Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (478)

Search Parameters:
Keywords = ethylene-related genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 1177
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

16 pages, 11002 KiB  
Article
Transcriptomic Identification of Key Genes Responding to High Heat Stress in Moso Bamboo (Phyllostachys edulis)
by Qinchao Fu, Xinlan Wen, Man Tang, Xin Zhao and Fang Liu
Genes 2025, 16(8), 855; https://doi.org/10.3390/genes16080855 - 23 Jul 2025
Viewed by 275
Abstract
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms [...] Read more.
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms at the physiological and molecular levels. Although numerous studies have revealed that a large number of transcription factors (TFs) and genes play important roles in the regulatory network of plant heat stress responses, the regulatory network involved in heat responses remains incompletely understood. Methods: In this study, Moso bamboo was placed in a high-temperature environment of 42 °C for 1 h and 24 h, and transcriptome sequencing was carried out to accurately identify key molecules affected by high temperature and their related biological pathways. Results: Through a differential expression analysis, we successfully identified a series of key candidate genes and transcription factors involved in heat stress responses, including members of the ethylene response factor, HSF, WRKY, MYB, and bHLH families. Notably, in addition to traditional heat shock proteins/factors, multiple genes related to lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were found to play significant roles in heat stress responses. To further verify the changes in the expression of these genes, we used qRT-PCR technology for detection, and the results strongly supported their key roles in cellular physiological processes and heat stress responses. Conclusions: This study not only deepens our understanding of plant strategies for coping with and defending against extreme abiotic stresses but also provides valuable insights for future research on heat tolerance in Moso bamboo and other plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 371
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 1949 KiB  
Article
Hormone Fluctuation and Gene Expression During Early Stages of the Hickory Grafting Process
by Qiaoyu Huang, Haixia Liu, Qinyuan Shen, Huwei Yuan, Fuqiang Cui, Daoliang Yan, Wona Ding, Xiaofei Wang and Bingsong Zheng
Plants 2025, 14(14), 2229; https://doi.org/10.3390/plants14142229 - 18 Jul 2025
Viewed by 375
Abstract
Grafting involves complex hormonal interactions at graft interfaces that are not yet fully understood. In this study, we analyzed hormone fluctuations and gene expression during callus proliferation and vascular tissue differentiation in hickory (Carya cathayensis Sarg.) grafts. Cytokinin and ethylene precursor ACC [...] Read more.
Grafting involves complex hormonal interactions at graft interfaces that are not yet fully understood. In this study, we analyzed hormone fluctuations and gene expression during callus proliferation and vascular tissue differentiation in hickory (Carya cathayensis Sarg.) grafts. Cytokinin and ethylene precursor ACC levels steadily increased after grafting. The biosynthetic genes for these hormones (IPT3, ACS1, ACO1, and ACO5) exhibited heightened expression. Genes related to cytokinin signaling (RR3, ARR4, and ZFP5) and ethylene signaling (MKK9, ESE1, and ESE3) were similarly upregulated. Conversely, genes associated with jasmonic acid, abscisic acid, and strigolactone pathways were downregulated, including synthesis genes (AOC4 and AOS) and those involved in signal transduction (NAC3, WRKY51, and SMAX1). Correspondingly, JA-Ile and 5-deoxystrigol levels significantly decreased. Indole-3-acetic acid (IAA) levels also dropped during the early stages of graft union formation. These results suggest that low auxin concentrations may be essential in the initial stages after grafting to encourage callus proliferation, followed by an increase at later stages to facilitate vascular bundle differentiation. These findings imply that maintaining a balance between low auxin levels and elevated cytokinin and ethylene levels may be critical to support cell division and callus formation during the initial proliferation phase. Later, during the vascular differentiation phase, a gradual rise in auxin levels, accompanied by elevated ethylene, may facilitate the differentiation of vascular bundles in hickory grafts. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

18 pages, 2995 KiB  
Article
Improving the Surface Color and Delaying Softening of Peach by Minimizing the Harmful Effects of Ethylene in the Package
by Hongsheng Zhou, Siyu Ma, Jing Zhao, Ying Gao, Wen Huang, Yingtong Zhang, Jun Ling, Qian Zhou and Pengxia Li
Foods 2025, 14(14), 2472; https://doi.org/10.3390/foods14142472 - 15 Jul 2025
Viewed by 362
Abstract
Peach is a typical ethylene-sensitive fruit, and low levels of ethylene can accelerate softening during storage. In this study, we used an ethylene absorbent (EA) and 1-methylcyclopropene (1-MCP) to minimize the detrimental impact of ethylene on the quality of peaches in modified atmosphere [...] Read more.
Peach is a typical ethylene-sensitive fruit, and low levels of ethylene can accelerate softening during storage. In this study, we used an ethylene absorbent (EA) and 1-methylcyclopropene (1-MCP) to minimize the detrimental impact of ethylene on the quality of peaches in modified atmosphere packaging (MAP), and analyzed fruit firmness, color change, anthocyanin content, and the expression patterns of cell wall metabolism-related genes and anthocyanin synthesis-related genes during storage. The results showed that ethylene in the MAP package decreased the firmness and total anthocyanin content of the peaches, while MAP combined with EA (MAP+EA) treatment effectively maintained the firmness of the peaches and counteracted the inhibition of anthocyanin accumulation in the peach skin by ethylene. In addition, the peaches treated with MAP+EA exhibited higher a* values, lower weight loss, and lower activities of cell-wall-modifying enzymes. Meanwhile, MAP+EA treatment also significantly increased the expression of color-related genes such as flavonoid 3′-hydroxylase gene (F3′H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-flavonoid 3-O-glucosyltransferase (UFGT). Furthermore, a good synergistic effect was observed between 1-MCP and EA in delaying softening and promoting coloring of peach fruit in the MAP package. The combination of 1-MCP and EA treatment may have the potential to alleviate softening and improve the color and quality of post-harvest fruit during storage. Full article
Show Figures

Figure 1

18 pages, 2348 KiB  
Article
Glucomannan Accumulation Induced by Exogenous Lanthanum in Amorphophallus konjac: Insights from a Comparative Transcriptome Analysis
by Xiaoxian Li, Zhouting Zeng, Siyi Zhu, Xirui Yang, Xiaobo Xuan and Zhenming Yu
Biology 2025, 14(7), 849; https://doi.org/10.3390/biology14070849 - 11 Jul 2025
Viewed by 327
Abstract
Konjac glucomannan (KGM), derived from Amorphophallus konjac, is increasingly utilized in food and pharmaceutical applications. However, inconsistent KGM production across cultivars jeopardizes its quality and market viability. Lanthanum (La) has been shown to promote KGM levels, but the underlying mechanism remains unclear. [...] Read more.
Konjac glucomannan (KGM), derived from Amorphophallus konjac, is increasingly utilized in food and pharmaceutical applications. However, inconsistent KGM production across cultivars jeopardizes its quality and market viability. Lanthanum (La) has been shown to promote KGM levels, but the underlying mechanism remains unclear. In this study, 20~80 mg L−1 La significantly stimulated KGM accumulation compared with the control group. We performed a transcriptome analysis and found 21,047 differentially expressed genes (DEGs), predominantly enriched in carbohydrate and glycan metabolism pathways. A total of 48 DEGs were linked to KGM biosynthesis, with 20 genes (SuSy, INV1/3/5/6, HK1/2, FPK2, GPI3, PGM3, UGP2, GMPP1/4, CslA3~7, CslH2, and MSR1.2) showing significant positive correlations with KGM content. Interestingly, three key terminal pathway genes (UGP1, UGP3, and CslD3) exhibited strong upregulation (log2 fold change > 3). Seven DEGs were validated with qRT-PCR, aligning with the transcriptomic results. Furthermore, 12 hormone-responsive DEGs, including 4 ethylene-related genes (CTR1, EBF1/2, EIN3, and MPK6), 6 auxin-related genes (AUX/IAA1-3, SAUR1-2, and TIR1), and 2 gibberellin-related genes (DELLA1-2), were closely linked to KGM levels. Additionally, the transcription factors bHLH and AP2/ERF showed to be closely related to the biosynthesis of KGM. These results lay the foundation for a model wherein La (Ш) modulates KGM accumulation by coordinately regulating biosynthetic and hormonal pathways via specific transcription factors. Full article
Show Figures

Figure 1

15 pages, 2413 KiB  
Article
Soil Inoculated with Streptomyces rochei D74 Invokes the Defense Mechanism of Helianthus annuus Against Orobanche cumana
by Jiao Xi, Tengqi Xu, Zanbo Ding, Chongsen Li, Siqi Han, Ruina Liang, Yongqing Ma, Quanhong Xue and Yanbing Lin
Agriculture 2025, 15(14), 1492; https://doi.org/10.3390/agriculture15141492 - 11 Jul 2025
Viewed by 313
Abstract
Orobanche cumana Wallr. is a root parasitic plant that causes considerable yield losses of up to 50% in sunflower Helianthus annuus plantations. The holoparasite fulfills its entire demand for water, minerals, and organic nutrients from the host’s vascular system. Agronomic practices alone are [...] Read more.
Orobanche cumana Wallr. is a root parasitic plant that causes considerable yield losses of up to 50% in sunflower Helianthus annuus plantations. The holoparasite fulfills its entire demand for water, minerals, and organic nutrients from the host’s vascular system. Agronomic practices alone are not effective in controlling this pest. This study investigated the mechanism of a verified plant growth-promoting strain, Streptomyces rochei D74, on the inhibition of the parasitism of O. cumana in a co-culture experiment. We conducted potted and sterile co-culture experiments using sunflower, O. cumana, and S. rochei D74. Our results suggest that the inoculated bacteria invoked the sunflower systemic resistance (SAR and ISR) by increasing the activity of resistance-related enzymes (SOD, POD, PPO, and PAL), the gene expression of systemic resistance marker genes (PR-1 and NPR1), ethylene synthesis genes (HACS. 1 and ACCO1), and JA synthesis genes (pin2 and lox). The expression levels of ISR marker genes (lox, HACS. 1, ACCO1, and pin2) increased by 1.66–7.91-fold in the seedling stage. Simultaneously, S. rochei D74 formed a protective layer on the sunflower root surface, preventing O. cumana from connecting to the vascular system of the sunflower roots. In addition, S. rochei D74 reduced 5DS synthesis of the strigol precursor substance, resulting in a reduction in O. cumana germination. These results demonstrated that the S. rochei D74 strain improved systemic resistance and decreased seed germination to prevent O. cumana parasitism. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

15 pages, 1490 KiB  
Article
Comparative Transcriptome and Hormonal Analysis Reveals the Mechanisms of Salt Tolerance in Rice
by Dingsha Jin, Yanchao Xu, Asif Iqbal, Yuqing Liu, Yage Zhang, Youzhen Lin, Liqiong Tang, Xinhua Wang, Junjie Wang, Mengshu Huang, Peng Xu and Xiaoning Wang
Int. J. Mol. Sci. 2025, 26(14), 6660; https://doi.org/10.3390/ijms26146660 - 11 Jul 2025
Viewed by 258
Abstract
Salt stress is a major constraint to seed germination and early seedling growth in rice, affecting crop establishment and productivity. To understand the mechanisms underlying salt tolerance, we investigated two rice varieties with contrasting responses as follows: salt-tolerant sea rice 86 (SR86) and [...] Read more.
Salt stress is a major constraint to seed germination and early seedling growth in rice, affecting crop establishment and productivity. To understand the mechanisms underlying salt tolerance, we investigated two rice varieties with contrasting responses as follows: salt-tolerant sea rice 86 (SR86) and salt-sensitive P559. Germination assays under increasing NaCl concentrations (50–300 mM) revealed that 100 mM NaCl induced clear phenotypic divergence. SR86 maintained bud growth and showed enhanced root elongation under moderate salinity, while P559 exhibited significant growth inhibition. Transcriptomic profiling of buds and roots under 100 mM NaCl identified over 3724 differentially expressed genes (DEGs), with SR86 showing greater transcriptional plasticity, particularly in roots. Gene ontology enrichment revealed tissue- and genotype-specific responses. Buds showed enrichment in photosynthesis-related and redox-regulating pathways, while roots emphasized ion transport, hormonal signaling, and oxidative stress regulation. SR86 specifically activated genes related to photosystem function, DNA repair, and transmembrane ion transport, while P559 showed activation of oxidative stress-related and abscisic acid (ABA)-regulated pathways. Hormonal profiling supported transcriptomic findings as follows: both varieties showed increased gibberellin 3 (GA3) and gibberellin 4 (GA4) levels under salt stress. SR86 showed elevated auxin (IAA) and reduced jasmonic acid (JA), whereas P559 maintained stable IAA and JA levels. Ethylene precursor and salicylic acid levels declined in both varieties. ABA levels rose slightly but not significantly. These findings suggest that SR86’s superior salt tolerance results from rapid growth, robust transcriptional reprogramming, and coordinated hormonal responses. This study offers key insights into early-stage salt stress adaptation and identifies molecular targets for improving stress resilience in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 6356 KiB  
Article
A Rare Frameshift Mutation of in CmACS7 Alters Ethylene Biosynthesis and Determines Fruit Morphology in Melon (Cucumis melo L.)
by Jiyang Zhou, Xiaobing Ma, Qianqian Deng, Zhicong Zhong, Xuefei Ning, Li Zhong, Xianliang Zhang and Xianlei Wang
Plants 2025, 14(14), 2087; https://doi.org/10.3390/plants14142087 - 8 Jul 2025
Viewed by 343
Abstract
Fruit shape diversity in melon is governed by complex genetic networks, with ethylene biosynthesis playing a pivotal yet poorly characterized role. In this study, we identified a rare CmACS7A57V/frameshift double mutant through fine mapping of the fsq2 locus. Ethylene-mediated ovary growth regulation [...] Read more.
Fruit shape diversity in melon is governed by complex genetic networks, with ethylene biosynthesis playing a pivotal yet poorly characterized role. In this study, we identified a rare CmACS7A57V/frameshift double mutant through fine mapping of the fsq2 locus. Ethylene-mediated ovary growth regulation has been completely lost in the CmACS7A57V/frameshift double mutant, driving a transition from elongated to spherical fruit. Transcriptome analysis was performed to clarify the core role of CmACS7 in the ethylene signaling pathway. The loss of CmACS7 function regulates key genes in the ethylene responsive factor, cytokinin signaling pathway, and auxin-related genes, resulting in an imbalance in hormone levels. This imbalance directly affects the coordination of cell proliferation and expansion and ultimately determines the fruit morphology. A genetic diversity analysis of public melon germplasm resources indicated that while the CmACS7A57V/frameshift mutation accounts for only 0.5% of the germplasm, it is strongly correlated with the round fruit phenotype and is important for breeding in Xinjiang. The results of this study suggest that CmACS7A57V/frameshift could be used as a molecular marker to accelerate the breeding of melon varieties with excellent fruit morphology and, at the same time, reveal the coevolutionary significance of this gene in the domestication of Cucurbitaceae crops. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

24 pages, 5910 KiB  
Article
Transcriptome Profiling of Spike Development Reveals Key Genes and Pathways Associated with Early Heading in Wheat–Psathyrstachys huashanica 7Ns Chromosome Addition Line
by Binwen Tan, Yangqiu Xie, Hang Peng, Miaomiao Wang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Peng Qin, Yonghong Zhou, Dandan Wu, Yinghui Li and Houyang Kang
Plants 2025, 14(13), 2077; https://doi.org/10.3390/plants14132077 - 7 Jul 2025
Viewed by 404
Abstract
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such [...] Read more.
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such as early maturity and resistance to biotic and abiotic stresses. In this study, we found that a cytogenetically stable wheat–P. huashanica 7Ns disomic addition line showed (9–11 days) earlier heading and (8–10 days) earlier maturation than its wheat parents. Morphological observations of spike differentiation revealed that the 7Ns disomic addition line developed distinctly faster than its wheat parents from the double ridge stage. To explore the potential molecular mechanisms underlying the early heading, we performed transcriptome analysis at four different developmental stages of the 7Ns disomic addition line and its wheat parents. A total of 10,043 differentially expressed genes (DEGs) were identified during spike development. Gene Ontology (GO) enrichment analysis showed that these DEGs were linked to the carbohydrate metabolic process, photosynthesis, response to abscisic acid, and the ethylene-activated signaling pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these DEGs were involved in plant hormone signal transduction (ARF, AUX/IAA, SAUR, DELLA, BRI1, and ETR), starch and sucrose metabolism (SUS1 and TPP), photosynthetic antenna proteins (Lhc), and circadian rhythm (PRR37, FT, Hd3a, COL, and CDF) pathways. In addition, several DEGs annotated as transcription factors (TFs), such as bHLH, bZIP, MADS-box, MYB, NAC, SBP, WRKY, and NF-Y, may be related to flowering time. Our findings reveal spike development-specific gene expression and critical regulatory pathways associated with early heading in the wheat–P. huashanica 7Ns addition line, and provide a new genetic resource for further dissection of the molecular mechanisms underlying the heading date in wheat. Full article
(This article belongs to the Special Issue Biosystematics and Breeding Application in Triticeae Species)
Show Figures

Graphical abstract

15 pages, 2686 KiB  
Article
Overexpression of AgDREBA6b Gene Significantly Increases Heat Tolerance in Arabidopsis thaliana
by Fangjie Xie, Shengyan Yang, Zexi Peng, Yonglu Li, Zhenchao Yang and Ruiheng Lv
Agronomy 2025, 15(7), 1565; https://doi.org/10.3390/agronomy15071565 - 27 Jun 2025
Viewed by 334
Abstract
The APETALA2/ethylene response factor (AP2/ERF) is a class of plant-specific transcription factors, among which the dehydration-responsive element-binding protein (DREB) subfamily has been widely reported to enhance plant resistance to abiotic stresses. A high-temperature-related gene, Apium graveolens DREBA6b (AgDREBA6b; accession number: OR727346), was [...] Read more.
The APETALA2/ethylene response factor (AP2/ERF) is a class of plant-specific transcription factors, among which the dehydration-responsive element-binding protein (DREB) subfamily has been widely reported to enhance plant resistance to abiotic stresses. A high-temperature-related gene, Apium graveolens DREBA6b (AgDREBA6b; accession number: OR727346), was previously cloned from a heat-tolerant celery variety. In this study, we transformed this gene into Arabidopsis thaliana using an Agrobacterium rhizogenes-mediated method to explore its function. The results showed that overexpressing AgDREBA6b in Arabidopsis thaliana significantly improved plant growth under high-temperature stress (38 °C) compared to the dreb mutant and wild-type (WT) plants. The anatomical structure of the leaves revealed that the number and degree of stomatal openings in the overexpressed plants were significantly higher than those in the WT and dreb plants, suggesting that AgDREBA6b enhances stomatal opening. Additionally, the chlorophyll content, chlorophyll fluorescence properties, proline (Pro), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were higher in the transgenic plants, indicating better stress tolerance. qPCR analysis showed that four heat tolerance-related genes (AtHSP98.7, AtHSP70-1, AtAPX1, and AtGOLS1) were upregulated in the transgenic plants, with higher expression levels than in WT and mutant plants. This study provides valuable genetic resources for understanding the molecular mechanisms of celery’s heat tolerance and offers insights for breeding heat-tolerant celery varieties. Full article
(This article belongs to the Topic Vegetable Breeding, Genetics and Genomics, 2nd Volume)
Show Figures

Figure 1

18 pages, 3572 KiB  
Article
DNA Methylation Profile Changes in CpG Islands of Ethylene-Signaling Genes Regulated by Melatonin Were Involved in Alleviating Chilling Injury of Postharvest Tomato Fruit
by Jingrui Yan, Shuangshuang Shan, Jiangkuo Li, Zhengke Zhang, Jiali Yang, Wanli Zhang, Hongmiao Song, Xiangbin Xu and Wenhui Duan
Int. J. Mol. Sci. 2025, 26(13), 6170; https://doi.org/10.3390/ijms26136170 - 26 Jun 2025
Viewed by 292
Abstract
Melatonin (MT) has been reported to alleviate chilling injury (CI) in postharvest tomato fruit during low-temperature storage. In the present study, the DNA methylation profile changes in the CpG islands of ethylene signaling genes regulated by MT in postharvest tomato fruit during low-temperature [...] Read more.
Melatonin (MT) has been reported to alleviate chilling injury (CI) in postharvest tomato fruit during low-temperature storage. In the present study, the DNA methylation profile changes in the CpG islands of ethylene signaling genes regulated by MT in postharvest tomato fruit during low-temperature storage were detected. The MT treatment increased the content of total soluble solids (TSS) and enhanced the ethylene production of tomato fruit. Moreover, it decreased titratable acidity (TA) content, inhibited the activity of polygalacturonase (PG), and kept the firmness of tomato fruit under low-temperature storage. In the MT-treated tomato fruit, significant changes in DNA methylation of CpG island of SlACS10, LeCTR1, LeEIN3, SlERF-A1, and LeERT10 genes were induced; the expression of LeCTR1 was inhibited; and the expression of SlACS10, LeEIN3, and SlERF-A1 genes was increased, by which the ethylene signaling might be influenced and the CI was alleviated. The present results provide evidence that the CI of postharvest tomato fruit alleviated by MT might be related to the changes in DNA methylation of ethylene-signaling genes. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 9828 KiB  
Article
Mechanism of Core Browning in Different Maturity Stages of ‘Yali’ Pears During Slow-Cooling Storage and PbRAV-Mediated Regulation
by Bing Deng, Qingxiu Li, Liya Liang, Hongyan Zhang and Xiaoyu Zhang
Foods 2025, 14(12), 2132; https://doi.org/10.3390/foods14122132 - 18 Jun 2025
Viewed by 398
Abstract
This study investigated the impact of slow cooling on browning and fruit quality at three maturity stages (early, mid and late). Slow cooling reduced core browning in early/mid-harvest pears, as the browning indexes of early-, middle- and late-harvested ‘Yali’ pears at 60 d [...] Read more.
This study investigated the impact of slow cooling on browning and fruit quality at three maturity stages (early, mid and late). Slow cooling reduced core browning in early/mid-harvest pears, as the browning indexes of early-, middle- and late-harvested ‘Yali’ pears at 60 d were 0.13, 0 and 0.1, respectively, preserving firmness and soluble solids. Transcriptomic analysis revealed that upregulated genes in ‘Yali’ pears facilitated stress adaptation via enhanced catalytic activity and phosphorylation. Mid-harvested pears exhibited activation of phosphorus metabolism and DNA repair mechanisms to maintain cellular homeostasis, whereas the late-harvested counterparts showed significant suppression of photosynthesis-related pathways and pyrimidine metabolism, which collectively accelerated senescence progression. Universal downregulation of hormone-response pathways such as ethylene and auxin revealed systemic stress adaptation decline. Then, the PbRAV transcription factors’ role was also studied. EMSA confirmed that GST-PbRAV2 binds to the PbLAC15 promoter, linking RAV2 to laccase regulation. Overripe pears showed PbRAV2 dysregulation, impairing LAC15 suppression and accelerating browning. Findings provide a theoretical basis for using slow cooling to mitigate browning in pear storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

21 pages, 6476 KiB  
Article
Elucidating the Molecular Mechanisms of Physiological Fruit Abscission in Actinidia arguta Through Comparative Transcriptomics and Transient Genetic Transformation
by Pengqiang Yuan, Yanli Wang, Yining Sun, Guoliang Liu, Hongyan Qin, Shutian Fan, Yiping Yan, Bowei Sun and Wenpeng Lu
Plants 2025, 14(11), 1645; https://doi.org/10.3390/plants14111645 - 28 May 2025
Viewed by 464
Abstract
Actinidia arguta (A. arguta) is valued for its nutritional richness, but physiological fruit abscission severely limits production efficiency in elite cultivars. To unravel the molecular basis of this process, we compared two cultivars: abscission-prone ‘KL’ and abscission-resistant ‘JL’. During fruit development, [...] Read more.
Actinidia arguta (A. arguta) is valued for its nutritional richness, but physiological fruit abscission severely limits production efficiency in elite cultivars. To unravel the molecular basis of this process, we compared two cultivars: abscission-prone ‘KL’ and abscission-resistant ‘JL’. During fruit development, ‘KL’ exhibited an earlier decline in auxin (AUX) levels within the fruit abscission zone (FAZ), coupled with persistently higher ethylene (ETH) concentrations and polygalacturonase (PG) activity compared to ‘JL’. Comparative transcriptomics identified abscission-related genes enriched in plant hormone signaling (AUX, ETH, ABA, JA, BR), starch/sucrose metabolism, and photosynthesis pathways. AUX signaling diverged predominantly during early development, while ETH, BR, and JA pathways varied across multiple stages. Exogenous applications of plant growth regulators (ethephon, 2,4-D, methyl jasmonate, and 2,4-epibrassinolide) and transient overexpression of key genes (AaETR1, AaERF035, AaPME68, AaPP2C27, AaMYC1, and AaPMEI10) validated their roles in modulating hormone crosstalk and cell wall remodeling. Overexpression of AaERF035 and AaPME68 likely accelerated abscission by enhancing ETH biosynthesis and pectin degradation, while AaPMEI10 and AaMYC1 potentially delayed abscission via suppression of cell wall-modifying enzymes. This study elucidates the hormonal and transcriptional networks governing fruit abscission in A. arguta, providing insights for targeted breeding and cultivation strategies to mitigate yield loss. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

20 pages, 3327 KiB  
Article
Genome-Wide Analysis of the EIN3/EIL Transcription Factors in Osmanthus fragrans and Their Stress Response to Azacytidine (AZA) and Ethylene (ETH) Treatment
by Dou Pan, Chun Xu, Wanlu Ma, Xinyi Zhu, Qiangjun Yu, Yingting Zhang, Jie Yang, Xiangling Zeng, Xuan Cai and Jingjing Zou
Horticulturae 2025, 11(6), 572; https://doi.org/10.3390/horticulturae11060572 - 23 May 2025
Viewed by 460
Abstract
Ethylene-insensitive 3/ethylene-insensitive 3-like (EIN3/EIL) transcription factors are central regulators of ethylene signaling and stress adaptation in plants. However, their roles in Osmanthus fragrans, a globally cherished ornamental and aromatic plant with significant economic value, remain poorly characterized. Here, we identified nine OfEIL [...] Read more.
Ethylene-insensitive 3/ethylene-insensitive 3-like (EIN3/EIL) transcription factors are central regulators of ethylene signaling and stress adaptation in plants. However, their roles in Osmanthus fragrans, a globally cherished ornamental and aromatic plant with significant economic value, remain poorly characterized. Here, we identified nine OfEIL genes across eight chromosomes in the O. fragrans “Liuye Jingui” genome. Conserved motif analysis revealed core domains (Motif1/2/4/7), and promoter cis-elements highlighting hormone-related, stress-related, and growth-related regulatory potential. During late flowering stages, six OfEILs (3/4/5/6/7/9) were significantly upregulated. Under 5-azacytidine (AZA, a DNA demethylation agent), OfEIL2 and OfEIL7 were downregulated, whereas the ETH treatment activated OfEIL3/7/8/9. Strikingly, OfEIL7 exhibited dual regulatory roles, correlating strongly with natural flowering progression, AZA-induced demethylation, and ETH responses. Functional divergence was observed in petal senescence, with OfEIL2–5 and OfEIL7–9 showing stage-specific and tissue-specific expression patterns. These results position OfEIL7 as a key hub integrating epigenetic and hormonal signals to modulate floral longevity and stress adaptation. Our study provides the first genome-wide characterization of the EIL family in O. fragrans, offering critical insights for molecular breeding aimed at enhancing ornamental traits and environmental resilience in this economically significant species. Full article
Show Figures

Figure 1

Back to TopTop