Characterization of Physicochemical Quality and Volatiles in Donkey Meat Hotpot Under Different Boiling Periods
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Physicochemical Properties of Meat
2.3. VOC Analysis
2.4. VOC Identification
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics of Donkey Meat Boiled for Different Lengths of Time
3.2. VOC Profiles of Donkey Meat
3.3. Difference in VOCs for the Different Boiling Times
3.4. The Characteristic Aroma Compounds in Boiled Donkey Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Zhang, M.; Sun, Y.; Liu, S. Factors affecting the quality and nutritional value of donkey meat: A comprehensive review. Front. Vet. Sci. 2024, 11, 1460859. [Google Scholar] [CrossRef]
- Mirzaei, H.R.; Verbyla, A.P.; Deland, M.P.B.; Pitchford, W.S. Describing variation in carcass quality traits of crossbred cattle. Pak. J. Biol. Sci. 2009, 12, 222–230. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sarriés, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass characteristics, meat quality and nutritional value of horsemeat: A review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Seyiti, S.; Kelimu, A. Donkey industry in china: Current aspects, suggestions and future challenges. J. Equine Vet. Sci. 2021, 102, 103642. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Tang, X.; Zhan, J.; Liu, S.; Zhang, Y. The establishment of evaluation models for the cooking suitability of different pork muscles. Foods 2023, 12, 742. [Google Scholar] [CrossRef]
- O’Reilly, R.A.; Zhao, L.; Gardner, G.E.; Luo, H.; Meng, Q.; Pethick, D.W.; Pannier, L. Chinese consumer assessment of australian sheep meat using a traditional hotpot cooking method. Foods 2023, 12, 1109. [Google Scholar] [CrossRef]
- Wang, F.; Holman, B.W.B.; Zhang, Y.; Luo, X.; Mao, Y.; Hopkins, D.L. Investigation of colour requirements of frozen beef rolls by Chinese consumers for hot pot. Meat Sci. 2020, 162, 108038. [Google Scholar] [CrossRef]
- Ramalingam, V.; Song, Z.; Hwang, I. The potential role of secondary metabolites in modulating the flavor and taste of the meat. Food Res. Int. 2019, 122, 174–182. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Li, M.; Sun, L.; Du, X.; Ren, W.; Man, L.; Chai, W.; Zhu, M.; Liu, G.; Wang, C. Characterization of lipids and volatile compounds in boiled donkey meat by lipidomics and volatilomics. J. Food Sci. 2024, 89, 3445–3454. [Google Scholar] [CrossRef]
- Liu, H.; Hui, T.; Zheng, X.; Li, S.; Wei, X.; Li, P.; Zhang, D.; Wang, Z. Characterization of key lipids for binding and generating aroma compounds in roasted mutton by UPLC-ESI-MS/MS and Orbitrap Exploris GC. Food Chem. 2022, 374, 131723. [Google Scholar] [CrossRef]
- Man, L.; Ren, W.; Sun, M.; Du, Y.; Chen, H.; Qin, H.; Chai, W.; Zhu, M.; Liu, G.; Wang, C.; et al. Characterization of donkey-meat flavor profiles by GC–IMS and multivariate analysis. Front. Nutr. 2023, 10, 1079799. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Lin, Z.; Li, Y.; Chen, F.; Liu, S.; Li, C. Effects of different cooking methods on volatile flavor compounds of chicken breast. J. Food Biochem. 2021, 45, e13770. [Google Scholar] [CrossRef] [PubMed]
- Broncano, J.M.; Petrón, M.J.; Parra, V.; Timón, M.L. Effect of different cooking methods on lipid oxidation and formation of free cholesterol oxidation products (COPs) in Latissimus dorsi muscle of Iberian pigs. Meat Sci. 2009, 83, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Li, H.; Lin, X.; Deng, S.; Zhou, G. Physicochemical and fatty acid characteristics of stewed pork as affected by cooking method and time. Int. J. Food Sci. Tech. 2016, 51, 359–369. [Google Scholar] [CrossRef]
- Yu, M.; Li, T.; Wan, S.; Song, H.; Zhang, Y.; Raza, A.; Wang, C.; Wang, H.; Wang, H. Study of aroma generation pattern during boiling of hot pot seasoning. J. Food Compos. Anal. 2022, 114, 104844. [Google Scholar] [CrossRef]
- Wang, Y.; Bu, X.; Yang, D.; Deng, D.; Lei, Z.; Guo, Z.; Ma, X.; Zhang, L.; Yu, Q. Effect of cooking method and doneness degree on volatile compounds and taste substance of pingliang red beef. Foods 2023, 12, 446. [Google Scholar] [CrossRef]
- Watanabe, G.; Motoyama, M.; Orita, K.; Takita, K.; Aonuma, T.; Nakajima, I.; Tajima, A.; Abe, A.; Sasaki, K. Assessment of the dynamics of sensory perception of Wagyu beef strip loin prepared with different cooking methods and fattening periods using the temporal dominance of sensations. Food Sci. Nutr. 2019, 7, 3538–3548. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Xu, N.; Lai, Y.; Shao, X.; Zeng, X.; Wang, P.; Han, M.; Xu, X. Different analysis of flavors among soft-boiled chicken: Based on GC-IMS and PLS-DA. Food Biosci. 2023, 56, 103243. [Google Scholar] [CrossRef]
- Bi, J.; Li, Y.; Yang, Z.; Lin, Z.; Chen, F.; Liu, S.; Li, C. Effect of different cooking times on the fat flavor compounds of pork belly. J. Food Biochem. 2022, 46, e14184. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, X.; Xiong, L.; Pei, J.; Ding, Z.; Guo, S.; Cao, M.; Bao, P.; Wu, X.; Chu, M.; et al. Application of GC-IMS, GC-MS, and LC-MS/MS techniques to a comprehensive systematic study on the flavor characteristics of different muscles in the yak. Food Biosci. 2024, 59, 104173. [Google Scholar] [CrossRef]
- Sohail, A.; Al-Dalali, S.; Wang, J.; Xie, J.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma compounds identified in cooked meat: A review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef]
- CAC/RCP 41-1993; Recommended International Code for Ante-mortem and Post-mortem Inspection of Slaughter Animals and for Ante-mortem and Post-mortem Judgement of Slaughter Animals and Meat. Food and Agriculture Organization of the United Nations: Rome, Italy, 1993.
- ISO/TS 34700:2016; Animal Welfare Management-General Requirements and Guidance for Organizations in the Food Supply Chain. ISO: Geneva, Switzerland, 2016.
- Gil, M.; Rudy, M.; Stanisławczyk, R.; Duma-Kocan, P. Effect of traditional cooking and sous vide heat treatment, cold storage time and muscle on physicochemical and sensory properties of beef meat. Molecules 2022, 27, 7307. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Andersen, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, M.; Fang, F.; Fu, C.; Xing, S.; Qian, C.; Liu, J.; Kan, J.; Jin, C. Effect of sous vide cooking treatment on the quality, structural properties and flavor profile of duck meat. Int. J. Gastron. Food Sci. 2022, 29, 100565. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Q.; Jiang, H.; Zheng, M.; Qian, M.; Zeng, X.; Bai, W. Monitoring the variations in physicochemical characteristics of squab meat during the braising cooking process. Food Sci. Nutr. 2022, 10, 2727–2735. [Google Scholar] [CrossRef]
- Teixeira, A.; Fernandes, A.; Pereira, E.; Manuel, A.; Rodrigues, S. Effect of salting and ripening on the physicochemical and sensory quality of goat and sheep cured legs. Meat Sci. 2017, 134, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Roldán, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of different temperature–time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Pujol, A.; Ospina-E, J.C.; Alvarez, H.; Muñoz, D.A. Myoglobin content and oxidative status to understand meat products’ color: Phenomenological based model. J. Food Eng. 2023, 348, 111439. [Google Scholar] [CrossRef]
- Bak, K.H.; Bolumar, T.; Karlsson, A.H.; Lindahl, G.; Orlien, V.; Sveriges, L. Effect of high pressure treatment on the color of fresh and processed meats: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 228–252. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tang, S.; Yan, L.; Li, R. Effects of microwave heating on physicochemical properties, microstructure and volatile profiles of yak meat. J. Appl. Anim. Res. 2019, 47, 262–272. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.S.; Sallam, K.I.; Zaki, H.M.B.A. Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality and sensory attributes. Meat Sci. 2021, 181, 108612. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Fan, Y.; Zhang, X.; Li, D.; Liu, Y.; Zhou, D.; Zhu, B. Effect of boiling on texture of abalone muscles and its mechanism based on proteomic techniques. Food Chem. 2022, 388, 133014. [Google Scholar] [CrossRef]
- Si, R.; Wu, D.; Na, Q.; He, J.; Yi, L.; Ming, L.; Guo, F.; Ji, R. Effects of various processing methods on the nutritional quality and carcinogenic substances of bactrian camel (Camelus bactrianus) Meat. Foods 2022, 11, 3276. [Google Scholar] [CrossRef]
- Vasanthi, C.; Venkataramanujam, V.; Dushyanthan, K. Effect of cooking temperature and time on the physico-chemical, histological and sensory properties of female carabeef (buffalo) meat. Meat Sci. 2007, 76, 274–280. [Google Scholar] [CrossRef]
- Ma, H.; Ledward, D.A. High pressure/thermal treatment effects on the texture of beef muscle. Meat Sci. 2004, 68, 347–355. [Google Scholar] [CrossRef]
- Ni, Q.; Amalfitano, N.; Biasioli, F.; Gallo, L.; Tagliapietra, F.; Bittante, G. Bibliometric Review on the Volatile Organic Compounds in Meat. Foods 2022, 11, 3574. [Google Scholar] [CrossRef]
- Li, M.; Sun, M.; Ren, W.; Man, L.; Chai, W.; Liu, G.; Zhu, M.; Wang, C. Characterization of volatile compounds in donkey meat by gas chromatography–ion mobility spectrometry (GC–IMS) combined with chemometrics. Food Sci. Anim. Resour. 2024, 44, 165–177. [Google Scholar] [CrossRef]
- Yu, L.; Pang, Y.; Shen, G.; Bai, B.; Yang, Y.; Zeng, M. Identification and selection of volatile compounds derived from lipid oxidation as indicators for quality deterioration of frozen white meat and red meat using HS-SPME-GC–MS combined with OPLS-DA. Food Chem. 2025, 463, 141112. [Google Scholar] [CrossRef]
- Ji, C.; Wu, B.; Gao, S.; Wang, Y. Impact of roasting time on the color, protein, water distribution and key volatile compounds of pork. J. Food Compos. Anal. 2024, 136, 106787. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Peng, B.; Hu, M.; Zhong, B.; Yu, C.; Tu, Z. Exploration on the quality changes and flavour characteristics of freshwater crayfish (Procambarus clarkia) during steaming and boiling. LWT 2023, 190, 115582. [Google Scholar] [CrossRef]
- Bassam, S.M.; Noleto-Dias, C.; Farag, M.A. Dissecting grilled red and white meat flavor: Its characteristics, production mechanisms, influencing factors and chemical hazards. Food Chem. 2022, 371, 131139. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, C.; Song, Y.; Qiang, Y.; Han, D.; Zhang, C. Changes provoked by altitudes and cooking methods in physicochemical properties, volatile profile, and sensory characteristics of yak meat. Food Chem. X 2023, 20, 101019. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, D.; Shen, Q.; Pan, T.; Hui, T.; Ma, J. Characterization of key aroma compounds in beijing roasted duck by gas chromatography–olfactometry–mass spectrometry, Odor-Activity values, and Aroma-Recombination experiments. J. Agric. Food Chem. 2019, 67, 5847–5856. [Google Scholar] [CrossRef]
- Zhou, L.; Ren, Y.; Shi, Y.; Fan, S.; Zhao, L.; Dong, M.; Li, J.; Yang, Y.; Yu, Y.; Zhao, Q.; et al. Comprehensive foodomics analysis reveals key lipids affect aroma generation in beef. Food Chem. 2024, 461, 140954. [Google Scholar] [CrossRef]
- Rao, J.W.; Meng, F.B.; Li, Y.C.; Chen, W.J.; Liu, D.Y.; Zhang, J.M. Effect of cooking methods on the edible, nutritive qualities and volatile flavor compounds of rabbit meat. J. Sci. Food Agric. 2022, 102, 4218–4228. [Google Scholar] [CrossRef]
- Lee, G.H.; Suriyaphan, O.; Cadwallader, K.R. Aroma components of cooked tail meat of american lobster (Homarus americanus). J. Agric. Food Chem. 2001, 49, 4324–4332. [Google Scholar] [CrossRef]
- Li, X.; Amadou, I.; Zhou, G.; Qian, L.; Zhang, J.; Wang, D.; Cheng, X. Flavor components comparison between the neck meat of donkey, swine, bovine, and sheep. Food Sci. Anim. Resour. 2020, 40, 527–540. [Google Scholar] [CrossRef] [PubMed]
Item. | T0 | T6 | T12 | T18 | T30 | T42 | p Value |
---|---|---|---|---|---|---|---|
Meat retention rate (%) | 100.00 ± 0.00 a | 80.24 ± 1.37 b | 75.88 ± 1.27 c | 72.38 ± 1.19 d | 66.08 ± 0.52 e | 65.33 ± 0.39 e | 0.0001 |
ΔE | 54.92 ± 0.32 a | 39.65 ± 0.43 b | 38.80 ± 0.85 b | 38.72 ± 0.41 b | 39.39 ± 0.32 b | 35.85 ± 0.63 c | 0.0001 |
Luminosity (L*) | 51.14 ± 0.37 a | 36.28 ± 0.52 b | 36.26 ± 0.96 b | 36.34 ± 0.55 b | 37.52 ± 0.38 b | 33.83 ± 0.71 c | 0.0001 |
Redness (a*) | 18.34 ± 0.60 a | 9.48 ± 0.33 b | 7.23 ± 0.35 c | 6.43 ± 0.35 cd | 5.40 ± 0.12 d | 5.58 ± 0.12 d | 0.0001 |
Yellowness (b*) | 7.65 ± 0.38 d | 12.74 ± 0.25 a | 11.56 ± 0.23 b | 11.57 ± 0.27 b | 10.66 ± 0.18 c | 10.39 ± 0.26 c | 0.0001 |
Shear force (N) | 6.72 ± 0.71 c | 24.11 ± 1.22 ab | 21.40 ± 1.03 b | 21.02 ± 1.25 b | 26.37 ± 1.42 a | 27.79 ± 2.33 a | 0.0001 |
pH | 5.78 ± 0.03 d | 6.06 ± 0.06 c | 6.35 ± 0.04 b | 6.27 ± 0.01 b | 6.32 ± 0.03 b | 6.49 ± 0.05 a | 0.0001 |
No. | Compound | CAS # | Formula | MW | RI | Rt (s) | Dt (a.u.) | Comment |
---|---|---|---|---|---|---|---|---|
1 | nonanal | C124196 | C9H18O | 142.2 | 1107.2 | 789.931 | 1.50274 | |
2 | (E)-2-octenal M | C2548870 | C8H14O | 126.2 | 1068.9 | 706.209 | 1.32849 | Monomer |
3 | (E)-2-octenal D | C2548870 | C8H14O | 126.2 | 1068.9 | 706.209 | 1.8197 | Dimer |
4 | ethyl trans-2-hexenoate | C27829727 | C8H14O2 | 142.2 | 1053 | 674.184 | 1.29699 | |
5 | benzene acetaldehyde | C122781 | C8H8O | 120.2 | 1043.2 | 655.208 | 1.259 | |
6 | 2-ethyl-1-hexanol | C104767 | C8H18O | 130.2 | 1044.3 | 657.241 | 1.41826 | |
7 | octanal M | C124130 | C8H16O | 128.2 | 1012.5 | 598.956 | 1.43287 | Monomer |
8 | octanal D | C124130 | C8H16O | 128.2 | 1010.2 | 594.89 | 1.81568 | Dimer |
9 | 2-pentyl furan | C3777693 | C9H14O | 138.2 | 995.4 | 569.136 | 1.24731 | |
10 | oct-1-en-3-ol M | C3391864 | C8H16O | 128.2 | 986.3 | 548.484 | 1.1542 | Monomer |
11 | oct-1-en-3-ol D | C3391864 | C8H16O | 128.2 | 985.6 | 547.053 | 1.59344 | Dimer |
12 | heptanol | C53535334 | C7H16O | 116.2 | 976 | 526.306 | 1.39994 | |
13 | benzaldehyde M | C100527 | C7H6O | 106.1 | 964.3 | 501.981 | 1.13872 | Monomer |
14 | benzaldehyde D | C100527 | C7H6O | 106.1 | 963.2 | 499.835 | 1.45605 | Dimer |
15 | (E)-hept-2-enal M | C18829555 | C7H12O | 112.2 | 959.6 | 492.497 | 1.25348 | Monomer |
16 | (E)-hept-2-enal D | C18829555 | C7H12O | 112.2 | 960.4 | 494.221 | 1.66176 | Dimer |
17 | heptanal M | C111717 | C7H14O | 114.2 | 904.8 | 394.863 | 1.36941 | Monomer |
18 | heptanal D | C111717 | C7H14O | 114.2 | 902.3 | 390.924 | 1.68703 | Dimer |
19 | 2-heptanone M | C110430 | C7H14O | 114.2 | 894.7 | 379.104 | 1.25789 | Monomer |
20 | 2-heptanone D | C110430 | C7H14O | 114.2 | 893.1 | 376.74 | 1.61786 | Dimer |
21 | n-hexanol M | C111273 | C6H14O | 102.2 | 872.1 | 348.939 | 1.32652 | Monomer |
22 | n-hexanol D | C111273 | C6H14O | 102.2 | 873.8 | 351.173 | 1.6497 | Dimer |
23 | 2-butoxyethanol M | C111762 | C6H14O2 | 118.2 | 909.9 | 403.128 | 1.21417 | Monomer |
24 | 2-butoxyethanol D | C111762 | C6H14O2 | 118.2 | 907.1 | 398.659 | 1.57121 | Dimer |
25 | hex-2-enal M | C505577 | C6H10O | 98.1 | 852 | 324.457 | 1.1715 | Monomer |
26 | hex-2-enal D | C505577 | C6H10O | 98.1 | 855 | 327.915 | 1.50489 | Dimer |
27 | hexanal M | C66251 | C6H12O | 100.2 | 801.3 | 269.887 | 1.28113 | Monomer |
28 | hexanal D | C66251 | C6H12O | 100.2 | 798.9 | 267.572 | 1.55918 | Dimer |
29 | pentan-1-ol M | C71410 | C5H12O | 88.1 | 765.3 | 235.94 | 1.25998 | Monomer |
30 | pentan-1-ol D | C71410 | C5H12O | 88.1 | 770.3 | 240.57 | 1.52958 | Dimer |
31 | 3-hexanone M | C589388 | C6H12O | 100.2 | 785.6 | 254.988 | 1.18776 | Monomer |
32 | 3-hexanone D | C589388 | C6H12O | 100.2 | 784 | 253.485 | 1.47976 | Dimer |
33 | 3-methyl-2-butanol M | C598754 | C5H12O | 88.1 | 698 | 182.442 | 1.24044 | Monomer |
34 | 3-methyl-2-butanol D | C598754 | C5H12O | 88.1 | 700.4 | 184.115 | 1.42477 | Dimer |
35 | 1-butanol | C71363 | C4H10O | 74.1 | 664.5 | 163.155 | 1.18342 | |
36 | 2-butanone M | C78933 | C4H8O | 72.1 | 599.1 | 132.777 | 1.0779 | Monomer |
37 | 2-butanone D | C78933 | C4H8O | 72.1 | 602.3 | 134.117 | 1.24701 | Dimer |
38 | 2,3-butanedione | C431038 | C4H6O2 | 86.1 | 595.1 | 131.138 | 1.16882 | |
39 | 2-pentanone | C107879 | C5H10O | 86.1 | 696.8 | 181.634 | 1.38354 | |
40 | 3-pentanone M | C96220 | C5H10O | 86.1 | 687.1 | 175.18 | 1.12887 | Monomer |
41 | 3-pentanone D | C96220 | C5H10O | 86.1 | 689.6 | 176.699 | 1.35483 | Dimer |
42 | propanoic acid | C79094 | C3H6O2 | 74.1 | 720.4 | 198.75 | 1.10936 | |
43 | (E)-2-pentenal M | C1576870 | C5H8O | 84.1 | 751.4 | 223.787 | 1.10304 | Monomer |
44 | (E)-2-pentenal D | C1576870 | C5H8O | 84.1 | 750.8 | 223.223 | 1.35021 | Dimer |
45 | unidentified 1 | - | - | - | 737.6 | 212.232 | 1.09812 | |
46 | (E, E)-2,4-hexadienal M | C142836 | C6H8O | 96.1 | 904 | 393.653 | 1.14235 | Monomer |
47 | (E, E)-2,4-hexadienal D | C142836 | C6H8O | 96.1 | 904.3 | 394.192 | 1.4496 | Dimer |
48 | unidentified 2 | - | - | - | 989.2 | 554.965 | 1.44706 |
No. | Compound | Class | T0 | T6 | T12 | T18 | T30 | T42 | p Value | VIP |
---|---|---|---|---|---|---|---|---|---|---|
1 | hex-2-enal D | aldehydes | 0.56 ± 0.04 e | 1.11 ± 0.06 de | 1.98 ± 0.14 d | 3.19 ± 0.34 c | 5.24 ± 0.37 b | 10.12 ± 0.53 a | 0.0000 | 1.177 |
2 | (E)-hept-2-enal D | aldehydes | 2.69 ± 0.29 e | 5.94 ± 0.47 e | 10.60 ± 0.78 d | 18.75 ± 1.84 c | 28.24 ± 2.04 b | 51.87 ± 2.53 a | 0.0000 | 1.174 |
3 | (E)-2-pentenal M | aldehydes | 1.13 ± 0.13 e | 2.21 ± 0.17 e | 3.72 ± 0.31 d | 6.75 ± 0.42 c | 10.07 ± 0.65 b | 13.90 ± 0.45 a | 0.0000 | 1.165 |
4 | benzaldehyde D | aldehydes | 1.45 ± 0.12 f | 3.00 ± 0.18 e | 4.12 ± 0.24 d | 6.39 ± 0.28 c | 8.71 ± 0.35 b | 10.69 ± 0.37 a | 0.0000 | 1.150 |
5 | (E)-2-octenal M | aldehydes | 1.31 ± 0.15 f | 3.11 ± 0.26 e | 5.83 ± 0.36 d | 8.44 ± 0.61 c | 10.89 ± 0.62 b | 15.85 ± 0.66 a | 0.0000 | 1.150 |
6 | (E)-2-octenal D | aldehydes | 1.57 ± 0.12 d | 2.65 ± 0.09 c | 2.98 ± 0.16 c | 3.98 ± 0.17 b | 4.62 ± 0.30 b | 6.32 ± 0.37 a | 0.0000 | 1.130 |
7 | octanal D | aldehydes | 2.03 ± 0.50 e | 4.72 ± 0.31 d | 9.07 ± 0.76 c | 15.10 ± 1.28 b | 17.85 ± 0.88 a | 19.69 ± 0.83 a | 0.0000 | 1.099 |
8 | hex-2-enal M | aldehydes | 2.34 ± 0.19 e | 6.77 ± 0.49 d | 9.66 ± 0.57 c | 12.67 ± 0.47 b | 14.06 ± 0.91 b | 16.88 ± 0.64 a | 0.0000 | 1.076 |
9 | benzaldehyde M | aldehydes | 5.72 ± 0.52 e | 12.52 ± 0.53 d | 15.80 ± 0.76 c | 21.60 ± 0.51 b | 24.35 ± 0.88 a | 24.73 ± 0.59 a | 0.0000 | 1.071 |
10 | heptanal D | aldehydes | 2.15 ± 0.18 f | 15.24 ± 1.34 e | 29.18 ± 1.69 d | 41.19 ± 1.64 c | 47.03 ± 1.48 b | 52.49 ± 1.37 a | 0.0000 | 1.033 |
11 | nonanal | aldehydes | 4.06 ± 0.37 d | 10.60 ± 0.62 c | 15.46 ± 0.88 b | 19.53 ± 0.90 a | 20.38 ± 0.59 a | 20.71 ± 0.68 a | 0.0000 | 1.030 |
12 | (E)-2-pentenal D | aldehydes | 0.39 ± 0.05 e | 1.58 ± 0.14 d | 2.40 ± 0.13 c | 3.10 ± 0.09 b | 3.77 ± 0.26 a | 3.83 ± 0.15 a | 0.0000 | 1.029 |
13 | (E)-hept-2-enal M | aldehydes | 2.26 ± 0.22 f | 17.98 ± 1.89 e | 30.30 ± 1.99 c | 41.89 ± 1.95 b | 46.66 ± 2.54 b | 55.36 ± 1.81 a | 0.0000 | 1.020 |
14 | octanal M | aldehydes | 5.97 ± 1.23 d | 17.89 ± 1.20 c | 28.48 ± 1.54 b | 39.68 ± 1.49 a | 40.41 ± 1.53 a | 41.17 ± 1.07 a | 0.0000 | 1.016 |
15 | n-hexanol D | alcohols | 1.98 ± 0.18 d | 3.48 ± 0.21 d | 5.81 ± 0.49 c | 7.32 ± 0.59 c | 12.5 ± 0.89 b | 23.40 ± 1.31 a | 0.0000 | 1.172 |
16 | 2-butoxyethanol D | alcohols | 0.99 ± 0.09 f | 1.75 ± 0.17 e | 3.64 ± 0.15 d | 5.34 ± 0.34 c | 6.84 ± 0.18 b | 9.59 ± 0.25 a | 0.0000 | 1.160 |
17 | 2-ethyl-1-hexanol | alcohols | 0.98 ± 0.10 f | 2.42 ± 0.21 e | 3.68 ± 0.25 d | 5.22 ± 0.38 c | 7.10 ± 0.46 b | 10.85 ± 0.51 a | 0.0000 | 1.151 |
18 | oct-1-en-3-ol D | alcohols | 2.92 ± 0.25 f | 10.77 ± 0.97 e | 18.70 ± 1.33 d | 23.85 ± 1.31 c | 27.45 ± 0.97 b | 33.61 ± 1.03 a | 0.0000 | 1.077 |
19 | 1-butanol | alcohols | 9.91 ± 1.02 e | 25.88 ± 1.93 d | 37.39 ± 2.05 c | 44.56 ± 1.40 b | 43.86 ± 1.68 b | 49.98 ± 1.26 a | 0.0000 | 1.022 |
20 | heptanol | alcohols | 0.92 ± 0.09 e | 4.25 ± 0.39 d | 6.22 ± 0.42 c | 7.00 ± 0.50 bc | 7.51 ± 0.36 b | 9.11 ± 0.25 a | 0.0000 | 1.004 |
21 | 2-heptanone D | ketones | 1.42 ± 0.14 e | 5.49 ± 0.73 e | 14.70 ± 1.35 d | 24.02 ± 2.39 c | 37.19 ± 1.56 b | 53.94 ± 1.59 a | 0.0000 | 1.146 |
22 | 2,3-butanedione | ketones | 3.72 ± 0.35 f | 12.18 ± 0.40 e | 17.90 ± 0.83 d | 28.49 ± 0.60 c | 34.55 ± 1.10 b | 37.93 ± 1.07 a | 0.0000 | 1.089 |
23 | 2-butanone D | ketones | 2.37 ± 0.19 f | 15.81 ± 0.55 e | 25.27 ± 0.96 d | 50.83 ± 1.50 c | 68.79 ± 1.46 b | 76.73 ± 2.97 a | 0.0000 | 1.079 |
24 | 3-pentanone M | ketones | 5.31 ± 0.43 e | 11.86 ± 0.48 d | 15.21 ± 0.70 c | 18.57 ± 0.33 b | 19.19 ± 0.48 b | 20.75 ± 0.55 a | 0.0000 | 1.034 |
25 | 3-hexanone D | ketones | 1.89 ± 0.15 f | 10.07 ± 0.51 e | 13.83 ± 0.60 d | 18.12 ± 0.56 c | 21.29 ± 0.59 b | 25.31 ± 0.59 a | 0.0000 | 1.031 |
26 | 2-butanone M | ketones | 17.40 ± 1.58 d | 46.08 ± 1.70 c | 56.36 ± 2.58 b | 76.05 ± 1.79 a | 79.22 ± 2.75 a | 81.20 ± 2.12 a | 0.0000 | 1.017 |
27 | 2-pentyl furan | furan | 0.88 ± 0.12 f | 8.04 ± 0.83 e | 16.40 ± 1.10 d | 24.29 ± 1.18 c | 29.57 ± 1.20 b | 34.02 ± 1.00 a | 0.0000 | 1.040 |
28 | ethyl trans-2-hexenoate | ester | 2.14 ± 0.24 f | 4.08 ± 0.22 e | 5.99 ± 0.36 d | 8.24 ± 0.40 c | 9.97 ± 0.45 b | 13.32 ± 0.47 a | 0.0000 | 1.147 |
No. | Compound | Class | Thresholds (μg/kg) | Odor | OAVs | |||||
---|---|---|---|---|---|---|---|---|---|---|
T0 | T6 | T12 | T18 | T30 | T42 | |||||
1 | nonanal | aldehydes | 1.10 | green, citrusy, waxy, sweet | 3.69 ± 0.33 d | 9.64 ± 0.56 c | 14.05 ± 0.80 b | 17.75 ± 0.82 a | 18.52 ± 0.54 a | 18.82 ± 0.62 a |
2 | (E)-2-octenal | aldehydes | 3.00 | green, jasmine, mint, bitter, | 0.96 ± 0.09 f | 1.92 ± 0.11 e | 2.94 ± 0.16 d | 4.14 ± 0.24 c | 5.17 ± 0.30 b | 7.39 ± 0.34 a |
3 | benzene acetaldehyde | aldehydes | 4.00 | sweet, honey-flavored | 1.29 ± 0.14 b | 1.51 ± 0.08 ab | 1.6 ± 0.09 a | 1.69 ± 0.04 a | 1.61 ± 0.09 a | 1.43 ± 0.04 ab |
4 | octanal | aldehydes | 0.59 | green, citrusy, lemony, fatty, | 13.56 ± 2.92 d | 38.34 ± 2.54 c | 63.65 ± 3.82 b | 92.85 ± 4.62 a | 98.74 ± 3.76 a | 103.17 ± 3.08 a |
5 | benzaldehyde | aldehydes | 6.40 | nutty, almond-like, like burnt sugar | 1.12 ± 0.1 e | 2.42 ± 0.11 d | 3.11 ± 0.15 c | 4.37 ± 0.11 b | 5.17 ± 0.19 a | 5.53 ± 0.15 a |
6 | (E)-hept-2-enal | aldehydes | 3.00 | green, pungent, fatty | 1.65 ± 0.17 f | 7.97 ± 0.78 e | 13.63 ± 0.92 d | 20.21 ± 1.24 c | 24.97 ± 1.52 b | 35.74 ± 1.40 a |
7 | heptanal | aldehydes | 2.80 | green, jasmine, mint, oily | 1.84 ± 0.19 e | 15.26 ± 1.06 d | 23.75 ± 1.16 c | 31.23 ± 0.88 b | 32.97 ± 1.05 ab | 34.72 ± 0.82 a |
8 | hexanal | aldehydes | 4.50 | green, oily | 4.92 ± 0.72 d | 43.92 ± 1.76 c | 52.17 ± 2.45 b | 64.35 ± 1.19 a | 63.78 ± 2.02 a | 65.13 ± 1.69 a |
9 | (E, E)-2,4-hexadienal | aldehydes | 1.80 | green, floral, sweet, citrusy, spicy | 1.66 ± 0.15 d | 8.28 ± 0.43 c | 10.97 ± 0.58 b | 12.91 ± 0.34 a | 12.12 ± 0.52 ab | 11.89 ± 0.32 ab |
10 | oct-1-en-3-ol | alcohols | 1.00 | mushroom-like, potato-like, smoky | 9.28 ± 0.95 e | 58.88 ± 5.06 d | 92.00 ± 5.54 c | 110.68 ± 4.33 b | 118.35 ± 4.25 ab | 129.82 ± 3.24 a |
11 | heptanol | alcohols | 5.40 | green, floral, woody, oily | 0.17 ± 0.02 e | 0.79 ± 0.07 d | 1.15 ± 0.08 c | 1.30 ± 0.09 bc | 1.39 ± 0.07 b | 1.69 ± 0.05 a |
12 | n-hexanol | alcohols | 4.95 | green, woody, fatty, fruity | 0.66 ± 0.06 e | 3.19 ± 0.28 d | 5.07 ± 0.36 c | 5.93 ± 0.26 c | 7.88 ± 0.49 b | 11.10 ± 0.46 a |
13 | pentan-1-ol | alcohols | 150.00 | green, fruity | 0.07 ± 0.01 d | 0.96 ± 0.05 c | 1.15 ± 0.06 b | 1.34 ± 0.03 a | 1.27 ± 0.04 a | 1.31 ± 0.03 a |
14 | 3-hexanone | ketones | 0.06 | sweet, fruity, waxy | 89.09 ± 8.73 f | 294.23 ± 10.73 e | 346.08 ± 13.89 d | 441.61 ± 10.11 c | 488.64 ± 12.88 b | 540.24 ± 12.59 a |
15 | 2-butanone | ketones | 35.40 | pungent, sweet, cheesy | 0.56 ± 0.05 e | 1.75 ± 0.06 d | 2.31 ± 0.10 c | 3.58 ± 0.09 b | 4.18 ± 0.12 a | 4.46 ± 0.14 a |
16 | 2,3-butanedione | ketones | 0.18 | buttery, caramel-flavored, yogurt-like, | 20.65 ± 1.94 f | 67.66 ± 2.20 e | 99.45 ± 4.62 d | 158.3 ± 3.31 c | 191.96 ± 6.11 b | 210.70 ± 5.95 a |
17 | 2-pentanone | ketones | 1.38 | sweet, fruity, banana-like | 9.99 ± 0.81 c | 12.58 ± 0.40 a | 10.62 ± 0.48 bc | 11.78 ± 0.46 ab | 10.01 ± 0.32 c | 8.49 ± 0.24 d |
18 | 2-pentyl furan | furan | 5.80 | fruity, green, bean-flavored | 0.15 ± 0.02 f | 1.39 ± 0.14 e | 2.83 ± 0.19 d | 4.19 ± 0.20 c | 5.10 ± 0.21 b | 5.87 ± 0.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Mi, M.; Sun, S.; Ding, L.; Zhao, Y.; Zhu, M.; Wang, Y.; Khan, M.Z.; Wang, C.; Li, M. Characterization of Physicochemical Quality and Volatiles in Donkey Meat Hotpot Under Different Boiling Periods. Foods 2025, 14, 2530. https://doi.org/10.3390/foods14142530
Sun L, Mi M, Sun S, Ding L, Zhao Y, Zhu M, Wang Y, Khan MZ, Wang C, Li M. Characterization of Physicochemical Quality and Volatiles in Donkey Meat Hotpot Under Different Boiling Periods. Foods. 2025; 14(14):2530. https://doi.org/10.3390/foods14142530
Chicago/Turabian StyleSun, Lingyun, Mengmeng Mi, Shujuan Sun, Lu Ding, Yan Zhao, Mingxia Zhu, Yun Wang, Muhammad Zahoor Khan, Changfa Wang, and Mengmeng Li. 2025. "Characterization of Physicochemical Quality and Volatiles in Donkey Meat Hotpot Under Different Boiling Periods" Foods 14, no. 14: 2530. https://doi.org/10.3390/foods14142530
APA StyleSun, L., Mi, M., Sun, S., Ding, L., Zhao, Y., Zhu, M., Wang, Y., Khan, M. Z., Wang, C., & Li, M. (2025). Characterization of Physicochemical Quality and Volatiles in Donkey Meat Hotpot Under Different Boiling Periods. Foods, 14(14), 2530. https://doi.org/10.3390/foods14142530