Impact of Apple Pulp on Textural Characteristics, Microstructure, Volatile Profile, and Sensory Acceptance of Yogurts
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apple Pulp and Yogurt Production
2.3. Analyses
2.3.1. Color Analysis
2.3.2. Texture Analysis
2.3.3. Microstructure of Yogurt
2.3.4. GC/MS Analysis
2.3.5. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Color Characteristics of Yogurts
3.2. Texture Analysis of Yogurts with Apple Pulp
3.3. Microstructure of Yogurts with Apple Pulp
3.4. Volatile Compounds Based on HS-SPME-GC/MS Analysis of Yogurts
3.4.1. Esters
3.4.2. Alcohols
3.4.3. Acids
3.4.4. Aldehydes
3.4.5. Ketones
3.4.6. Total Volatile Compounds
3.4.7. Principal Component Analysis Based on HS-SPME-GC/MS Analysis of Yogurts
3.5. Sensory Analysis of Yogurts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GC/MS | Gas chromatography mass spectrometry |
HS-SPME | Headspace solid-phase microextraction |
Y | Yogurt without apple pulp |
AP5Y | Yogurt containing 5% (w/w) apple pulp |
AP10Y | Yogurt containing 10% (w/w) apple pulp |
AP15Y | Yogurt containing 15% (w/w) apple pulp |
References
- Tamime, A.Y.; Robinson, R.K. Yoghurt: Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Pannerchelvan, S.; Rios-Solis, L.; Wasoh, H.; Sobri, M.Z.M.; Wong, F.W.F.; Mohamed, M.S.; Mohamad, R.; Halim, M. Functional yogurt: A comprehensive review of its nutritional composition and health benefits. Food Funct. 2024, 15, 10927–10955. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Mondragon Portocarrero, A.D.C.; Miranda, J.M.; Witkowska, A.M.; Karav, S. Functional yogurt: Types and health benefits. Appl. Sci. 2024, 14, 11798. [Google Scholar] [CrossRef]
- Song, C.; Xie, J.; Pan, Y. System sensory analysis of yogurt based on texture analyzer. J. Dairy Sci. 2024; in press. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Moschakis, T. Recent applications of grapes and their derivatives in dairy products. Trends Food Sci. Technol. 2021, 114, 696–711. [Google Scholar] [CrossRef]
- Ahmad, I.; Hao, M.; Li, Y.; Zhang, J.; Ding, Y.; Lyu, F. Fortification of yogurt with bioactive functional foods and ingredients and associated challenges-A review. Trends Food Sci. Technol. 2022, 129, 558–580. [Google Scholar] [CrossRef]
- Bankole, A.O.; Irondi, E.A.; Awoyale, W.; Ajani, E.O. Application of natural and modified additives in yogurt formulation: Types, production, and rheological and nutraceutical benefits. Front. Nutr. 2023, 10, 1257439. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Petrović, M.; Miočinović, J.; Zlatanović, S.; Laličić Petronijević, J.; Mitić-Ćulafić, D.; Gorjanović, S. Bioactivity and sensory properties of probiotic yogurt fortified with apple pomace flour. Foods 2020, 9, 763. [Google Scholar] [CrossRef] [PubMed]
- Popescu, L.; Ceșco, T.; Gurev, A.; Ghendov-Mosanu, A.; Sturza, R.; Tarna, R. Impact of apple pomace powder on the bioactivity, and the sensory and textural characteristics of yogurt. Foods 2022, 11, 3565. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Choi, I. Physicochemical characteristics, antioxidant properties and consumer acceptance of Greek yogurt fortified with apple pomace syrup. Foods 2023, 12, 1856. [Google Scholar] [CrossRef]
- Klojdova, I.; Ngasakul, N.; Kozlu, A.; Allende, D.K.B. Apple pomace as a functional component of sustainable set-type yogurts. LWT 2024, 211, 116909. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Sakadani, E.; Kandylis, P. Enhancing probiotic viability in yogurt: The role of apple fibers in supporting Lacticaseibacillus casei ATCC 393 during storage and gastrointestinal transit. Foods 2025, 14, 376. [Google Scholar] [CrossRef]
- Mahmood, A.; Abbas, N.; Gilani, A.H. Quality of stirred buffalo milk yogurt blended with apple and banana fruits. Pak. J. Agric. Sci. 2008, 45, 275–279. [Google Scholar]
- Chakraborty, C.; Mukherjee, S.; Biswas, S. Evaluation of rheological, physicochemical, and sensory properties of apple fortified yoghurt. Indian J. Dairy Sci. 2019, 72, 53–58. [Google Scholar] [CrossRef]
- Saleh, I.; Abdelwahed, E.M.; Rabie, A.M.H.; El-Ella, A. Fortification of probiotic stirred yoghurt by addition of apple and mango pulps. Zagazig J. Agric. Res. 2018, 45, 625–635. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Costa, M.P.; Frasao, B.S.; Silva, A.C.O.; Freitas, M.Q.; Franco, R.M.; Conte-Junior, C.A. Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts. J. Dairy Sci. 2015, 98, 5995–6003. [Google Scholar] [CrossRef]
- Najgebauer-Lejko, D.; Liszka, K.; Tabaszewska, M.; Domagała, J. Probiotic yoghurts with sea buckthorn, elderberry, and sloe fruit purees. Molecules 2021, 26, 2345. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Wang, B.; Zhao, A.; Wei, L.; Shao, Y.; Wang, Y.; Cao, B.; Zhang, F. Quality characteristics and antioxidant activities of goat milk yogurt with added jujube pulp. Food Chem. 2019, 277, 238–245. [Google Scholar] [CrossRef]
- Senadeera, S.S.; Prasanna, P.H.P.; Jayawardana, N.W.I.A.; Gunasekara, D.C.S.; Senadeera, P.; Chandrasekara, A. Antioxidant, physicochemical, microbiological, and sensory properties of probiotic yoghurt incorporated with various Annona species pulp. Heliyon 2018, 4, e00955. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Solomakou, N.; Kokkinomagoulos, E.; Kandylis, P. Yogurts supplemented with juices from grapes and berries. Foods 2020, 9, 1158. [Google Scholar] [CrossRef]
- Βasdeki, A.M.; Fatouros, D.G.; Βiliaderis, C.G.; Moschakis, T. Physicochemical properties of human breast milk during the second year of lactation. Curr. Res. Food Sci. 2021, 4, 565–576. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 11869:2012; Fermented Milks—Determination of Titratable Acidity—Potentiometric Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- Dimitrellou, D.; Kourkoutas, Y.; Koutinas, A.A.; Kanellaki, M. Thermally-dried immobilized kefir on casein as starter culture in dried whey cheese production. Food Microbiol. 2009, 26, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, N.J.; Adhikari, K.; Sancho-Madriz, M.F. Sensory characteristics of peach-flavored yogurt drinks containing prebiotics and synbiotics. LWT Food Sci. Technol. 2011, 44, 158–163. [Google Scholar] [CrossRef]
- Tárrega, A.; Salvador, A.; Meyer, M.; Feuillère, N.; Ibarra, A.; Roller, M.; Terroba, D.; Madera, C.; Iglesias, J.R.; Echevarría, J.; et al. Active compounds and distinctive sensory features provided by American ginseng (Panax quinquefolius L.) extract in a new functional milk beverage. J. Dairy Sci. 2012, 95, 4246–4255. [Google Scholar] [CrossRef]
- da Costa, G.M.; de Paula, M.M.; Costa, G.N.; Esmerino, E.A.; Silva, R.; de Freitas, M.Q.; Barão, C.E.; Cruz, A.G.; Pimentel, T.C. Preferred attribute elicitation methodology compared to conventional descriptive analysis: A study using probiotic yogurt sweetened with xylitol and added with prebiotic components. J. Sens. Stud. 2020, 35, e12602. [Google Scholar] [CrossRef]
- Mousavi, M.; Heshmati, A.; Daraei Garmakhany, A.; Vahidinia, A.; Taheri, M. Texture and sensory characterization of functional yogurt supplemented with flaxseed during cold storage. Food Sci. Nutr. 2019, 7, 907–917. [Google Scholar] [CrossRef]
- Shihata, A.; Shah, N.P. Influence of addition of proteolytic strains of Lactobacillus delbrueckii subsp. bulgaricus to commercial ABT starter cultures on texture of yoghurt, exopolysaccharide production and survival of bacteria. Int. Dairy J. 2002, 12, 765–772. [Google Scholar] [CrossRef]
- Paseephol, T.; Small, D.M.; Sherkat, F. Rheology and texture of set yogurt as affected by inulin addition. J. Texture Stud. 2008, 39, 617–634. [Google Scholar] [CrossRef]
- Carson, K.; Meullenet, J.F.C.; Reische, D.W. Spectral stress strain analysis and partial least squares regression to predict sensory texture of yogurt using a compression/penetration instrumental method. J. Food Sci. 2002, 67, 1224–1228. [Google Scholar] [CrossRef]
- Aportela-Palacios, A.; Sosa-Morales, M.E.; Vélez-Ruiz, J.F. Rheological and physicochemical behavior of fortified yogurt, with fiber and calcium. J. Texture Stud. 2005, 36, 333–349. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Cui, H.; Fang, J.; Cheng, K.; Mo, J.; Chen, W. Chemical composition, quality attributes and antioxidant activity of stirred-type yogurt enriched with Melastoma dodecandrum Lour fruit powder. Food Funct. 2022, 13, 1579–1592. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Tebar, N.; Muñoz-Bas, C.; Viuda-Martos, M.; Sayas-Barberá, E.; Pérez-Alvarez, J.A.; Fernández-López, J. Fortification of goat milk yogurts with date palm (Phoenix dactylifera L.) coproducts: Impact on their quality during cold storage. Food Chem. 2024, 454, 139800. [Google Scholar] [CrossRef]
- Meena, L.; Neog, R.; Yashini, M.; Sunil, C.K. Pineapple pomace powder (freeze-dried): Effect on the texture and rheological properties of set-type yogurt. Food Chem. Adv. 2022, 1, 100101. [Google Scholar] [CrossRef]
- Jooyandeh, H.; Momenzadeh, S.; Alizadeh Behbahani, B.; Barzegar, H. Effect of Malva neglecta and lactulose on survival of Lactobacillus fermentum and textural properties of synbiotic stirred yogurt. J. Food Sci. Technol. 2023, 60, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Delikanli, B.; Ozcan, T. Improving the textural properties of yogurt fortified with milk proteins. J. Food Process. Preserv. 2017, 41, e13101. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of freeze-dried immobilized Lactobacillus casei as probiotic adjunct culture in yogurts. Foods 2019, 8, 374. [Google Scholar] [CrossRef]
- Cheng, H. Volatile flavor compounds in yogurt: A review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Guo, J.; Yue, T.; Yuan, Y.; Sun, N.; Liu, P. Characterization of volatile and sensory profiles of apple juices to trace fruit origins and investigation of the relationship between the aroma properties and volatile constituents. LWT 2020, 124, 109203. [Google Scholar] [CrossRef]
- Yang, S.; Meng, Z.; Fan, J.; Yan, L.; Yang, Y.; Zhao, Z. Evaluation of the volatile profiles in pulp of 85 apple cultivars (Malus domestica) by HS–SPME combined with GC–MS. J. Food Meas. Charact. 2021, 15, 4215–4225. [Google Scholar] [CrossRef]
- Giri, A.; Osako, K.; Ohshima, T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing. Food Chem. 2010, 120, 621–631. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Buttery, R.G.; Flath, R.A. Volatile constituents of Asian pear (Pyrus serotina). J. Agric. Food Chem. 1992, 40, 1925–1929. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Y.; Yu, H.; Chen, Z.; Tian, H. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice. Food Biosci. 2019, 27, 30–36. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Gousi, M.; Kordouli, E.; Kanellaki, M. Effect of immobilization support and fermentation temperature on beer and fermented milk aroma profiles. Beverages 2021, 7, 47. [Google Scholar] [CrossRef]
- Dan, T.; Wang, D.; Wu, S.; Jin, R.; Ren, W.; Sun, T. Profiles of volatile flavor compounds in milk fermented with different proportional combinations of Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus. Molecules 2017, 22, 1633. [Google Scholar] [CrossRef]
- Drake, M.A. Invited review: Sensory analysis of dairy foods. J. Dairy Sci. 2007, 90, 4925–4937. [Google Scholar] [CrossRef]
- Aguayo-Mendoza, M.; Santagiuliana, M.; Ong, X.; Piqueras-Fiszman, B.; Scholten, E.; Stieger, M. How addition of peach gel particles to yogurt affects oral behavior, sensory perception and liking of consumers differing in age. Food Res. Int. 2020, 134, 109213. [Google Scholar] [CrossRef]
Sample | L* | a* | b* | C | Hue | Sample Color 1 |
---|---|---|---|---|---|---|
Apple pulp | 40.2 ± 0.0 | 10.7 ± 0.0 | 19.1 ± 0.0 | 21.9 ± 0.0 | 60.7 ± 0.1 | |
Y | 92.6 ± 1.1 a | −3.9 ± 0.0 a | 10.1 ± 0.2 a | 10.8 ± 0.2 a | 111.2 ± 0.3 d | |
AP5Y | 90.8 ± 1.2 ab | −3.1 ± 0.1 b | 11.1 ± 0.1 b | 11.5 ± 0.1 ab | 105.6 ± 0.6 c | |
AP10Y | 89.0 ± 1.2 ab | −2.2 ± 0.1 c | 11.8 ± 0.2 b | 12.0 ± 0.2 bc | 100.4 ± 0.4 b | |
AP15Y | 87.3 ± 1.2 b | −1.5 ± 0.2 d | 12.7 ± 0.2 c | 12.7 ± 0.2 c | 96.6 ± 0.8 a | |
Significance | * | *** | *** | ** | *** |
Parameters | Storage (Days) | Yogurt Samples | Significance | |||
---|---|---|---|---|---|---|
Y | AP5Y | AP10Y | AP15Y | |||
Hardness (N) | 1 | 1.31 ± 0.10 | 1.35 ± 0.05 | 1.30 ± 0.06 | 1.28 ± 0.08 | ns |
14 | 1.27 ± 0.06 | 1.34 ± 0.08 | 1.28 ± 0.07 | 1.25 ± 0.04 | ns | |
28 | 1.20 ± 0.08 | 1.31 ± 0.06 | 1.27 ± 0.06 | 1.26 ± 0.03 | ns | |
Cohesiveness | 1 | 0.29 ± 0.01 a | 0.34 ± 0.02 a | 0.38 ± 0.03 ab | 0.46 ± 0.03 b | ** |
14 | 0.29 ± 0.02 a | 0.36 ± 0.02 ab | 0.41 ± 0.01 b | 0.50 ± 0.02 c | ** | |
28 | 0.31 ± 0.01 a | 0.40 ± 0.02 b | 0.45 ± 0.02 b | 0.53 ± 0.01 c | *** | |
Springiness | 1 | 0.63 ± 0.02 a | 0.64 ± 0.02 ab | 0.72 ± 0.01 c | 0.70 ± 0.01 bc | * |
14 | 0.64 ± 0.02 a | 0.65 ± 0.01 a | 0.74 ± 0.02 b | 0.72 ± 0.02 ab | * | |
28 | 0.66 ± 0.03 a | 0.66 ± 0.02 a | 0.78 ± 0.02 b | 0.76 ± 0.01 b | ** | |
Gumminess (N) | 1 | 0.39 ± 0.04 | 0.38 ± 0.03 | 0.38 ± 0.07 | 0.38 ± 0.07 | ns |
14 | 0.37 ± 0.03 | 0.37 ± 0.04 | 0.40 ± 0.01 | 0.43 ± 0.05 | ns | |
28 | 0.40 ± 0.03 | 0.39 ± 0.04 | 0.39 ± 0.07 | 0.43 ± 0.05 | ns | |
Chewiness (N) | 1 | 0.22 ± 0.01 a | 0.26 ± 0.01 a | 0.35 ± 0.02 b | 0.37 ± 0.02 b | ** |
14 | 0.24 ± 0.01 a | 0.27 ± 0.02 a | 0.36 ± 0.01 b | 0.34 ± 0.02 b | ** | |
28 | 0.22 ± 0.02 a | 0.26 ± 0.01 a | 0.35 ± 0.01 b | 0.35 ± 0.01 b | ** |
Compounds (μg/kg) | Yogurt Samples 1 | |||
---|---|---|---|---|
Y | AP5Y | AP10Y | AP15Y | |
Esters | ||||
ethyl acetate | 0.4 ± 0.2 a | 0.8 ± 0.2 ab | 1.5 ± 0.2 c | 1.0 ± 0.2 b |
ethyl butanoate | 0.8 ± 0.1 a | 1.0 ± 0.2 a | 1.4 ± 0.2 b | 1.8 ± 0.1 c |
butyl acetate | Nd a | Nd a | 0.5 ± 0.1 b | 0.6 ± 0.2 b |
2-methylbutyl acetate | Nd a | 0.8 ± 0.1 c | 0.5 ± 0.2 b | 0.9 ± 0.2 c |
ethyl octanoate | Nd a | 0.4 ± 0.1 b | 0.9 ± 0.2 c | 1.0 ± 0.2 c |
ethyl decanoate | Nd a | 0.5 ± 0.2 a | 0.4 ± 0.1 a | 0.9 ± 0.2 b |
Total esters | 1.2 ± 0.1 a | 3.5 ± 0.7 b | 5.2 ± 0.8 c | 6.2 ± 0.6 c |
Organic acids | ||||
acetic acid | 10.3 ± 1.2 ab | 12.2 ± 1.0 b | 8.5 ± 0.7 a | 12.0 ± 0.9 b |
butanoic acid | 5.2 ± 0.4 a | 10.1 ± 0.5 b | 9.7 ± 0.6 b | 10.3 ± 1.0 b |
hexanoic acid | 20.3 ± 0.5 | 21.3 ± 0.8 | 20.5 ± 1.0 | 19.3 ± 1.5 |
octanoic acid | 18.4 ± 1.0 ab | 17.2 ± 0.5 a | 19.3 ± 0.8 b | 18.0 ± 0.3 ab |
decanoic acid | 15.3 ± 0.5 | 16.5 ± 1.0 | 16.0 ± 0.5 | 15.1 ± 0.8 |
Total organic acids | 69.5 ± 1.8 a | 77.4 ± 0.9 b | 74.0 ± 2.3 ab | 74.7 ± 2.5 b |
Alcohols | ||||
3-methyl-1-butanol | Nd a | 0.4 ± 0.2 ab | 1.2 ± 0.6 bc | 2.0 ± 0.5 c |
1-hexanol | 4.0 ± 1.2 a | 5.8 ± 0.8 ab | 7.2 ± 0.9 b | 7.0 ± 0.7 b |
1-heptanol | 5.1 ± 0.5 c | 4.0 ± 0.4 b | 1.3 ± 0.5 a | 1.0 ± 0.3 a |
1-octanol | Nd a | Nd a | 1.2 ± 0.4 b | 2.8 ± 0.8 b |
2-heptanol | Nd a | Nd a | 1.4 ± 0.3 b | 2.0 ± 0.5 b |
2-nonanol | 1.0 ± 0.3 a | 1.5 ± 0.5 ab | 3.0 ± 0.5 c | 2.5 ± 0.3 bc |
2-ethyl-1-hexanol | 2.8 ± 0.3 a | 7.1 ± 0.4 b | 12.0 ± 0.7 c | 10.5 ± 0.7 c |
Total alcohols | 12.9 ± 1.7 a | 18.8 ± 1.9 b | 27.3 ± 0.7 c | 28.8 ± 0.8 c |
Aldehydes | ||||
acetaldehyde | 12.3 ± 1.2 ab | 10.5 ± 0.8 a | 13.5 ± 0.9 b | 14.2 ± 1.2 b |
hexanal | Nd a | 2.0 ± 0.4 a | 5.3 ± 0.8 b | 6.1 ± 1.3 b |
heptanal | 1.5 ± 0.5 | 2.3 ± 0.5 | 2.5 ± 0.9 | 2.1 ± 0.5 |
octanal | 3.2 ± 0.4 | 2.1 ± 0.4 | 3.0 ± 0.8 | 3.4 ± 0.7 |
nonanal | 9.0 ± 1.3 a | 14.3 ± 0.9 b | 15.0 ± 1.2 b | 17.2 ± 1.4 b |
Total aldehydes | 26.0 ± 1.6 a | 31.2 ± 2.1 b | 39.3 ± 1.2 c | 43.0 ± 2.8 c |
Ketones | ||||
acetone | 10.3 ± 0.8 | 8.5 ± 1.2 | 9.0 ± 1.3 | 9.5 ± 0.5 |
2-butanone | 16.4 ± 1.0 | 20.3 ± 2.5 | 18.4 ± 1.5 | 18.2 ± 1.2 |
2-heptanone | 16.3 ± 1.2 | 17.0 ± 0.8 | 16.2 ± 1.0 | 15.9 ± 1.2 |
2-octanone | 9.2 ± 0.7 a | 14.3 ± 1.0 b | 13.5 ± 0.9 b | 15.0 ± 0.9 b |
Total ketones | 52.2 ± 1.7 a | 60.1 ± 3.4 b | 57.1 ± 1.7 ab | 58.6 ± 1.4 b |
Total compounds | 161.7 ± 6.7 a | 190.9 ± 8.9 b | 202.9 ± 6.7 bc | 211.3 ± 7.9 c |
Sample | Appearance | Aroma | Flavor | Mouthfeel | Overall Acceptability |
---|---|---|---|---|---|
Y | 8.5 ± 0.4 b | 7.6 ± 0.5 | 7.6 ± 0.6 | 7.7 ± 0.8 b | 7.8 ± 0.7 b |
AP5Y | 7.5 ± 0.7 ab | 7.8 ± 0.7 | 7.0 ± 0.7 | 6.0 ± 0.7 ab | 6.7 ± 0.4 ab |
AP10Y | 5.9 ± 0.9 ab | 7.5 ± 0.7 | 6.4 ± 0.7 | 4.8 ± 0.6 a | 5.1 ± 0.7 a |
AP15Y | 5.3 ± 0.4 a | 7.9 ± 0.8 | 6.4 ± 0.8 | 4.8 ± 0.7 a | 5.1 ± 0.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrellou, D.; Moschakis, T.; Kandylis, P. Impact of Apple Pulp on Textural Characteristics, Microstructure, Volatile Profile, and Sensory Acceptance of Yogurts. Foods 2025, 14, 2453. https://doi.org/10.3390/foods14142453
Dimitrellou D, Moschakis T, Kandylis P. Impact of Apple Pulp on Textural Characteristics, Microstructure, Volatile Profile, and Sensory Acceptance of Yogurts. Foods. 2025; 14(14):2453. https://doi.org/10.3390/foods14142453
Chicago/Turabian StyleDimitrellou, Dimitra, Thomas Moschakis, and Panagiotis Kandylis. 2025. "Impact of Apple Pulp on Textural Characteristics, Microstructure, Volatile Profile, and Sensory Acceptance of Yogurts" Foods 14, no. 14: 2453. https://doi.org/10.3390/foods14142453
APA StyleDimitrellou, D., Moschakis, T., & Kandylis, P. (2025). Impact of Apple Pulp on Textural Characteristics, Microstructure, Volatile Profile, and Sensory Acceptance of Yogurts. Foods, 14(14), 2453. https://doi.org/10.3390/foods14142453