Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea
Abstract
1. Introduction
2. Materials and Methods
2.1. Tea Samples
2.2. Chemical Reagents
2.3. High-Performance Liquid Chromatography–Ultraviolet (HPLC-UV) Analysis of Caffeine, Theanine, and Catechins
2.3.1. Sample Preparation for the Analysis of Caffeine, Theanine, and Catechins
2.3.2. HPLC-UV Analysis of Caffeine, Theanine, and Catechins
2.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis of Volatile Compounds
2.5. Data Analysis of GC-MS
2.6. Calculation of the Odor Activity Value (OAV)
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results
3.1. Quantification of Caffeine, Catechins, and Theanine in NGBTs
3.2. Volatile Components of NGBTs
3.2.1. Identification and Analysis of Volatile Substances
3.2.2. Screening for Volatile Substances
3.3. Sensory Evaluation of NGBTs
3.4. Correlation Analysis Between Sensory Evaluation and the Characteristics of Flavor and Aroma in NGBTs
4. Discussion
4.1. Non-Volatile Signatures and Taste Differentiation
4.2. Volatile Architecture and Aroma Differentiation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NGBT | Northern Guangdong black tea |
HPLC | High-performance liquid chromatography |
HS-SPME-GC-MS | Headspace solid-phase microextraction gas chromatography–mass spectrometry |
OPLS-DA | Orthogonal partial least squares-discriminant analysis |
VIP | Variable importance in projection |
PCA | Principal component analysis |
OAV | Odor activity value |
C | Catechin |
EC | Epicatechin |
GC | Gallocatechin |
EGC | Epigallocatechin |
CG | Catechin gallate |
ECG | Epigallocatechin |
GCG | Gallocatechin gallate |
EGCG | Epigallocatechin gallate |
RI | Retention index |
References
- Li, S.; Lo, C.; Pan, M.; Lai, C.; Ho, C. Black Tea: Chemical Analysis and Stability. Food Funct. 2013, 4, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, J.; Li, H.; Xue, J.; Wang, M.; Jian, G.; Zhu, C.; Zeng, L. Differences in the Quality of Black Tea (Camellia sinensis var. Yinghong No. 9) in Different Seasons and the Underlying Factors. Food Chem. X 2023, 20, 100998. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, X.; Jiang, S. A Structural Equation Model to Access the Regional Public Brands of Agricultural Products: Case of Chinese Yingde Black Tea. PLoS ONE 2024, 19, e0310722. [Google Scholar] [CrossRef] [PubMed]
- Chen, M. Study on the Coupling Development Path between the Culture of the Black Yea of Yingde and the Tourism Industry (in Chinese). J. Anhui Agric. Sci. 2016, 44, 188–189. [Google Scholar]
- Yu, X.Y.; Li, J.M.; Ren, M.X. Adaptive Differentiation of Gesneriaceae on Karst and Danxia Landforms in Southern China. Guangxi Sci. 2019, 26, 132–140. [Google Scholar]
- Wang, Q.; Zhang, Y.; Cheng, Z.; Dong, S.; Li, Z.; Liu, H.; Li, G. Formation Mechanisms of Qiaoba-Zhongdu Danxia Landforms in Southwestern Sichuan Province, China. Open Geosci. 2024, 16, 20220709. [Google Scholar] [CrossRef]
- Wang, J.A.; Liang, S.; Shi, P. Tourism Geography. In The Geography of Contemporary China; Wang, J.A., Liang, S., Shi, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 377–440. ISBN 978-3-031-04158-7. [Google Scholar]
- Lin, M.; Ye, Q.; Zhang, Z.; Liao, W.; Fan, Q. Camellia zijinica (Theaceae), a new species endemic to Danxia landscape from Guangdong Province, China. PhytoKeys 2024, 237, 245–255. [Google Scholar] [CrossRef]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.; Li, D.; Wan, X. Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43. J. Agric. Food. Chem. 2019, 67, 5423–5436. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Zhu, Y.; Shi, J.; Lin, Z. Identification of Key Volatile Components of “Peach Fragrance” in Blended Peach Oolong Tea. J. Tea Sci. 2023, 43, 237–249. [Google Scholar]
- Yan, T.; Lin, J.; Zhu, J.; Ye, N.; Huang, J.; Wang, P.; Jin, S.; Zheng, D.; Yang, J. Aroma Analysis of Fuyun 6 and Jinguanyin Black Tea in the Fu’an Area Based on E-nose and GC–MS. Eur. Food Res. Technol. 2022, 248, 947–961. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, Y.; Ma, S.; Shi, J.; Yan, H.; Lin, Z.; Lv, H. Aroma Characterisation of Liu-pao Tea Based on Volatile Fingerprint and Aroma Wheel Using SBSE-GC–MS. Food Chem. 2023, 414, 135739. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Li, D.; Luo, X.; Ding, D.; Song, Y.; Zhang, Z.; Wan, X. Stepwise Identification of Six Tea (Camellia sinensis (L.)) Categories Based on Catechins, Caffeine, and Theanine Contents Combined with Fisher Discriminant Analysis. Food Anal. Methods 2016, 9, 3242–3250. [Google Scholar] [CrossRef]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Li, J.; Qiao, X.; Lu, M.; Chen, W.; Miao, A.; Guo, W.; Ma, C. Non-targeted Metabolomic Analysis Based on Ultra-High-Performance Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry Reveals the Effects of Grafting on Non-volatile Metabolites in Fresh Tea Leaves (Camellia sinensis L.). J. Agric. Food. Chem. 2019, 67, 6672–6682. [Google Scholar] [CrossRef]
- Fan, J. Study on Yingde Tea Culture and the Quality Characteristics of Yingde Black Tea. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2019. [Google Scholar]
- Chen, D.; Li, J.; Zhuo, M.; Li, D.; Wu, H.; Zhao, C.; Qiao, X.; Yan, C.; Huang, H.; Sun, S.; et al. Breeding of Danxia No.2: A New High-Aroma Tea Cultivar for Dual-Purpose Black and White Tea Production (in Chinese). Guangdong Agric. Sci. 2010, 37, 46–52. [Google Scholar]
- Chen, D.; Wang, J.; Wu, H.; Li, J.; Huang, H.; Li, Z.; Qiao, X.; Yan, C.; Xie, H. Breeding of Danxia No.1: A New High-Aroma Tea Cultivar for Dual-Purpose Black and White Tea Production (in Chinese). Guangdong Agric. Sci. 2010, 37, 39–45. [Google Scholar]
- South China Agricultural University Jinsha Tea Research Institute Project Signed Contract to Contribute Technological Strength to Improve the Quality of Jinshahong (In Chinese). Available online: https://www.sg.gov.cn/xw/xwzx/bdxw/content/post_2721191.html (accessed on 15 June 2025).
- Deng, S.; Zhang, G.; Olayemi Aluko, O.; Mo, Z.; Mao, J.; Zhang, H.; Liu, X.; Ma, M.; Wang, Q.; Liu, H. Bitter and Astringent Substances in Green Tea: Composition, Human Perception Mechanisms, Evaluation Methods and Factors Influencing Their Formation. Food Res. Int. 2022, 157, 111262. [Google Scholar] [CrossRef]
- Chen, P.; Cai, J.; Zheng, P.; Yuan, Y.; Tsewang, W.; Chen, Y.; Xiao, X.; Liao, J.; Sun, B.; Liu, S. Quantitatively Unravelling the Impact of High Altitude on Oolong Tea Flavor from Camellia sinensis Grown on the Plateaus of Tibet. Horticulturae 2022, 8, 539. [Google Scholar] [CrossRef]
- Wu, Z.; Liao, W.; Zhao, H.; Qiu, Z.; Zheng, P.; Liu, Y.; Lin, X.; Yao, J.; Li, A.; Tan, X.; et al. Differences in the Quality Components of Wuyi Rock Tea and Huizhou Rock Tea. Foods 2025, 14, 4. [Google Scholar] [CrossRef]
- Qiu, Z.; Liao, J.; Chen, J.; Chen, P.; Sun, B.; Li, A.; Pan, Y.; Liu, H.; Zheng, P.; Liu, S. The Cultivar Effect on the Taste and Aroma Substances of Hakka Stir-Fried Green Tea from Guangdong. Foods 2023, 12, 2067. [Google Scholar] [CrossRef]
- Mei, S.; Yu, Z.; Chen, J.; Zheng, P.; Sun, B.; Guo, J.; Liu, S. The Physiology of Postharvest Tea (Camellia sinensis) Leaves, According to Metabolic Phenotypes and Gene Expression Analysis. Molecules 2022, 27, 1708. [Google Scholar] [CrossRef]
- Guo, X.; Ho, C.; Wan, X.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef] [PubMed]
- Yang, X. Aroma Constituents and Alkylamides of Red and Green Huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium). J. Agric. Food. Chem. 2008, 56, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, L.; Xiao, Z.; Niu, Y. Characterization of the key aroma compounds in mulberry fruits by application of gas chromatography–olfactometry (GC-O), odor activity value (OAV), gas chromatography-mass spectrometry (GC-MS) and flame photometric detection (FPD). Food Chem. 2018, 245, 775–785. [Google Scholar] [CrossRef]
- Yu, X.; Sun, D.; He, Y. Emerging Techniques for Determining the Quality and Safety of Tea Products: A Review. Compr. Rev. Food. Sci. Food Saf. 2020, 19, 2613–2638. [Google Scholar] [CrossRef]
- GB/T 23776-2018; Methods for Sensory Evaluation of Tea. National Standardization Administration of China: Beijing, China, 2018.
- Zeng, L.; Fu, Y.; Liu, Y.; Huang, J.; Chen, J.; Yin, J.; Jin, S.; Sun, W.; Xu, Y. Comparative Analysis of Different Grades of Tieguanyin Oolong Tea Based on Metabolomics and Sensory Evaluation. LWT Food Sci. Technol. 2023, 174, 114423. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, J.; Lin, W.; Ahammed, G.J.; Wang, W.; Ma, R.; Shi, M.; Ge, S.; Mohamed, A.S.; Wang, L.; et al. L-Theanine Metabolism in Tea Plants: Biological Functions and Stress Tolerance Mechanisms. Plants 2025, 14, 492. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, W.; Xu, Y.; Yin, J. Review on Taste Characteristic of Catechins and Its Sensory Analysis Method. J. Tea Sci. 2017, 37, 1–9. [Google Scholar]
- Liu, Z.; Ran, Q.; Li, Q.; Yang, T.; Dai, Y.; Zhang, T.; Fang, S.; Pan, K.; Long, L. Interaction Between Major Catechins and Umami Amino Acids in Green Tea Based on Electronic Tongue Technology. J. Food Sci. 2023, 88, 2339–2352. [Google Scholar] [CrossRef]
- Guo, X.; Schwab, W.; Ho, C.; Song, C.; Wan, X. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC–MS and GC-IMS. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, S.; Zhou, C.; Chen, L.; Zaripov, T.; Zhan, D.; Weng, J.; Lin, Y.; Lai, Z.; Guo, Y. Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea (Camellia sinensis) during Solar Withering. J. Agric. Food. Chem. 2020, 68, 12749–12767. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Tian, C.; Zhou, C.; Zhu, C.; Weng, J.; Sun, Y.; Lin, Y.; Lai, Z.; Guo, Y. Non-Targeted Metabolomics Analysis Revealed the Characteristic Non-Volatile and Volatile Metabolites in the Rougui Wuyi Rock Tea (Camellia sinensis) from Different Culturing Regions. Foods 2022, 11, 1694. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, S.; Fu, H.; Zhou, C.; Chen, L.; Li, X.; Lin, Y.; Lai, Z.; Guo, Y. Transcriptome and Phytochemical Analyses Provide New Insights Into Long Non-Coding RNAs Modulating Characteristic Secondary Metabolites of Oolong Tea (Camellia sinensis) in Solar-Withering. Front. Plant Sci. 2019, 10, 1638. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, C.; Li, X.; Chen, L.; Xie, S.; Chen, G.; Zhang, H.; Lai, Z.; Lin, Y.; Guo, Y. Transcriptome and phytochemical analyses reveal the roles of characteristic metabolites in the taste formation of white tea during the withering process. J. Integr. Agric. 2022, 21, 862–877. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Yuan, H.; Ouyang, W.; Li, J.; Hua, J.; Jiang, Y. Effects of Fermentation Temperature and Time on the Color Attributes and Tea Pigments of Yunnan Congou Black Tea. Foods 2022, 11, 1845. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, H.; Han, Z.; Zhai, X.; Qin, C.; Wen, M.; Lai, G.; Ho, C.; Zhang, L.; Wan, X. Study on In Vitro Preparation and Taste Properties of N-Ethyl-2-Pyrrolidinone-Substituted Flavan-3-Ols. J. Agric. Food. Chem. 2022, 70, 3832–3841. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.; Granato, D.; Xu, Y.; Ho, C. Association Between Chemistry and Taste of Tea: A Review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Zhou, C.; Tian, C.; Zhu, C.; Lai, Z.; Lin, Y.; Guo, Y. Hidden Players in the Regulation of Secondary Metabolism in Tea Plant: Focus on Non-coding RNAs. Beverage Plant Res. 2022, 2, 19. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, W.; Liu, X.; Wang, Y.; Xu, P. Transcription factor CsWRKY40 regulates L-theanine hydrolysis by activating the CsPDX2.1 promoter in tea leaves during withering. Hortic. Res. 2022, 9, uhac025. [Google Scholar] [CrossRef]
- Xiang, F.; Su, Y.; Zhou, L.; Dai, C.; Jin, X.; Liu, H.; Luo, W.; Yang, W.; Li, W. Gibberellin Promotes Theanine Synthesis by Relieving the Inhibition of CsWRKY71 on CsTSI in Tea Plant (Camellia sinensis). Hortic. Res. 2024, 12, uhae317. [Google Scholar] [CrossRef]
- Adhikary, B.; Kashyap, B.; Gogoi, R.C.; Sabhapondit, S.; Babu, A.; Deka, B.; Pramanik, P.; Das, B. Green Tea Processing by Pan-firing from Region-specific Tea (Camellia sinensis L.) Cultivars—A Novel Approach to Sustainable Tea Production in Dooars Region of North Bengal. Food Chem. Adv. 2023, 2, 100181. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Chen, G.; Yin, J.; Chen, J.; Wang, F.; Xu, Y. Effects of Phenolic Acids and Quercetin-3-O-rutinoside on the Bitterness and Astringency of Green Tea Infusion. Npj Sci. Food 2022, 6, 8. [Google Scholar] [CrossRef]
- Gong, A.; Lian, S.; Wu, N.; Zhou, Y.; Zhao, S.; Zhang, L.; Cheng, L.; Yuan, H. Integrated Transcriptomics and Metabolomics Analysis of Catechins, Caffeine and Theanine Biosynthesis in Tea Plant (Camellia sinensis) over the Course of Seasons. BMC Plant Biol. 2020, 20, 294. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Yu, D.; Shu, C.; Chen, H.; Wang, H.; Xiao, Z. Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS. J. Agric. Food. Chem. 2015, 63, 7499–7510. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Jin, S.; Xu, Y.; Granato, D.; Fu, Y.; Sun, W.; Yin, J.; Xu, Y. Exogenous Stimulation-induced Biosynthesis of Volatile Compounds: Aroma Formation of Oolong Tea at Postharvest Stage. Crit. Rev. Food. Sci. Nutr. 2024, 64, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Luo, W.; Zheng, Y.; Ye, Y.; Hu, M.; Zheng, X.; Lu, J.; Liang, Y.; Ye, J. Identification of Key Aroma Compounds Responsible for the Floral Ascents of Green and Black Teas from Different Tea Cultivars. Molecules 2022, 27, 2809. [Google Scholar] [CrossRef]
- Deng, X.; Huang, G.; Tu, Q.; Zhou, H.; Li, Y.; Shi, H.; Wu, X.; Ren, H.; Huang, K.; He, X.; et al. Evolution Analysis of Flavor-active Compounds During Artificial Fermentation of Pu-erh Tea. Food Chem. 2021, 357, 129783. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Viljoen, A.M. Geraniol—A Review of A Commercially Important Fragrance Material. S. Afr. J. Bot. 2010, 76, 643–651. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Yang, Z. Characterization of Terpene Synthase from Tea Green Leafhopper Being Involved in Formation of Geraniol in Tea (Camellia sinensis) Leaves and Potential Effect of Geraniol on Insect-Derived Endobacteria. Biomolecules 2019, 9, 808. [Google Scholar] [CrossRef]
- Zeng, L.; Xiao, Y.; Zhou, X.; Yu, J.; Jian, G.; Li, J.; Chen, J.; Tang, J.; Yang, Z. Uncovering Reasons for Differential Accumulation of Linalool in Tea Cultivars with Different Leaf Area. Food Chem. 2021, 345, 128752. [Google Scholar] [CrossRef]
- Mei, X.; Liu, X.; Zhou, Y.; Wang, X.; Zeng, L.; Fu, X.; Li, J.; Tang, J.; Dong, F.; Yang, Z. Formation and Emission of Linalool in Tea (Camellia sinensis) Leaves Infested by Tea Green Leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chem. 2017, 237, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Inoue, N.; Ito, Y.; Kubota, K.; Sugimoto, A.; Kakuda, T.; Fushiki, T. Sedative Effects of the Jasmine Tea Odor and (R)-(−)-linalool, One of Its Major Odor Components, on Autonomic Nerve Activity and Mood States. Eur. J. Appl. Physiol. 2005, 95, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zeng, L.; Liao, Y.; Zhou, Y.; Xu, X.; Dong, F.; Yang, Z. An Alternative Pathway for the Formation of Aromatic Aroma Compounds Derived from I-phenylalanine Via Phenylpyruvic Acid in Tea (Camellia sinensis (L.) O. Kuntze) Leaves. Food Chem. 2019, 270, 17–24. [Google Scholar] [CrossRef]
- Guo, W.; Sasaki, N.; Fukuda, M.; Yagi, A.; Watanabe, N.; Sakata, K. Isolation of An Aroma Precursor of Benzaldehyde from Tea Leaves (Camellia sinensis var. sinensis cv. Yabukita). Biosci. Biotechnol. Biochem. 1998, 62, 2052–2054. [Google Scholar] [CrossRef]
No. | Volatile Compound | Odor Type | VIP 1 | p-Value 2 | OT 3 (μg/kg) |
---|---|---|---|---|---|
1 | Geraniol | sweet, floral, fruity, rose, waxy, citrus | 5.36 | 0.000 ** | 1 |
2 | Methyl salicylate | peppermint, wintergreen mint | 3.80 | 0.000 ** | 40 |
3 | Linalool | floral, green, fruity | 3.76 | 0.000 ** | 1 |
4 | (E)-Geranic acid methyl ester | n.f. | 2.24 | 0.000 ** | n.f. |
5 | (E)-pyranoid linalool oxide | woody | 2.15 | 0.000 ** | 320 |
6 | β-Myrcene | musty, balsamic, spice | 2.04 | 0.000 ** | 15 |
7 | (E)-Furan linalool oxide | flowery | 1.94 | 0.000 ** | 320 |
8 | Phenylacetaldehyde | floral, honey, rose, cherry | 1.79 | 0.001 ** | 6.3 |
9 | Benzyl alcohol | floral, rose, phenol, balsamic | 1.62 | 0.000 ** | 100 |
10 | (Z)-Linalool oxide | earthy, floral, sweet, woody | 1.58 | 0.000 ** | 6 |
11 | Linalool oxide pyranoid | floral, honey | 1.29 | 0.001 ** | 190 |
12 | Phenethyl alcohol | fruity, rose, sweet, apple | 1.25 | 0.000 ** | 140 |
13 | Geranic acid | n.f. | 1.23 | 0.002 ** | n.f. |
14 | (Z)-Jasmone | woody, herbal, floral, spicy, jasmine, celery | 1.17 | 0.000 ** | 0.26 |
No. | Volatile Compound | OAV 1 | ||||
---|---|---|---|---|---|---|
JSH | DXY | DXE | QTZ | YHJ | ||
1 | Phenethyl alcohol | 1.3 | 0.4 | 0.4 | 0.3 | 0.31 |
2 | δ-Cadinene | 4.9 | 18.9 | 7.5 | 7.8 | - |
3 | Benzyl alcohol | 3.1 | 0.4 | - | 0.4 | - |
4 | (Z)-Linalool oxide | 7.5 | 28.1 | 32.2 | 6.7 | - |
5 | α-Ionone | 9.0 | 9.2 | 13.4 | 9.0 | 6.90 |
6 | Phenylacetaldehyde | - | 22.0 | 8.7 | 20.2 | 24.31 |
7 | Benzaldehyde | 2.1 | 1.3 | 1.9 | 1.2 | 1.19 |
8 | β-Myrcene | 34.6 | 6.5 | 12.7 | 8.5 | 1.63 |
9 | (R)-1-Methyl-5-(1-methylvinyl)cyclohexene | 1.8 | - | - | - | - |
10 | (E,Z)-Alloocimene | 1.9 | - | 0.6 | 0.4 | - |
11 | (Z)-β-Ocimene | 7.1 | - | - | - | - |
12 | Methyl salicylate | 5.7 | 33.1 | 22.4 | 7.4 | 2.93 |
13 | Dihydroactinidiolide | - | - | - | 2.0 | 2.05 |
14 | Methyl jasmonate | 10.6 | 6.0 | 4.3 | - | 0.40 |
15 | (E)-Furan linalool oxide | 0.3 | 1.1 | 0.6 | 0.2 | - |
16 | (Z)-Jasmone | 280.0 | - | 357.2 | 24.7 | - |
17 | Limonene | - | - | 7.1 | 2.9 | 1.37 |
18 | (E)-Citral | - | - | 1.5 | - | - |
19 | o-Cymene | - | 6.9 | - | - | - |
20 | (E)-β-Ionone | 487.6 | 323.0 | 398.1 | 326.8 | 278.51 |
21 | Nerol | 1.1 | 1.5 | - | 0.3 | 0.11 |
22 | Geraniol | 3292.5 | 396.5 | 814.0 | 596.5 | 33.64 |
23 | Hotrienol | - | 2.5 | - | - | - |
24 | Nerolidol | - | 164.8 | 62.8 | 81.9 | 36.48 |
25 | Linalool | 218.6 | 225.3 | 329.3 | 282.7 | 1035.18 |
26 | Citral | 23.2 | 3.4 | - | 4.1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liu, B.; Zhou, Y.; Chen, J.; Zheng, Y.; Meng, H.; Tan, X.; Zheng, P.; Sun, B.; Zhao, H.; et al. Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea. Foods 2025, 14, 2466. https://doi.org/10.3390/foods14142466
Chen J, Liu B, Zhou Y, Chen J, Zheng Y, Meng H, Tan X, Zheng P, Sun B, Zhao H, et al. Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea. Foods. 2025; 14(14):2466. https://doi.org/10.3390/foods14142466
Chicago/Turabian StyleChen, Jialin, Binghong Liu, Yide Zhou, Jiahao Chen, Yanchun Zheng, Hui Meng, Xindong Tan, Peng Zheng, Binmei Sun, Hongbo Zhao, and et al. 2025. "Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea" Foods 14, no. 14: 2466. https://doi.org/10.3390/foods14142466
APA StyleChen, J., Liu, B., Zhou, Y., Chen, J., Zheng, Y., Meng, H., Tan, X., Zheng, P., Sun, B., Zhao, H., & Liu, S. (2025). Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea. Foods, 14(14), 2466. https://doi.org/10.3390/foods14142466