FOL) selectivity under mild conditions (20 °C, 2 MPa H2). Comprehensive characterizations, including XRD, HRTEM, XPS, and H2-TPD, confirmed the formation of Pt-Sn solid-solution phase. Furthermore, Characterization and reaction results revealed that the electronic and geometric effects induced by Sn modulated Pt active sites, significantly enhancing the adsorption of the active H species. Additionally, the SnOx species adjacent to the Pt-Sn sites served as hydrogen spillover acceptors, further accelerating the hydrogenation process. The synergy between the Pt-Sn solid-solution phase and SnOx species is identified as the origin of the superior performance at room temperature. These findings provide a new strategy for the design of high-performance biomass conversion catalysts by upgrading commercial noble metal catalysts. Full article
Show Figures

Graphical abstract

15 pages, 25553 KB  
Article
Effect of Fe and Si Content on Microstructure and Properties of Al-Cu-Li Alloys
by Tianyi Feng, Wei Zhao, Changlin Li, Ying Li, Xiwu Li, Zhicheng Liu, Lizhen Yan, Pengfei Xu, Hongwei Yan, Yongan Zhang, Zhihui Li and Baiqing Xiong
Materials 2026, 19(1), 147; https://doi.org/10.3390/ma19010147 - 31 Dec 2025
Viewed by 433
Abstract
This study systematically investigates the effects of Fe and Si impurities on the microstructure and mechanical properties of Al-Cu-Li alloys. Five alloy compositions with controlled Fe (0.03–0.12 wt.%) and Si (0.03–0.12 wt.%) contents were fabricated and processed through homogenization, hot extrusion, solution treatment, [...] Read more.
This study systematically investigates the effects of Fe and Si impurities on the microstructure and mechanical properties of Al-Cu-Li alloys. Five alloy compositions with controlled Fe (0.03–0.12 wt.%) and Si (0.03–0.12 wt.%) contents were fabricated and processed through homogenization, hot extrusion, solution treatment, and aging. Microstructural characterization demonstrates that Fe promotes the formation of coarse skeletal Al7Cu2Fe intermetallics, while Si facilitates the precipitation of blocky α-AlFeSi phases and eutectic Si particles. An elevated Fe content substantially deteriorates strength, ductility, and fracture toughness, primarily due to two mechanisms: the persistence of thermally stable impurity phases that serve as stress concentrators and preferential crack initiation sites throughout thermomechanical processing, and the consumption of Cu that reduces the volume fraction of primary T1 (Al2CuLi) strengthening precipitates. In contrast, Si exhibits comparatively moderate detrimental effects. The findings establish that stringent Fe control is essential for maintaining mechanical performance, whereas strategic Si adjustment offers a viable approach for cost management in recycled alloy production. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
Show Figures

Figure 1

18 pages, 2743 KB  
Article
Axial Solidification Experiments to Mimic Net-Shaped Castings of Aluminum Alloys—Interfacial Heat-Transfer Coefficient and Thermal Diffusivity
by Ravi Peri, Ahmed M. Teamah, Xiaochun Zeng, Mohamed S. Hamed and Sumanth Shankar
Processes 2026, 14(1), 128; https://doi.org/10.3390/pr14010128 - 30 Dec 2025
Viewed by 270
Abstract
Net-shaped casting processes in the automotive industry have proved to be difficult to simulate due to the complexities of the interactions amongst thermal, fluid, and solute transport regimes in the solidifying domain, along with the interface. The existing casting simulation software lacks the [...] Read more.
Net-shaped casting processes in the automotive industry have proved to be difficult to simulate due to the complexities of the interactions amongst thermal, fluid, and solute transport regimes in the solidifying domain, along with the interface. The existing casting simulation software lacks the necessary real-time estimation of thermophysical properties (thermal diffusivity and thermal conductivity) and the interfacial heat-transfer coefficient (IHTC) to evaluate the thermal resistances in a casting process and solve the temperature in the solidifying domain. To address these shortcomings, an axial directional solidification experiment setup was developed to map the thermal data as the melt solidifies unidirectionally from the chill surface under unsteady-state conditions. A Dilute Eutectic Cast Aluminum (DECA) alloy, Al-5Zn-1Mg-1.2Fe-0.07Ti, Eutectic Cast Aluminum (ECA) alloys (A365 and A383), and pure Al (P0303) were used to demonstrate the validity of the experiments to evaluate the thermal diffusivity (α) of both the solid and liquid phases of the solidifying metal using an inverse heat-transfer analysis (IHTA). The thermal diffusivity varied from 0.2 to 1.9 cm2/s while the IHTC changed from 9500 to 200 W/m2K for different alloys in the solid and liquid phases. The heat flux was estimated from the chill side with transient temperature distributions estimated from IHTA for either side of the mold–metal interface as an input to compute the interfacial heat-transfer coefficient (IHTC). The results demonstrate the reliability of the axial solidification experiment apparatus in accurately providing input to the casting simulation software and aid in reproducing casting numerical simulation models efficiently. Full article
Show Figures

Figure 1

15 pages, 2284 KB  
Article
Preparation of Fe3O4/P(U-AM-ChCl) Composite Hydrogel and Study on Its Mechanical and Adsorption Properties
by Yuzuo Liu, Jiawei Li, Bin Li, Zhigang Hu, Mengjing Zhou, Haoyu Lv and Ying Wang
Inorganics 2026, 14(1), 5; https://doi.org/10.3390/inorganics14010005 - 23 Dec 2025
Viewed by 279
Abstract
This study employed urea (U), acrylamide (AM), and choline chloride (ChCl) as raw materials to synthesize a deep eutectic solvent (DES), incorporated dispersed Fe3O4 as a filler within the DES, and effectively fabricated Fe3O4/P(U-AM-ChCl) composite hydrogels [...] Read more.
This study employed urea (U), acrylamide (AM), and choline chloride (ChCl) as raw materials to synthesize a deep eutectic solvent (DES), incorporated dispersed Fe3O4 as a filler within the DES, and effectively fabricated Fe3O4/P(U-AM-ChCl) composite hydrogels through in situ polymerization (SP). The hydrogels were analyzed through Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The influence of different Fe3O4 contents on the swelling behavior, anti-fatigue properties, and adsorption efficiency of the composite hydrogels was thoroughly examined. The results indicated that, in comparison to the hydrogel lacking Fe3O4, the hydrogel containing 1 wt% Fe3O4 demonstrated enhanced swelling and anti-fatigue characteristics, with its equilibrium swelling ratio (ESR) increasing by 16.34%, the time to achieve swelling equilibrium decreasing by 60%, the maximum stress recovery rate rising by 7.8%, and the toughness recovery rate improving by 7.28%.The adsorption efficiency of the hydrogel was improved, and adsorption equilibrium was achieved more quickly, due to the supplementary adsorption sites introduced by Fe3O4. When the Fe3O4/P(U-AM-ChCl) composite hydrogel was immersed in a 120 mg/L Cu2+ so-lution for 48 h, the adsorption capacity reached 171.5 mg/g. This study introduces a novel, viable approach for synthesizing hydrogels with reduced pore sizes and enhanced functionality, while also illustrating their prospective utility in water purification applications. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

19 pages, 9084 KB  
Article
Optimization of T6 Heat Treatment for Enhanced Microstructural Stability and Mechanical Properties of EV31A Magnesium Alloy
by Jingya Cui, Yao Li, Tong Mu, Xiushen Ye, Lingyun An, Daogui Lai, Chushan Yi and Honghui Liu
Metals 2026, 16(1), 4; https://doi.org/10.3390/met16010004 - 19 Dec 2025
Viewed by 292
Abstract
This study systematically optimizes the T6 heat treatment of a commercial EV31A magnesium alloy and evaluates the resulting microstructural evolution and mechanical properties. Optical microscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were [...] Read more.
This study systematically optimizes the T6 heat treatment of a commercial EV31A magnesium alloy and evaluates the resulting microstructural evolution and mechanical properties. Optical microscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the microstructure and phase constitution, while differential scanning calorimetry (DSC) was employed to determine appropriate solution treatment parameters. Brinell hardness measurements and tensile tests at room temperature and 150 °C were carried out to quantify the mechanical response. The as-cast alloy consists of α-Mg equiaxed grains, bone-shaped Mg12(Nd,Gd) eutectic phases at grain boundaries, and minor intragranular lath-shaped Mg12Nd phases. After T6 treatment (520 °C/10 h solution treatment + 200 °C/16 h aging), the grain boundary eutectic phases partially dissolve and transform into Mg41(Nd,Gd)5, while intragranular nano-scale β′ precipitates and stable Zn2Zr3 particles form, achieving multi-scale synergistic strengthening. Compared to the as-cast condition, the T6-treated alloy exhibits room-temperature ultimate tensile strength and yield strength of 309 ± 40.5 MPa (31% increase) and 180 ± 14.2MPa (45% increase), respectively. At 150 °C, the strength reaches 241 ± 7.5 MPa (39% increase) and 154 ± 16.8 MPa (52% increase), while maintaining an elongation of 10.9± 0.7%, demonstrating an excellent strength–ductility balance. Full article
(This article belongs to the Special Issue Forming and Processing Technologies of Lightweight Metal Materials)
Show Figures

Figure 1

21 pages, 2272 KB  
Article
Effect of Na+ vs. K+ Cations and Carbonate Presence on Urea Oxidation Reaction Coupled with Green Hydrogen Production in Alkaline Media: A Voltammetric and Electrochemical Impedance Spectroscopy Study
by Vyacheslav S. Protsenko, Denys A. Shaiderov and Oleksandr D. Sukhatskyi
Hydrogen 2025, 6(4), 119; https://doi.org/10.3390/hydrogen6040119 - 14 Dec 2025
Viewed by 601
Abstract
This work reports the electrochemical behavior of a nickel hydroxide electrode, electrodeposited in a deep eutectic solvent (DES), in alkaline solutions of varying composition, aiming to elucidate the influence of the cation (Na+ vs. K+), urea, and carbonate ions on [...] Read more.
This work reports the electrochemical behavior of a nickel hydroxide electrode, electrodeposited in a deep eutectic solvent (DES), in alkaline solutions of varying composition, aiming to elucidate the influence of the cation (Na+ vs. K+), urea, and carbonate ions on the mechanism and kinetics of anodic processes. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to analyze the electrochemical responses of electrode processes in alkaline water electrolysis systems. For the urea oxidation reaction (UOR), the frequency-dependent characteristics were thoroughly characterized, and the impedance response was simulated according to the Armstrong–Henderson equivalent circuit. It was found that the addition of urea significantly transforms the impedance structure, sharply reducing the polarization resistance and increasing the pseudo-capacitive component of the constant phase element at low frequencies, indicating activation of the slow steps of urea oxidation via a direct mechanism and the formation of an extended adsorptive surface. It was demonstrated that, unlike conventional alkaline electrolysis where KOH-based systems are generally more effective, urea-assisted systems exhibit superior performance in NaOH-based electrolytes, which provides more favorable kinetics for the electrocatalytic urea oxidation process. Furthermore, the accumulation of carbonate ions was shown to negatively affect UOR kinetics by increasing polarization resistance and partially blocking surface sites, highlighting the necessity of controlling electrolyte composition in practical systems. These findings open new opportunities for the rational design of efficient urea-assisted electrolyzers for green hydrogen generation. Full article
Show Figures

Figure 1

14 pages, 5362 KB  
Article
Effect of Post-Heat Treatment on Microstructure and Corrosion Property of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
by Xinping Li, Hao Ding, Xinyue Pi, Shuying Zhang and Yun Xie
Materials 2025, 18(24), 5544; https://doi.org/10.3390/ma18245544 - 10 Dec 2025
Viewed by 248
Abstract
In the present study, AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) was fabricated by laser melting deposition (LMD). Then, post-heat treatment was performed at different temperatures to investigate its effects on microstructure and corrosion property of the alloy. The results obtained from microstructural characterization [...] Read more.
In the present study, AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) was fabricated by laser melting deposition (LMD). Then, post-heat treatment was performed at different temperatures to investigate its effects on microstructure and corrosion property of the alloy. The results obtained from microstructural characterization indicate that the alloy, whether heat-treated or not, exhibited a lamellar eutectic microstructure composed of alternating FCC and BCC phases. With the increase in the heating temperature from 600 to 1000 °C, the interlamellar spacing and volume fraction of the FCC phase gradually increased. Electrochemical testing in 3.5 wt.% NaCl solution revealed that the resistance of the alloy to corrosion was improved with the increasing heating temperature, which was attributed to the increased volume fraction of the FCC phase. However, the immersion test in 3.5 wt.% NaCl solution also suggests that heating above 800 °C increased the susceptibility of the alloy to pitting corrosion, due to the more pronounced enrichment of Al in the BCC phase. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 4428 KB  
Article
Polyethylene Terephthalate Hydrolysis Catalyzed by Deep Eutectic Solvents: COSMO-RS Screening and Experimental Validation
by Nurasyqin Abdul Fattah, Muhammad Zulhaziman Mat Salleh, Nor Yuliana Yuhana, Yusuf Suleiman Dambatta and Mohamed Kamel Hadj-Kali
Catalysts 2025, 15(12), 1154; https://doi.org/10.3390/catal15121154 - 5 Dec 2025
Viewed by 966
Abstract
Chemical recycling is one of the most prominent techniques that enables monomer recovery for plastics like polyethylene terephthalate (PET), which ultimately reduces the dependency on virgin material inputs. In this study, 40 deep eutectic solvents (DESs) were pre-screened using COSMO-RS to identify the [...] Read more.
Chemical recycling is one of the most prominent techniques that enables monomer recovery for plastics like polyethylene terephthalate (PET), which ultimately reduces the dependency on virgin material inputs. In this study, 40 deep eutectic solvents (DESs) were pre-screened using COSMO-RS to identify the best solvent for chemical recycling of PET. Quantitative evaluation was performed based on activity coefficients (γ) to assess solute–solvent interactions. Qualitatively, the sigma profile and sigma potential were analyzed to understand the polarity and affinity of each DES component. This study experimentally validated the two top-performing DESs based on COSMO-RS output. The DES formed by combining thymol with phenol (Thy/Phe (1:2)) achieved 100% PET degradation and 94.5% terephthalic acid (TPA) recovery from post-consumer PET in just 25 min. The rapid dissolution of PET into molten state accelerated the hydrolysis reaction, leading to efficient monomer recovery. The second DES, tetrabutylammonium bromide/sulfolane (TBABr/Sulf (1:7)), attained 93.7% PET degradation and 94% TPA recovery. The PET-to-solvent ratio used in this study was 0.75, while the PET-to-DES ratio in the mixture was only 0.15, the lowest reported for DES-assisted hydrolysis to date. Characterization of the recycled TPA confirmed a purity level comparable to its virgin grade, as verified by FT−IR analysis. This study presents two important outcomes. First, the use of COSMO-RS for DES selection provides a strong rationale for solvent choice in targeted reactions and processes. Second, the use of appropriate DES in this study helps reduce key parameters associated with depolymerisation process, including reaction time, temperature, and catalyst consumption. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

20 pages, 5967 KB  
Article
Investigation of the Structural, Mechanical and Operational Properties of an Alloy AlSi18Cu3CrMn
by Desislava Dimova, Boyan Dochev, Karel Trojan, Kalina Kamarska, Yavor Sofronov, Mihail Zagorski, Veselin Tsonev and Antonio Nikolov
Materials 2025, 18(23), 5434; https://doi.org/10.3390/ma18235434 - 2 Dec 2025
Viewed by 420
Abstract
A non-standardized hypereutectic aluminum–silicon alloy, AlSi18Cu3CrMn, was developed. To refine the structure of the studied composition, a phosphorus modifier was used in an amount of 0.04 wt %, and a complex modifying treatment was applied by combining the chemical elements of phosphorus, titanium, [...] Read more.
A non-standardized hypereutectic aluminum–silicon alloy, AlSi18Cu3CrMn, was developed. To refine the structure of the studied composition, a phosphorus modifier was used in an amount of 0.04 wt %, and a complex modifying treatment was applied by combining the chemical elements of phosphorus, titanium, boron and beryllium (P, 0.04 wt %; Ti, 0.2 wt %; B, 0.04 wt %; Be, 0.007 wt %). To improve the mechanical and operational properties of the alloy, it was heat-treated (T6) at a temperature of 510–515 °C before quenching, with artificial aging applied at a temperature of 210 °C for 16 h. Phosphorus-modified alloy AlSi18Cu3CrMn was quenched in water at 20 °C, and the combined modified alloy was quenched in water at temperatures of 20 °C and 50 °C. By conducting a microstructural analysis, the free Si crystals and silicon crystals in the composition of the eutectic in the alloy structure were characterized, and by conducting XRD, the presence and type of secondary phases were established. The hardness of the alloy was measured, as well as the microhardness of the α-solid solution. Static uniaxial tensile testing was carried out at normal and elevated temperatures (working temperatures of 200 °C, 250 °C and 300 °C). By using a gravimetric method, the corrosion rate of the alloy in 1 M NaCl and 1 M H2SO4 was calculated. The mass wear, wear intensity and wear resistance of the studied AlSi18Cu3CrMn alloy were determined during reversible reciprocating motion in the boundary-layer lubrication regime. Full article
(This article belongs to the Special Issue High-Strength Lightweight Alloys: Innovations and Advancements)
Show Figures

Graphical abstract

33 pages, 1512 KB  
Review
Pineapple-Derived Nanocellulose for Nanocomposites: Extraction, Processing, and Properties
by Marianelly Esquivel-Alfaro, Oscar Rojas-Carrillo, Belkis Sulbarán-Rangel, Lilliana Rodríguez-Barquero, Hasbleidy Palacios-Hinestroza and Orlando J. Rojas
J. Compos. Sci. 2025, 9(12), 652; https://doi.org/10.3390/jcs9120652 - 1 Dec 2025
Viewed by 1303
Abstract
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes [...] Read more.
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes (hydrolysis, oxidation, carboxymethylation, and mechanical fibrillation) and bottom-up strategies (ionic liquids and deep eutectic solvents). The review examines the influence of the morphology and crystallinity of nanocellulose on the functional performance of the nanocomposites. Strategies for processing pineapple-derived nanocellulose composites are analyzed by technique (solution casting, film stacking, and melt blending/extrusion) and polymer matrices (starch, PVA, chitosan, PLA, PHBV, PBAT, proteins, and polysaccharides), including typical loading levels for most polymer-reinforced systems (0.5–5 wt.%), while higher levels (15–50 wt.%) are used in particular cases such as PVA, CMC, and cellulosic matrices. The impact on mechanical strength, barrier behavior, UV shielding, and optical properties is summarized, along with reports of self-reinforced and hybrid cellulose-derived matrices. A benchmarking section was prepared to show nanocellulose loading ranges, trends in properties, and processing-relevant information categorized by type of matrix. Finally, the review describes the potential roles of pineapple waste within a bioeconomy context and identifies some extraction by-products that could be incorporated into diverse value chains. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop