Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems
Abstract
1. Introduction
2. Methodology
2.1. Materials
2.2. Development of Eutectic PCM and Nano-Embedded Eutectic PCM
3. Material Characterization
4. Result and Discussion
4.1. Spectroscopic Analysis—FTIR
4.2. Thermal Analysis—TGA
4.3. Calorimetric Analysis—DSC
4.4. Thermal Conductivity (λ)
4.5. Uncertainty Calculation
4.6. Thermal Cycling Test
4.7. Projected Performance Enhancement of SHDH System Using Nano-Enhanced PCM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixit, P.; Vennapusa, J.R.; Parvate, S.; Singh, J.; Dasari, A.; Chattopadhyay, S. Thermal buffering performance of a propyl palmitate/expanded perlite-based form-stable composite: Experiment and numerical modeling in a building model. Energy Fuels 2021, 35, 2704–2716. [Google Scholar]
- Le, X.; Guo, X.; Lee, C. Evolution of micro-nano energy harvesting technology—Scavenging energy from diverse sources towards self-sustained micro/nano systems. Nanoenergy Adv. 2023, 3, 101–125. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, J.; Pu, Y.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Da Cunha, J.P.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change materials—A review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, W.; Wang, S. Experimental investigations of alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals. Energy 2018, 161, 508–516. [Google Scholar] [CrossRef]
- Altmann, T.; Robert, J.; Bouma, A.; Swaminathan, J.; Lienhard, J.H. Primary energy and exergy of desalination technologies in a power-water cogeneration scheme. Appl. Energy 2019, 252, 113319. [Google Scholar] [CrossRef]
- Tariq, R.; Sheikh, N.A.; Xamán, J.; Bassam, A. An innovative air saturator for humidification–dehumidification desalination application. Appl. Energy 2018, 228, 789–807. [Google Scholar]
- AlQdah, K.S.; Alharbi, K.A.; Alharbi, S.A.; Almutairi, M.A.; Alsuhimi, O.M.; Aljuhani, M.S. Design, fabrication and performance evaluation of a semi-cylindrical solar still working in Medina region. Arab. J. Sci. Eng. 2022, 47, 8567–8575. [Google Scholar]
- Agrawal, R.; Singh, K.D.P.; Paswan, M.K. Review on enhancement of thermal conductivity of phase change materials with nanoparticles in engineering applications. Mater. Today Proc. 2020, 22, 1617–1627. [Google Scholar]
- UN Water. Water and Jobs: The United Nations World Water Development Report 2016; UNESCO: Paris, France, 2016. [Google Scholar]
- Yugbodh, K.; Agrawal, R.; Jain, E.; Sarangapani, K.; Singh, S.K.; Kacker, R. Comprehensive 8E and 2C analysis of a modified semi-cylindrical solar still with sensible heat storage materials. Int. J. Environ. Res. 2025, 19, 109. [Google Scholar] [CrossRef]
- Mariello, M. Heart energy harvesting and cardiac bioelectronics: Technologies and perspectives. Nanoenergy Adv. 2022, 2, 344–385. [Google Scholar] [CrossRef]
- Baskar, I.; Chellapandian, M.; Jaswanth, S.S.H. Development of a novel composite phase change material-based paints and mortar for energy storage applications in buildings. J. Energy Storage 2022, 55, 105829. [Google Scholar] [CrossRef]
- Jathar, L.D.; Ganesan, S.; Shahapurkar, K.; Soudagar, M.E.M.; Mujtaba, M.A.; Anqi, A.E.; Farooq, M.; Khidmatgar, A.; Goodarzi, M.; Safaei, M.R. Effect of various factors and diverse approaches to enhance the performance of solar stills: A comprehensive review. J. Therm. Anal. Calorim. 2022, 147, 4491–4522. [Google Scholar]
- Fei, H.; Wang, L.; He, Q.; Du, W.; Gu, Q.; Pan, Y. Preparation and properties of a composite phase change energy storage gypsum board based on capric acid–paraffin/expanded graphite. ACS Omega 2021, 6, 6144–6152. [Google Scholar] [CrossRef]
- Elarem, R.; Alqahtani, T.; Mellouli, S.; Aich, W.; Ben Khedher, N.; Kolsi, L.; Jemni, A. Numerical study of an evacuated tube solar collector incorporating a nano-PCM as a latent heat storage system. Case Stud. Therm. Eng. 2021, 24, 100859. [Google Scholar] [CrossRef]
- Yang, Z.L.; Walvekar, R.; Wong, W.P.; Sharma, R.K.; Dharaskar, S.; Khalid, M. Advances in phase change materials, heat transfer enhancement techniques, and their applications in thermal energy storage: A comprehensive review. J. Energy Storage 2024, 87, 111329. [Google Scholar] [CrossRef]
- Sarı, A.; Bicer, A.; Alkan, C.; Özcan, A.N. Thermal energy storage characteristics of myristic acid–palmitic acid eutectic mixtures encapsulated in PMMA shell. Sol. Energy Mater. Sol. Cells 2019, 193, 1–6. [Google Scholar]
- Jebasingh, E.; Arasu, V. Characterisation and stability analysis of eutectic fatty acid as a low-cost cold energy storage phase change material. J. Energy Storage 2020, 31, 101708. [Google Scholar]
- Hassan, N.; Minakshi, M.; Liew, W.Y.H.; Amri, A.; Jiang, Z.-T. Thermal characterization of binary calcium–lithium chloride salts for thermal energy storage at high temperature. Energies 2023, 16, 4715. [Google Scholar] [CrossRef]
- Dhivya, S.; Hussain, S.I.; Kalaiselvam, S. Novel metal-coated nanocapsules of ethyl esters fatty acid eutectic mixture as phase change material with enhanced thermal conductivity for energy storage applications. Thermochim. Acta 2020, 687, 178581. [Google Scholar] [CrossRef]
- Villada, C.; Navarrete, N.; Rawson, A.; Kolbe, M.; Stahl, V.; Kraft, W.; Kargl, F. Recycling of aluminium scrap into phase change materials for high-temperature storage applications: Thermophysical properties and microstructural characterisation. J. Energy Storage 2023, 72, 108822. [Google Scholar] [CrossRef]
- Hu, X.; Gong, X.; Zhu, F.; Xing, X.; Li, Z.; Zhang, X. Thermal analysis and optimization of metal foam PCM-based heat sink for thermal management of electronic devices. Renew. Energy 2023, 212, 227–237. [Google Scholar] [CrossRef]
- Nandy, A.; Houl, Y.; Zhao, W.; D’Souza, N.A. Thermal heat transfer and energy modeling through incorporation of phase change materials into polyurethane foam. Renew. Sustain. Energy Rev. 2023, 182, 113410. [Google Scholar] [CrossRef]
- Agrawal, R.; Singh, K.D.P.; Sharma, R.K. Experimental investigations on the phase change and thermal properties of nano-enhanced binary eutectic PCM of palmitic acid–stearic acid/CuO nanoparticles. Int. J. Energy Res. 2022, 46, 6562–6576. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Popov, A.I. Improvement of β-SiC synthesis technology on silicon substrate. Technologies 2023, 11, 152. [Google Scholar] [CrossRef]
- Lebedev, A.S.; Suzdal’tsev, A.V.; Anfilogov, V.N.; Farlenkov, A.S.; Porotnikova, N.M.; Vovkotrub, E.G.; Akashev, L.A. Carbothermal synthesis, properties, and structure of ultrafine SiC fibers. Inorg. Mater. 2020, 56, 20–27. [Google Scholar] [CrossRef]
- Leonova, A.M.; Bashirov, O.A.; Leonova, N.M.; Lebedev, A.S.; Trofimov, A.A.; Suzdaltsev, A.V. Synthesis of C/SiC mixtures for composite anodes of lithium-ion power sources. Appl. Sci. 2023, 13, 901. [Google Scholar] [CrossRef]
- Jacob, J.; Pandey, A.K.; Abd Rahim, N.; Selvaraj, J.; Paul, J.; Samykano, M.; Saidur, R. Quantifying thermophysical properties, characterization, and thermal cycle testing of nano-enhanced organic eutectic PCMs. Sol. Energy Mater. Sol. Cells 2022, 248, 112008. [Google Scholar]
- Aslfattahi, N.; Saidur, R.; Arifutzzaman, A.; Sadri, R.; Bimbo, N.; Sabri, M.F.M.; Maughan, P.A.; Bouscarrat, L.; Dawson, R.J.; Said, S.M.; et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic PCM/MXene nanocomposite. J. Energy Storage 2020, 27, 101115. [Google Scholar] [CrossRef]
- Baskar, I.; Chellapandian, M.; Jeyasubramanian, K. LA–PA eutectic/nano-SiO2 composite phase change material for thermal energy storage in buildings. Constr. Build. Mater. 2022, 338, 127663. [Google Scholar] [CrossRef]
- Saeed, R.M.; Schlegel, J.; Castano, C.; Sawafta, R. Preparation and enhanced thermal performance of novel solid-to-gel form-stable eutectic PCM modified by nano-graphene platelets. J. Energy Storage 2018, 15, 91–102. [Google Scholar]
- Bharathiraja, R.; Ramkumar, T.; Selvakumar, M. Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material for thermal storage applications. J. Energy Storage 2023, 73, 109216. [Google Scholar] [CrossRef]
- Kalidasan, B.; Pandey, A.; Saidur, R.; Aljafari, B.; Kareri, T. Expanded graphite intersperse reliable binary eutectic PCM for low temperature thermal regulation systems. Mater. Today Sustain. 2023, 24, 100602. [Google Scholar]
- Zhang, L.X.; Jiang, Y.Z.; Zhang, X.J. Study on active and passive integration humidification–dehumidification solar desalination. In Proceedings of the Sino-Russian ASRTU Conference Alternative Energy: Materials, Technologies, and Devices, Ekaterinburg, Russia, 13–16 July 2018; pp. 215–222. [Google Scholar]
- Vijayakumar, V.; Manu, N.S.; Vasudevan, M.C.; Kiran, M.V.; Rejeesh, C.R. Phase change materials for improved performance and continuous output in stepped solar stills equipped with HDH. Mater. Today Proc. 2021, 47, 5064–5068. [Google Scholar] [CrossRef]
- Govindaraja, G.; Duraipandi, S.; Sreekumar, A. Development and characterization of a novel eutectic mixture with stearyl alcohol and adipic acid for hot air storage applications. J. Energy Storage 2023, 61, 106708. [Google Scholar] [CrossRef]
- Chinnasamy, V.; Appukuttan, S. Preparation and thermal properties of lauric acid/myristyl alcohol as a novel binary eutectic phase change material for indoor thermal comfort. Energy Storage 2019, 1, e80. [Google Scholar] [CrossRef]
- Philip, N.; Raam Dheep, G.; Sreekumar, A. Cold thermal energy storage with lauryl alcohol and cetyl alcohol eutectic mixture: Thermophysical studies and experimental investigation. J. Energy Storage 2020, 27, 101060. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Jiang, Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10, 201–205. [Google Scholar]
- Sarı, A. Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability. Appl. Therm. Eng. 2005, 25, 2100–2107. [Google Scholar] [CrossRef]
- Ma, G.; Sun, J.; Zhang, Y.; Jing, Y.; Jia, Y. A novel low-temperature phase change material based on stearic acid and hexanamide eutectic mixture for thermal energy storage. Chem. Phys. Lett. 2019, 714, 166–171. [Google Scholar] [CrossRef]
- Ma, G.; Sun, J.; Jia, Y.; Zhang, Y. Binary eutectic mixtures of stearic acid–n-butyramide/n-octanamide as phase change materials for low temperature solar heat storage. Appl. Therm. Eng. 2017, 111, 1052–1059. [Google Scholar]
- Ma, G.; Han, L.; Sun, J.; Jia, Y. Thermal properties and reliability of eutectic mixture of stearic acid–acetamide as phase change material for latent heat storage. J. Chem. Thermodyn. 2017, 106, 178–186. [Google Scholar]
- Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty acids as phase change materials: A review. Renew. Sustain. Energy Rev. 2014, 29, 482–498. [Google Scholar] [CrossRef]
- Agrawal, R.; Sharma, R.K.; Sharma, K.; Siddiqui, M.I.H. Thermophysical characterization and chemical stability of Ag2O-enhanced eutectic nano-PCMs for moderate-temperature applications. Int. J. Chem. React. Eng. 2025, 23, 1143–1155. [Google Scholar]
- Alkan, C.; Alakara, E.H. Property development in n-alkane and n-alkane eutectic phase change materials for thermal energy storage applications. Sol. Energy Adv. 2025, 5, 100089. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Dworschak, M.; Müller, M.; Tjardts, T.; Kienle, L.; Benedikt, J. Surface passivation of silicon nanoparticles monitored by in situ FTIR. Plasma Process. Polym. 2025, 22, 2400206. [Google Scholar]
- Wang, F.; Gao, S.; Pan, J.; Li, X.; Liu, J. Short-chain modified SiO2 with high absorption of organic PCM for thermal protection. Nanomaterials 2019, 9, 657. [Google Scholar] [CrossRef]
- Chung, O.; Jeong, S.G.; Yu, S.; Kim, S. Thermal performance of organic PCMs/micronized silica composite for latent heat thermal energy storage. Energy Build. 2014, 70, 180–185. [Google Scholar] [CrossRef]
- Pugalenthi, S.; Chellapandian, M.; Dharmaraj, J.J.J.; Devaraj, J.; Arunachelam, N.; Singh, S.B. Enhancing the thermal transport property of eutectic lauric–stearic acid PCM with silicon carbide nanoparticles for battery thermal management. J. Energy Storage 2024, 84, 110890. [Google Scholar]
- Harikrishnan, S.; Kalaiselvam, S. Preparation and thermal characteristics of CuO–oleic acid nanofluids as a PCM. Thermochim. Acta 2012, 533, 46–55. [Google Scholar] [CrossRef]
- Ouikhalfan, M.; Sari, A.; Chehouani, H.; Benhamou, B.; Biçer, A. Preparation and characterization of nano-enhanced myristic acid using metal oxide nanoparticles for thermal energy storage. Int. J. Energy Res. 2019, 43, 8592–8607. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C. Thermal properties and heat storage analysis of palmitic acid–TiO2 composite as nano-enhanced organic PCM. Appl. Therm. Eng. 2016, 99, 1254–1262. [Google Scholar]
- Teamah, H.; Teamah, M. Integration of phase change material in flat plate solar water collector: A state of the art review. J. Energy Storage 2022, 54, 105357. [Google Scholar]
- Fauzi, H.; Metselaar, H.S.; Mahlia, T.; Silakhori, M. Sodium laurate enhances the thermal properties and thermal conductivity of eutectic fatty acid PCM. Sol. Energy 2014, 102, 333–337. [Google Scholar]
- Pugalenthi, S.; Devaraj, J.; Kadarkaraithangam, J.; Dharmaraj, J.J.J. Improvement in thermal conductivity and stability of rare-earth metal oxide nanofluids using CaCO3 nanoparticles versus SDS. J. Mol. Liq. 2023, 370, 121056. [Google Scholar]
- Selvan, P.; Jebakani, D.; Jeyasubramanian, K.; Jebaraj, D.J.J. Enhancement of thermal conductivity of SiO2/Ag hybrid nanofluids using calcium carbonate nanoparticles as stabilizing agent. J. Mol. Liq. 2022, 345, 117846. [Google Scholar] [CrossRef]
- Khan, M.M.A.; Ibrahim, N.I.; Saidur, R.; Mahbubul, I.; Al-Sulaiman, F.A. Performance assessment of a solar-powered ammonia–water absorption refrigeration system with storage units. Energy Convers. Manag. 2016, 126, 316–328. [Google Scholar] [CrossRef]
- Barclay, R.; Ghani, M.; Zhang, N.; Cabeza, L.F. An analysis of the influence of DSC parameters on the measurement of the thermal properties of PCM. Materials 2024, 17, 5689. [Google Scholar]











| PCM | Melting Temperature Tm [°C] | Latent Heat [kJ/kg] | Ref. |
|---|---|---|---|
| Stearyl alcohol + Adipic acid | 56.54 | 172.59 | [37] |
| Lauric acid and Myristyl alcohol | 19.7 | 152.6 | [38] |
| Lauryl and Cetyl alcohol | 20.01 | 191.63 | [39] |
| 58.7 wt.% Mg(NO3)2 6H2O + 41:3 wt.% MgCl2·6H2O | 58.3 | 120 | [40] |
| Lauric (66%) + Myristic acid (34%) | 34.2 | 166.8 | [41] |
| Stearic acid + Hexanamide | 58 | 176.62 | [42] |
| Stearic acid/n-butyramide | 64.41 | 198.38 | [43] |
| Stearic acid/n-octanamide | 63.28 | 198.98 | [43] |
| Stearic acid/Acetamide | 64.55 | 193.87 | [44] |
| MgCl2·6H2O/NH4Al(SO4)2·12H2O | 64.7 | 156.93 | [45] |
| Sample | λ (W/m∙K) 25 °C | λ (W/m∙K) 30 °C | λ (W/m∙K) 35 °C | λ (W/m∙K) 40 °C | λ (W/m∙K) 45 °C |
|---|---|---|---|---|---|
| ST-SBU | 0.301 | 0.302 | 0.3001 | 0.301 | 0.299 |
| ST-SBU-0.1 | 0.297 | 0.299 | 0.303 | 0.304 | 0.306 |
| ST-SBU-0.4 | 0.301 | 0.302 | 0.303 | 0.308 | 0.313 |
| ST-SBU-0.7 | 0.316 | 0.315 | 0.318 | 0.318 | 0.319 |
| ST-SBU-1.0 | 0.333 | 0.319 | 0.268 | 0.315 | 0.313 |
| ST-SBU-2 | 0.370 | 0.355 | 0.346 | 0.339 | 0.334 |
| ST-SBU-3 | 0.378 | 0.36 | 0.354 | 0.347 | 0.342 |
| Thermal Parameter | Uncertainty (%) |
|---|---|
| Phase transition temperature | 0.25 |
| Thermal conductivity (λ) | 0.285 |
| Latent heat | 1.32 |
| Subcooling | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Agrawal, R.; Mushtaq, K.; Pedrajas, D.L.; Irfan, I.; Pato-Doldán, B. Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems. Nanoenergy Adv. 2026, 6, 4. https://doi.org/10.3390/nanoenergyadv6010004
Agrawal R, Mushtaq K, Pedrajas DL, Irfan I, Pato-Doldán B. Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems. Nanoenergy Advances. 2026; 6(1):4. https://doi.org/10.3390/nanoenergyadv6010004
Chicago/Turabian StyleAgrawal, Rahul, Kashif Mushtaq, Daniel López Pedrajas, Iqra Irfan, and Breogán Pato-Doldán. 2026. "Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems" Nanoenergy Advances 6, no. 1: 4. https://doi.org/10.3390/nanoenergyadv6010004
APA StyleAgrawal, R., Mushtaq, K., Pedrajas, D. L., Irfan, I., & Pato-Doldán, B. (2026). Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems. Nanoenergy Advances, 6(1), 4. https://doi.org/10.3390/nanoenergyadv6010004

