Mechanism of Core Browning in Different Maturity Stages of ‘Yali’ Pears During Slow-Cooling Storage and PbRAV-Mediated Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Postharvest Treatment
2.2. Determination of Core Browning and Physiological Quality of ‘Yali’ Pears After Slow-Cooling Treatment
2.2.1. Determination of Core Browning Index of ‘Yali’ Pear
2.2.2. Determination of Soluble Solids (SSC) Content
2.2.3. Firmness Determination
2.2.4. Determination of Respiratory Intensity
2.2.5. Determination of Ethylene Release
- in which C: ethylene content in the sample gas with unit of µL L−1;
- V: volume of the enclosed space, unit is mL;
- M: the mass of fruits and vegetables, the unit is kg;
- T: smothering time; the unit is h.
2.2.6. Determination of Weight Loss
2.3. Transcriptome Sequencing
2.4. Analysis of Cis-Acting Elements
2.5. RNA Isolation and cDNA Synthesis
2.6. Quantitative Real-Time PCR (RT-qPCR)
2.7. Identification of Downstream Target Genes of PbRAV Across the Entire Genome
2.8. Protein Expression and Purification and Electrophoretic Mobility Shift Assays (EMSA)
2.9. Statistical Analysis
3. Results
3.1. Effects of Slow-Cooling Treatment on Core Browning Index and Physiological Indicators of Different Maturity ‘Yali’ Pear
3.2. Expression Trend Analysis of Total DEGs
3.3. GO Enrichment Analysis of Different Expression Trend Modules
3.4. KEGG Enrichment Analysis of Different Expression Trend Modules
3.5. Analysis of Expression Patterns and Regulatory Mechanisms of PbRAV in Core Browning of ‘Yali’ Pear
3.5.1. Identification of PbRAV Transcription Factors
3.5.2. Analysis of the PbRAV Gene Promoter Sequence
3.5.3. Relative Expression of PbRAV Genes in the Core of ‘Yali’ Pears at Varying Maturity Stages Following Slow-Cooling Treatment
3.5.4. Prediction and Analysis of Downstream Target Genes of PbRAV Based on the Complete Genome
3.5.5. Validating the Binding of the PbRAV2 Transcription Factor with the PbLAC15 Gene Promoter
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Zhang, Y.; Wang, L.; Ahmad, B.; Shi, X.; Ren, Y.; Liang, C.; Zhang, X.; Zhang, Y.; Du, G. Integrated transcriptome and metabolome analysis unveiled the mechanisms of xenia effect and the role of different pollens on aroma formation in ‘Yali’ pear (Pyrus bretschneideri Rehd). Sci. Hortic. 2023, 307, 111503. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Shi, X.; Zhang, Y.; Du, G. The characteristic of Yatu morphogenesis and the efficacy of exogenous hormones on the development of Yatu during fruit development in ‘Yali’ pear (Pyrus bretschneideri Rehd.). Plant Signal Behav. 2022, 17, 2106075. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhi, H. Applications of 1-methylcyclopropene concentrations and timing in relation to sunlight-related core browning in ‘Bartlett’ pears after extending regular-air storage. Postharvest Biol. Technol. 2024, 207, 112624. [Google Scholar] [CrossRef]
- Zhang, H.; Han, Y.; Liang, L.; Deng, B. Rapid Cooling Delays the Occurring of Core Browning in Postharvest ‘Yali’ Pear at Advanced Maturity by Inhibiting Ethylene Metabolism. Foods 2024, 13, 1072. [Google Scholar] [CrossRef]
- Li, J.; Yao, T.; Xu, Y.; Cai, Q.; Wang, Y. Elevated CO2 exposure induces core browning in Yali pears by inhibiting the electron transport chain. Food Chem. 2022, 378, 132101. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Li, X.; Zhang, C.; Lei, Z. Online Inspection of Browning in Yali Pears Using Visible-Near Infrared Spectroscopy and Interpretable Spectrogram-Based CNN Modeling. Biosensors 2023, 13, 203. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Fan, X.; Wang, J.; Liang, L.; Yan, S.; Xiao, L. Relationship between activated oxygen metabolism and browning of “Yali” pears during storage. J. Food Process Preserv. 2020, 44, e14392. [Google Scholar] [CrossRef]
- Yuan, Q.; Jiang, Y.; Yang, Q.; Li, W.; Gan, G.; Cai, L.; Li, W.; Qin, C.; Yu, C.; Wang, Y. Mechanisms and control measures of low temperature storage-induced chilling injury to solanaceous vegetables and fruits. Front. Plant Sci. 2024, 15, 1488666. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Huang, A.; Wang, B.; Zhang, H.; Zheng, Y.; Wang, L. Melatonin mobilizes the metabolism of sugars, ascorbic acid and amino acids to cope with chilling injury in postharvest pear fruit. Sci. Hortic. 2024, 323, 112548. [Google Scholar] [CrossRef]
- Jia, L.; Li, L.; Luo, W.; Zhang, X.; Zhu, L.; Qian, M.; Gu, P.; Xie, Y.; Yang, B.; Qiao, X.; et al. PbrWRKY42-PbrSOT13 module regulated sorbitol accumulation in the developing ‘Yali’ fruit after three-layer-paper bagging treatment. Sci. Hortic. 2024, 325, 112705. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, Q.; Bao, T.; Kong, M.; Gu, T.; Jiang, L.; Wang, T.; Xu, T.; Wang, N.; Zhang, Z.; et al. Transcription factor MdbZIP44 targets the promoter of MdPPO2 to regulate browning in Malus domestica Borkh. Plant Physiol. Biochem. 2024, 214, 108934. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-J.; Luo, M.-L.; Zhou, X.; Zhou, Q.; Sun, Y.-Y.; Ge, W.-Y.; Yao, M.-M.; Ji, S.-J. PuMYB21/PuMYB54 coordinate to activate PuPLDβ1 transcription during peel browning of cold-stored “Nanguo” pears. Hortic. Res. 2020, 7, 136. [Google Scholar] [CrossRef]
- Duan, W.; Yang, C.; Cao, X.; Zhang, C.; Liu, H.; Chen, K.; Li, X.; Zhang, B. Transcriptome and DNA methylome analysis reveal new insights into methyl jasmonate-alleviated chilling injury of peach fruit after cold storage. Postharvest Biol. Technol. 2022, 189, 111915. [Google Scholar] [CrossRef]
- Bielsa, F.J.; Grimplet, J.; Irisarri, P.; Miranda, C.; Errea, P.; Pina, A. Comparative enzymatic browning transcriptome analysis of three apple cultivars unravels a conserved regulatory network related to stress responses. BMC Plant Biol. 2025, 25, 467. [Google Scholar] [CrossRef]
- Mu, H.; Chen, J.; Huang, W.; Huang, G.; Deng, M.; Hong, S.; Ai, P.; Gao, C.; Zhou, H. OmicShare tools: A zero-code interactive online platform for biological data analysis and visualization. Imeta 2024, 3, e228. [Google Scholar] [CrossRef]
- Fan, Z.-Q.; Ba, L.-J.; Shan, W.; Xiao, Y.-Y.; Lu, W.-J.; Kuang, J.-F.; Chen, J.-Y. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. Plant J. 2018, 96, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.-L.; Fan, Z.-Q.; Shan, W.; Yin, X.-R.; Kuang, J.-F.; Lu, W.-J.; Chen, J.-Y. Association of BrERF72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes. Hortic. Res. 2018, 5, 22. [Google Scholar] [CrossRef]
- Yan, S.; Li, L.; He, L.; Liang, L.; Li, X. Maturity and cooling rate affects browning, polyphenol oxidase activity and gene expression of ‘Yali’ pears during storage. Postharvest Biol. Technol. 2013, 85, 39–44. [Google Scholar] [CrossRef]
- Kaur, K.; Dhillon, W.S. Effect of harvesting date and packaging materials on core browning and phenolic contents of pear cv. Punjab Beauty during storage. Ind. J. Hort. 2016, 73, 619. [Google Scholar] [CrossRef]
- Lwin, H.P.; Torres, C.A.; Rudell, D.R.; Lee, J. Chilling-related browning of ‘Wonhwang’ pear cortex is associated with the alteration of minerals and metabolism. Sci. Hortic. 2023, 321, 112321. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, Y.; Li, H.; Gao, Q.; Cheng, Y.; Ogunyemi, S.O.; Guan, J. Fruit bagging reduces the postharvest decay and alters the diversity of fruit surface fungal community in ‘Yali’ pear. BMC Microbiol. 2022, 22, 239. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Deng, L.; Tan, H.; Meng, W.; Luo, J.; Zhang, Z.; Chen, H.; Qiu, J.; Chang, X.; Lu, Y. Transcriptome and metabolome analysis of preharvest internal browning in Nane plum fruit caused by high temperature. Hortic. Plant J. 2024, 10, 1099–1111. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, Y.; Li, Z.; Jiang, Y.; Duan, X.; Jiang, G. Phytosulfokine treatment delays browning of litchi pericarps during storage at room temperature. Postharvest Biol. Technol. 2025, 219, 113262. [Google Scholar] [CrossRef]
- Liu, W.; Liang, X.; Cai, W.; Wang, H.; Liu, X.; Cheng, L.; Song, P.; Luo, G.; Han, D. Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int. J. Mol. Sci. 2022, 23, 13418. [Google Scholar] [CrossRef]
- Zhao, S.-P.; Xu, Z.-S.; Zheng, W.-J.; Zhao, W.; Wang, Y.-X.; Yu, T.-F.; Chen, M.; Zhou, Y.-B.; Min, D.-H.; Ma, Y.-Z.; et al. Genome-Wide Analysis of the RAV Family in Soybean and Functional Identification of GmRAV-03 Involvement in Salt and Drought Stresses and Exogenous ABA Treatment. Front. Plant Sci. 2017, 8, 905. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, J.; Li, Q.; Li, J.; Liu, T.; Wang, R.; Chen, W.; Li, X. Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biol. Technol. 2018, 146, 68–78. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Zhang, H.; Ma, Q.; Wei, Z.; Chen, J.; Sun, Z. Genome-Wide Analysis of the RAV Transcription Factor Genes in Rice Reveals Their Response Patterns to Hormones and Virus Infection. Viruses 2021, 13, 752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fang, F.; He, Q.; Zhang, X.; Shi, N.; Song, J.; Zhang, Z.; Pang, X. Enzymatic characterization of a laccase from lychee pericarp in relation to browning reveals the mechanisms for fruit color protection. J. Food Process Preserv. 2018, 42, e13515. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, X.; Zhong, R.; Liu, B.; Zhang, X.; Fang, F.; Zhang, Z.; Pang, X. Laccase-Mediated Flavonoid Polymerization Leads to the Pericarp Browning of Litchi Fruit. J. Agric. Food Chem. 2021, 69, 15218–15230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, B.; Li, Q.; Liang, L.; Zhang, H.; Zhang, X. Mechanism of Core Browning in Different Maturity Stages of ‘Yali’ Pears During Slow-Cooling Storage and PbRAV-Mediated Regulation. Foods 2025, 14, 2132. https://doi.org/10.3390/foods14122132
Deng B, Li Q, Liang L, Zhang H, Zhang X. Mechanism of Core Browning in Different Maturity Stages of ‘Yali’ Pears During Slow-Cooling Storage and PbRAV-Mediated Regulation. Foods. 2025; 14(12):2132. https://doi.org/10.3390/foods14122132
Chicago/Turabian StyleDeng, Bing, Qingxiu Li, Liya Liang, Hongyan Zhang, and Xiaoyu Zhang. 2025. "Mechanism of Core Browning in Different Maturity Stages of ‘Yali’ Pears During Slow-Cooling Storage and PbRAV-Mediated Regulation" Foods 14, no. 12: 2132. https://doi.org/10.3390/foods14122132
APA StyleDeng, B., Li, Q., Liang, L., Zhang, H., & Zhang, X. (2025). Mechanism of Core Browning in Different Maturity Stages of ‘Yali’ Pears During Slow-Cooling Storage and PbRAV-Mediated Regulation. Foods, 14(12), 2132. https://doi.org/10.3390/foods14122132