Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (650)

Search Parameters:
Keywords = esters aroma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 990 KiB  
Article
Non-Conventional Yeasts for Beer Production—Primary Screening of Strains
by Polina Zapryanova, Yordanka Gaytanska, Vesela Shopska, Rositsa Denkova-Kostova and Georgi Kostov
Beverages 2025, 11(4), 114; https://doi.org/10.3390/beverages11040114 - 6 Aug 2025
Abstract
Although beer fermentation has traditionally been carried out with Saccharomyces, the boom in craft brewing has led to the use of non-conventional yeast species for beer production. This group also includes non-Saccharomyces starters, which are commonly used in winemaking and which [...] Read more.
Although beer fermentation has traditionally been carried out with Saccharomyces, the boom in craft brewing has led to the use of non-conventional yeast species for beer production. This group also includes non-Saccharomyces starters, which are commonly used in winemaking and which have different technological characteristics compared to standard representatives of the Saccharomyces genus. One of the important characteristics of the non-Saccharomyces group is the richer enzyme profile, which leads to the production of beverages with different taste and aroma profiles. The aim of this study was to investigate sweet and hopped wort fermentation with seven strains of active dry non-conventional yeasts of Lachancea spp., Metschnikowia spp., Torulaspora spp. and a mixed culture of Saccharomyces cerevisiae and Torulaspora delbrueckii. One ale and one lager active dry yeast strain were used as control strains. The extract consumption, ethanol production, degree of fermentation, pH drop, as well as the yeast secondary metabolites formed by the yeast (higher alcohols, esters and aldehydes) in sweet and hopped wort were investigated. The results indicated that all of the studied types of non-conventional yeasts have serious potential for use in beer production in order to obtain new beer styles. For the purposes of this study, statistical methods, principle component analysis (PCA) and correlation analysis were used, thus establishing the difference in the fermentation kinetics of the growth in the studied species in sweet and hopped wort. It was found that hopping had a significant influence on the fermentation kinetics of some of the species, which was probably due to the inhibitory effect of the iso-alpha-acids of hops. Directions for future research with the studied yeast species in beer production are presented. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Figure 1

19 pages, 3213 KiB  
Article
Comparison and Study on Flavor and Quality Characteristics of Different Grades of Tianshanhong (TSH)
by Shu-Ting Xiao, Xian-Zhou Huang, Jian-Feng Huang, Qing-Yang Wu, Yang Wu, Ting-Ting Deng, Xian-Xian Xu, Hao-Xiang Liu, Xiao-Hui Chen, Shi-Zhong Zheng and Zi-Wei Zhou
Beverages 2025, 11(4), 111; https://doi.org/10.3390/beverages11040111 - 4 Aug 2025
Viewed by 63
Abstract
Tianshanhong (TSH), black tea products originating from the Ningde Tianshan Mountain, has gained significant recognition in the market. However, the chemical characteristics contributing to the flavor of TSH have not yet been reported. To systematically investigate the non-volatile and volatile compounds in TSH, [...] Read more.
Tianshanhong (TSH), black tea products originating from the Ningde Tianshan Mountain, has gained significant recognition in the market. However, the chemical characteristics contributing to the flavor of TSH have not yet been reported. To systematically investigate the non-volatile and volatile compounds in TSH, four grades of TSH were evaluated using national standard sensory methods, revealing that overall quality improved with higher grades. Based on the detection of ultra-performance liquid chromatography–mass spectrometry (UPLC-MS), the content of ester-type catechins was relatively high and decreased with lower grades. A total of 19 amino acids (AAs) were clustered, among them, three amino acids, L-Theanine (L-Thea), Arg, and GABA, showed highly significant correlations with the refreshing taste of TSH. Notably, the content of Arg had the highest correlation with TSH grade, with a coefficient of 0.976 (p < 0.01). According to gas chromatography mass spectrometry (GC-MS) analysis, a total of 861 kinds of volatile compounds were detected, with 282 identified and aroma-active compounds across grades selected using the PLS model. Methyl salicylate and geraniol were particularly notable, showing strong correlations with TSH grades at 0.975 and 0.987 (p < 0.01), respectively. Our findings show that non-volatile and volatile compounds can rationally grade TSH and help understand its flavor quality. Full article
(This article belongs to the Section Tea, Coffee, Water, and Other Non-Alcoholic Beverages)
Show Figures

Figure 1

18 pages, 2769 KiB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Viewed by 101
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

26 pages, 2132 KiB  
Article
Effect of Contrasting Redox Potential Evolutions and Cap Management Techniques on the Chemical Composition of Red Wine
by Dallas J. Parnigoni, Sean T. Kuster, Jesus Villalobos, James Nelson, Robert E. Coleman and L. Federico Casassa
Molecules 2025, 30(15), 3172; https://doi.org/10.3390/molecules30153172 - 29 Jul 2025
Viewed by 182
Abstract
This study investigated the effects of six cap management protocols targeting contrasting oxidation-reduction potential (ORP) evolutions during alcoholic fermentation of Pinot noir wines. Treatments included twice-daily punch-downs (PD) and pump-overs (PO), 1 h air or N2 injections (AirMix, N2Mix), air [...] Read more.
This study investigated the effects of six cap management protocols targeting contrasting oxidation-reduction potential (ORP) evolutions during alcoholic fermentation of Pinot noir wines. Treatments included twice-daily punch-downs (PD) and pump-overs (PO), 1 h air or N2 injections (AirMix, N2Mix), air injections triggered by ORP ≤ −40 mV (RedoxConAir), and equal N2 injections concurrent to RedoxConAir wines (RedoxConN2). AirMix wines maintained ORP values above 0 mV throughout fermentation, showed an oxidatively favored glutathione-to-glutathione disulfide ratio (GSH:GSSG) of 0.3:1, and had 21% lower total phenolics and 24% lower anthocyanins than PD wines. In contrast, N2Mix wines maintained the lowest ORP, near −100 mV, and showed a reductively favored GSH:GSSG ratio (7:1). PD wines extracted 48% more flavan-3-ols than PO wines, consistent with greater berry integrity disruption and seed submersion. Volatile composition was also impacted: ethyl n-octanoate showed the highest OAV among esters, ranging from 147 in PO wines to 116 in AirMix wines. Results suggest the GSH:GSSG ratio served as an indicator of redox history, with potential implications for color and aroma preservation during aging. Inert gas mixings resulted in equal or greater total phenolic content, while excessive air injections may provide a tool to soften astringency. Full article
Show Figures

Graphical abstract

14 pages, 1840 KiB  
Article
Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes
by Gonçalo Jasmins, Tânia Azevedo, José S. Câmara and Rosa Perestrelo
Separations 2025, 12(8), 188; https://doi.org/10.3390/separations12080188 - 22 Jul 2025
Viewed by 194
Abstract
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum [...] Read more.
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum var. cerasiforme, and S. betaceum—encompassing six distinct varieties, through the application of headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS). A total of 55 volatile organic compounds (VOCs) spanning multiple chemical classes were identified, of which only 28 were ubiquitously present across all varieties examined. Carbonyl compounds constituted the predominant chemical family, with hexanal and (E)-2-hexenal emerging as putative key contributors to the characteristic green and fresh olfactory notes. Notably, esters were found to dominate the unique volatile fingerprint of cherry tomatoes, particularly methyl 2-hydroxybenzoate, while Kumato and Roma varieties exhibited elevated levels of furanic compounds. Multivariate statistical analyses, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), demonstrated clear varietal discrimination and identified potential aroma-associated biomarkers such as phenylethyl alcohol, 3-methyl-1-butanol, hexanal, (E)-2-octenal, (E)-2-nonenal, and heptanal. Collectively, these findings underscore the utility of volatilomic fingerprint as a robust tool for varietal identification and quality control within the food industry. Full article
Show Figures

Graphical abstract

20 pages, 2144 KiB  
Article
Effects of Crop Load Management on Berry and Wine Composition of Marselan Grapes
by Jianrong Kai, Jing Zhang, Caiyan Wang, Fang Wang, Xiangyu Sun, Tingting Ma, Qian Ge and Zehua Xu
Horticulturae 2025, 11(7), 851; https://doi.org/10.3390/horticulturae11070851 - 18 Jul 2025
Viewed by 389
Abstract
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the [...] Read more.
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the number of clusters per shoot. Marselan grapes from the Gezi Mountain vineyard, located at the eastern foot of Helan Mountain in the Qingtongxia region of Ningxia, were selected as the research material to conduct a combination experiment with four levels of shoot density and three levels of cluster density. The analysis of the berry and wine chemical composition was combined with a wine sensory evaluation to determine the optimal crop load levels. Crop load regulation significantly affected both the grape berry composition and the basic physicochemical properties of the resulting wine. Low crop loads improved metrics such as the berry weight and soluble solids content. A low shoot density facilitated the accumulation of organic acids, flavonols, and hydroxybenzoic acids in wine. Moderate crop loads were conducive to anthocyanin synthesis—the total individual anthocyanins content in the 10–20 shoots per meter of the canopy treatment group ranged from 116% to 490% of the control group—whereas excessive crop loads hindered its accumulation. Crop load management significantly influenced the aroma composition of wine by regulating the content of sugars, nitrogen sources, and organic acids in grape berries, thereby promoting the synthesis of esters and the accumulation of key aromatic compounds, such as terpenes. This process optimized pleasant flavors, including fruity and floral aromas. In contrast, wines from the high crop load and control treatments contained lower levels of these aroma compounds. Compounds such as ethyl caprylate and β-damascenone were identified as potential quality markers. Overall, the wine produced from vines with a crop load of 30 clusters (15 shoots per meter of canopy, 2 clusters per shoot) received the highest sensory scores. Appropriate crop load management is therefore critical to improving the chemical composition of Marselan wine. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

14 pages, 5679 KiB  
Article
Characterization of Physicochemical Quality and Volatiles in Donkey Meat Hotpot Under Different Boiling Periods
by Lingyun Sun, Mengmeng Mi, Shujuan Sun, Lu Ding, Yan Zhao, Mingxia Zhu, Yun Wang, Muhammad Zahoor Khan, Changfa Wang and Mengmeng Li
Foods 2025, 14(14), 2530; https://doi.org/10.3390/foods14142530 - 18 Jul 2025
Viewed by 404
Abstract
Hotpot dishes are widely favored by consumers for their flavor profiles developed during the cooking process. This study investigated the quality characteristics and volatile compounds (VOCs) of donkey meat slices across varying boiling durations (0–42 s) using gas chromatography–ion mobility spectrometry (GC-IMS). The [...] Read more.
Hotpot dishes are widely favored by consumers for their flavor profiles developed during the cooking process. This study investigated the quality characteristics and volatile compounds (VOCs) of donkey meat slices across varying boiling durations (0–42 s) using gas chromatography–ion mobility spectrometry (GC-IMS). The results demonstrated that donkey meat boiled for 12–18 s exhibited optimal characteristics in terms of meat retention, color parameters, shear force values, and pH measurements. Forty-eight distinct VOCs were identified in the samples, with aldehydes, alcohols, ketones, acids, furans, and esters representing the predominant categories. Among these compounds, 18 were identified as characteristic aroma compounds, including 3-hexanone, 2, 3-butanedione, and oct-1-en-3-ol. Samples subjected to different boiling durations were successfully differentiated through topographic plots, fingerprint mapping, and multivariate analysis. The abundance and diversity of VOCs reached peak values in samples boiled for 12–18 s. Furthermore, 28 VOCs were identified as potential markers for distinguishing between different boiling durations, including 2-butoxyethanol D, benzaldehyde D, and (E)-2-pentenal D. This study concludes that a boiling duration of 12–18 s for donkey meat during hotpot preparation yields optimal quality characteristics and volatile flavor compound profiles and provides valuable insights for standardizing cooking parameters in hotpot preparations of other meat products. It is necessary to confirm this finding with sensory evaluations in further research. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

11 pages, 1400 KiB  
Article
Dynamic Changes in Sensory Quality and Chemical Components of Bingdao Ancient Tree Tea During Multiple Brewing
by Chunju Peng, Yuxin Zhao, Sifeng Zhang, Yan Tang, Li Jiang, Shujing Liu, Benying Liu, Yuhua Wang, Xinghui Li and Guanghui Zeng
Foods 2025, 14(14), 2510; https://doi.org/10.3390/foods14142510 - 17 Jul 2025
Viewed by 304
Abstract
Bingdao ancient tree tea (BATT), a type of raw Pu-erh tea, is renowned for its brewing durability, characterized by a unique aroma and flavor. To explore the dynamic changes in infusion quality and the impact of multiple steeping process, BATT was brewed 14 [...] Read more.
Bingdao ancient tree tea (BATT), a type of raw Pu-erh tea, is renowned for its brewing durability, characterized by a unique aroma and flavor. To explore the dynamic changes in infusion quality and the impact of multiple steeping process, BATT was brewed 14 times, and its sensory attributes, infusion color, and chemical composition were assessed across different brewing intervals. The color of the tea infusion remained relatively stable throughout the brewing process. Sensory evaluation indicated that BATT exhibited optimal sensory quality between the third and seventh infusions. While the leaching of polyphenols showed minimal variation across brews, the concentrations of ester-catechins, non-ester catechins, free amino acids, and caffeine after the seventh brewing decreased by 28.82%, 21.83%, 28.86%, and 40.37%, respectively. Our results indicated that higher concentrations of flavor compounds in the BATT infusion appeared between the fourth and seventh brews. This study provides a theoretical basis for understanding the brewing characteristics of BATT. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

17 pages, 2788 KiB  
Article
Characterization of Key Aroma Compounds in Aged Chinese Nongxiangxing Baijiu Based on Sensory and Quantitative Analysis: Emphasis on the Contribution of Trace Compounds
by Peiqi Li, Yuting Ling, Xiaomei Shen, Chengcheng Liang, Youhong Tang, Shan Chen, Lisa Zhou Wang, Shuang Chen, Anjun Li and Yan Xu
Molecules 2025, 30(14), 2963; https://doi.org/10.3390/molecules30142963 - 14 Jul 2025
Viewed by 295
Abstract
The characteristics and complexity of Baijiu are inseparable from the promotion of aging. While the impact of compounds such as alcohols, esters, and acids on the aroma of aged Baijiu has been extensively studied, the role of other trace compounds in the aging [...] Read more.
The characteristics and complexity of Baijiu are inseparable from the promotion of aging. While the impact of compounds such as alcohols, esters, and acids on the aroma of aged Baijiu has been extensively studied, the role of other trace compounds in the aging process should not be overlooked. To further investigate the relationship between volatile compounds and the aging of Nongxiangxing Baijiu, sensomics research methods were employed to analyze profiles of young and aged Nongxiangxing Baijiu. In this study, a total of 94 aroma compounds were analyzed in both young and aged Nongxiangxing Baijiu by GC-O/MS. Among these, 12 aroma compounds significantly associated with the aging process were identified by quantification and odor activity values (OAVs). Furthermore, the omission tests result showed that 4-methyl-2-methoxyphenol (2066.79 μg/L), benzaldehyde (3860.30 μg/L), β-phenylethanol (5638.85 μg/L), 3-(methylsulfanyl)propan-1-ol (8.82 μg/L), 3-(methylsulfanyl)propanal (15.91 μg/L), and linalool (17.36 μg/L) were key aroma compounds of aged Nongxiangxing Baijiu. This study reveals that trace compounds contribute to the distinct aroma complexity of aged Nongxiangxing Baijiu, providing a foundation to support aging process analysis. Full article
Show Figures

Figure 1

18 pages, 6714 KiB  
Article
Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea
by Jialin Chen, Binghong Liu, Yide Zhou, Jiahao Chen, Yanchun Zheng, Hui Meng, Xindong Tan, Peng Zheng, Binmei Sun, Hongbo Zhao and Shaoqun Liu
Foods 2025, 14(14), 2466; https://doi.org/10.3390/foods14142466 - 14 Jul 2025
Viewed by 440
Abstract
The sensory quality of black tea is intrinsically linked to cultivar genetics, yet comprehensive characterization of flavor compounds in emerging northern Guangdong black tea (NGBT) remains limited. This study employed high-performance liquid chromatography-ultraviolet (HPLC-UV) and headspace solid-phase microextraction coupled with GC-MS (HS-SPME-GC-MS) to [...] Read more.
The sensory quality of black tea is intrinsically linked to cultivar genetics, yet comprehensive characterization of flavor compounds in emerging northern Guangdong black tea (NGBT) remains limited. This study employed high-performance liquid chromatography-ultraviolet (HPLC-UV) and headspace solid-phase microextraction coupled with GC-MS (HS-SPME-GC-MS) to analyze non-volatile and volatile compounds in five NGBT cultivars—Jinshahong (JSH), Danxia No.1 (DXY), Danxia No.2 (DXE), Yingde Black Tea (QTZ), and Yinghong No.9 (YHJ)—alongside sensory evaluation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) identified key non-volatile discriminants (VIP > 1) ranked by contribution: total catechins > simple catechins > CG > EGCG > ester catechins > EGC. HS-SPME-GC-MS detected 97 volatiles, with eight aroma-active compounds exhibiting OAV > 1 and VIP > 1: Geraniol > Methyl salicylate > Linalool > β-Myrcene > Benzyl alcohol > (Z)-Linalool Oxide > Phenethyl alcohol > (Z)-Jasmone. These compounds drive cultivar-specific aromas in NGBTs. Findings establish a theoretical framework for evaluating cultivar-driven flavor quality and provide novel insights for targeted breeding and processing optimization of NGBTs. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

16 pages, 1657 KiB  
Article
Impact of Apple Pulp on Textural Characteristics, Microstructure, Volatile Profile, and Sensory Acceptance of Yogurts
by Dimitra Dimitrellou, Thomas Moschakis and Panagiotis Kandylis
Foods 2025, 14(14), 2453; https://doi.org/10.3390/foods14142453 - 12 Jul 2025
Viewed by 369
Abstract
Fresh apple pulp from the Granny Smith variety was used at different levels (5–15% w/w) for yogurt production. Color, texture, microstructure, aroma, and sensory analyses were used to evaluate the effect of the apple pulp on the main characteristics of [...] Read more.
Fresh apple pulp from the Granny Smith variety was used at different levels (5–15% w/w) for yogurt production. Color, texture, microstructure, aroma, and sensory analyses were used to evaluate the effect of the apple pulp on the main characteristics of yogurt. Yogurts with apple pulp presented a lower brightness (L*) and an increased redness (a*) and yellowness (b*), which were significantly affected by the apple pulp concentration. The texture analysis revealed an improved consistency and reduced syneresis, leading to a creamier and more stable product. The aroma profile of yogurts was enriched, presenting higher ester contents. Confocal laser scanning microscopy showed that the incorporation of modest quantities of apple pulp resulted in the formation of initially denser networks, while at elevated levels, an enhanced microscopic phase separation occurred. A 5% apple pulp addition achieved a balance between enhancing flavor and texture retention while maintaining high overall acceptability, as was also confirmed by the sensory evaluation. Full article
(This article belongs to the Special Issue Food Bioactives: Innovations, Mechanisms, and Future Applications)
Show Figures

Figure 1

25 pages, 3228 KiB  
Article
Bio-Agronomic Assessment and Quality Evaluation of Sugarcane with Optimized Juice Fermentation in View of Producing Sicilian “Rum Agricole”
by Antonino Pirrone, Nicolò Iacuzzi, Antonio Alfonzo, Morgana Monte, Vincenzo Naselli, Federica Alaimo, Noemi Tortorici, Gabriele Busetta, Giuliana Garofalo, Raimondo Gaglio, Claudio De Pasquale, Nicola Francesca, Luca Settanni, Teresa Tuttolomondo and Giancarlo Moschetti
Appl. Sci. 2025, 15(14), 7696; https://doi.org/10.3390/app15147696 - 9 Jul 2025
Viewed by 370
Abstract
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process [...] Read more.
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process to produce rum agricole, a spirit derived from fresh cane juice. Agronomic evaluations revealed significant varietal differences, with juice yields of 5850−14,312 L ha−1 and sugar yields of 1.84–5.33 t ha−1. Microbial control was achieved through the addition of lactic acid, which effectively suppressed undesirable bacterial growth and improved fermentation quality. Furthermore, the application of two selected Saccharomyces cerevisiae strains (MN113 and SPF21), isolated from high-sugar matrices such as manna and honey byproducts, affected the production of volatile compounds, particularly esters and higher alcohols. Sensory analysis confirmed a more complex aromatic profile in cane wines fermented with these selected yeasts, with overall acceptance scores reaching 7.5. Up to 29 aroma-active compounds were identified, including ethyl esters and higher alcohols. This research represents the first integrated approach combining lactic acid treatment and novel yeast strains for the fermentation of sugarcane juice in a Mediterranean context. The findings highlight the potential for high-quality rum agricole production in Sicily. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

20 pages, 800 KiB  
Article
The Influence of Plant Growth Regulators (PGRs) on Physical and Chemical Characteristics of Hops (Humulus lupulus L.)
by Mengzi Zhang, Nicholas A. Wendrick, Sean M. Campbell, Jacob E. Gazaleh, Heqiang Huo, Katherine A. Thompson-Witrick and Brian J. Pearson
Int. J. Plant Biol. 2025, 16(3), 79; https://doi.org/10.3390/ijpb16030079 - 8 Jul 2025
Viewed by 384
Abstract
Hops (Humulus lupulus L.) are a critical component in beer brewing. The growing demand for craft beer has increased interest in hop cultivation in non-traditional regions where unfavorable climatic conditions hinder optimal yield and quality. To address these challenges, this study investigates [...] Read more.
Hops (Humulus lupulus L.) are a critical component in beer brewing. The growing demand for craft beer has increased interest in hop cultivation in non-traditional regions where unfavorable climatic conditions hinder optimal yield and quality. To address these challenges, this study investigates the effects of plant growth regulators (PGRs) on hop cone yield and chemical compositions. In two separate studies, year-1 Cascade hops were subjected to various PGR treatments in the field. PGR treatments generally had minimal effect on the dry cone yield in study I. In study II, a combination of Ethephon at 45 mg/L and ProGibb at 3 mg/L significantly increased the cone yield by 125% compared to the control. While all treatments had a “good quality” hop storage index, a combination of Ethephon and ProGibb produced alpha acid percentages within the commercial standard range. Ethephon at 30 mg/L combined with ProGibb at 2 mg/L enhanced bitterness and aroma, delivering the highest concentration of volatile organic compounds at 569.7 mg/L, thereby enhancing aroma compounds associated with fruity esters, monoterpenes, and sesquiterpenes. This study demonstrates that specific PGR treatments can improve the chemical composition of hops grown in non-traditional regions, with implications for optimizing aroma and bitterness in beer. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

18 pages, 675 KiB  
Article
Effects of Hyperbaric Micro-Oxygenation on the Color, Volatile Composition, and Sensory Profile of Vitis vinifera L. cv. Monastrell Grape Must
by Antonio José Pérez-López, Luis Noguera-Artiaga, Patricia Navarro, Pablo Mompean, Alejandro Van Lieshout and José Ramón Acosta-Motos
Fermentation 2025, 11(7), 380; https://doi.org/10.3390/fermentation11070380 - 30 Jun 2025
Viewed by 517
Abstract
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. [...] Read more.
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. Grape clusters were manually harvested and fermented under controlled conditions, applying micro-oxygenation treatments at two fermentation stages (day 3 and day 13) within a hyperbaric chamber. Physicochemical analyses, CIELab color measurements, visible reflectance spectra, GC-FID volatile profiling, and descriptive sensory analysis were performed. Micro-oxygenated samples (M1_MOX and M2_MOX) showed significant increases in lightness (L*), redness (a*), chroma (C*), and reflectance in the 520–620 nm range, indicating enhanced extraction and stabilization of phenolic pigments. Volatile analysis revealed that these samples also contained higher concentrations of key esters and terpenes associated with fruity and floral notes. Sensory evaluation confirmed these findings, with MOX-treated wines displaying greater aromatic intensity, flavor persistence, and varietal character. Control samples (M1_CON and M2_CON) exhibited lower color saturation and volatile compound content, along with diminished sensory quality. These results suggest that hyperbaric micro-oxygenation is an effective strategy for improving color intensity and aromatic complexity during red wine fermentation under controlled, non-thermal conditions. Full article
Show Figures

Figure 1

22 pages, 5507 KiB  
Review
Exploring Aroma and Flavor Diversity in Cannabis sativa L.—A Review of Scientific Developments and Applications
by Kacper Piotr Kaminski, Julia Hoeng, Kasia Lach-Falcone, Fernando Goffman, Walter K. Schlage and Diogo Latino
Molecules 2025, 30(13), 2784; https://doi.org/10.3390/molecules30132784 - 28 Jun 2025
Viewed by 1503
Abstract
Cannabis sativa L. exhibits a complex sensory profile governed by a diverse range of volatile and non-volatile compounds. Volatile constituents—such as terpenes, aldehydes, ketones, esters, and sulfur-containing compounds—together with non-volatile taste-active molecules including flavonoids and phenolic compounds, underlie its distinctive aroma and flavor. [...] Read more.
Cannabis sativa L. exhibits a complex sensory profile governed by a diverse range of volatile and non-volatile compounds. Volatile constituents—such as terpenes, aldehydes, ketones, esters, and sulfur-containing compounds—together with non-volatile taste-active molecules including flavonoids and phenolic compounds, underlie its distinctive aroma and flavor. This review examines how genetic diversity, cultivation practices, and post-harvest processing modulate the synthesis, accumulation, and chemical transformation of these metabolites in the cannabis flower. It discusses recent advancements in the extraction, identification, and quantification of these compounds, highlighting the crucial integration of chemical characterization with sensory evaluation. By synthesizing findings from advanced analytical methodologies, this review addresses the challenges and opportunities involved in defining the sensory profiles of C. sativa L. varieties. Drawing insights from research on other consumer plants, strategies for future innovations are outlined, including the discovery of novel aroma and flavor compounds and the development of a universal cannabis aroma and flavor wheel. This work aims to support advancements in breeding programs, enhance product quality control, and guide future research in cannabis sensory science. Full article
Show Figures

Graphical abstract

Back to TopTop