Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Tomato Samples
2.3. Headspace Solid-Phase Microextraction
2.4. Gas Chromatography-Mass Spectrometry Conditions
2.5. Statistical Analysis
3. Results
3.1. Volatilomic Fingerprint of the Tomato Varieties
3.2. Statistical Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | One-way analysis of variance |
GC-MS | Gas chromatography-mass spectrometry |
HCA | Hierarchical cluster analysis |
HS-SPME | Headspace solid phase microextraction |
LRI | Linear retention index |
PCA | Principal component analysis |
PLS-DA | Partial least squares discriminant analysis |
RT | Retention time |
VIP | Variable importance in projection |
VOCs | Volatile organic compounds |
References
- Food and Agriculture Organization of the United Nations (FAO). The State of Food Security and Nutrition in the World 2023. Available online: https://www.fao.org/3/cc3017en/cc3017en.pdf (accessed on 5 June 2025).
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Castaldo, L.; Lombardi, S.; Gaspari, A.; Grosso, M.; Ritieni, A. Bioaccessibility and Antioxidant Capacity of Bioactive Compounds From Various Typologies of Canned Tomatoes. Front. Nutr. 2022, 9, 849163. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhu, H. The Regulation of Nutrient and Flavor Metabolism in Tomato Fruit. Veg. Res. 2022, 2, 1–14. [Google Scholar] [CrossRef]
- Pott, D.M.; Osorio, S.; Vallarino, J.G. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Front. Plant Sci. 2019, 10, 835. [Google Scholar] [CrossRef] [PubMed]
- Cortina, P.R.; Santiago, A.N.; Sance, M.M.; Peralta, I.E.; Carrari, F.; Asis, R. Neuronal Network Analyses Reveal Novel Associations between Volatile Organic Compounds and Sensory Properties of Tomato Fruits. Metabolomics 2018, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Engelberth, J.; Engelberth, M. Variability in the Capacity to Produce Damage-Induced Aldehyde Green Leaf Volatiles among Different Plant Species Provides Novel Insights into Biosynthetic Diversity. Plants 2020, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Liu, C.; Yao, Z.; Wan, H.; Ruan, M.; Wang, R.; Ye, Q.; Li, Z.; Zhou, G.; Cheng, Y. Detection and Analysis of VOCs in Cherry Tomato Based on GC-MS and GC×GC-TOF MS Techniques. Foods 2024, 13, 1279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.; Zhu, X.; Chang, Y.; Wang, C.; Ma, N.; Wang, J.; Zhang, X.; Lyu, J.; Xie, J. A Comprehensive Evaluation of Tomato Fruit Quality and Identification of Volatile Compounds. Plants 2023, 12, 2947. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zeng, X.; Song, H.; Xi, Y.; Li, Y.; Hui, B.; Li, H.; Li, J. Characterization of the Aroma Profiles of Cold and Hot Break Tomato Pastes by GC-O-MS, GC × GC-O-TOF-MS, and GC-IMS. Food Chem. 2023, 405, 134823. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fu, Y.; Bao, X.; Li, H.; Zuo, J.; Zhang, M.; Wang, J. Comparison and Analysis of Tomato Flavor Compounds Using Different Extraction Methods. J. Food Meas. Charact. 2020, 14, 465–475. [Google Scholar] [CrossRef]
- Aniceto, J.P.S.; Rodrigues, V.H.; Portugal, I.; Silva, C.M. Valorization of Tomato Residues by Supercritical Fluid Extraction. Processes 2021, 10, 28. [Google Scholar] [CrossRef]
- Pateraki, A.; Psillakis, E. Vacuum-Assisted Headspace Solid Phase Microextraction for Monitoring Ripening-Induced Changes in Tomato Volatile Profile. J. Chromatogr. A 2025, 1740, 465556. [Google Scholar] [CrossRef] [PubMed]
- Ballard, R.K.; Benyo, A.; Ren, R.; Nguyen, J.; Nguyen, J.; Zieber, E.; Gullickson, G.; Kim, H.J. Assessing Tomato Flavors Chemically: Identification of Aroma Volatiles from Heirloom and Commercial Tomatoes Using Solid-Phase Microextraction and GC-MS. J. Chem. Educ. 2023, 100, 1263–1269. [Google Scholar] [CrossRef]
- Song, X.; Dai, F.; Yao, J.; Li, Z.; Huang, Z.; Liu, H.; Zhu, Z. Characterization of the Volatile Profile of Feijoa (Acca Sellowiana) Fruit at Different Ripening Stages by HS-SPME-GC/MS. LWT 2023, 184, 115011. [Google Scholar] [CrossRef]
- Figueira, J.; Câmara, H.; Pereira, J.; Câmara, J.S. Evaluation of Volatile Metabolites as Markers in Lycopersicon Esculentum L. Cultivars Discrimination by Multivariate Analysis of Headspace Solid Phase Microextraction and Mass Spectrometry Data. Food Chem. 2014, 145, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Di, T.; Bai, J. Distribution of Volatile Compounds in Different Fruit Structures in Four Tomato Cultivars. Molecules 2019, 24, 2594. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.J.; Jayaprakasha, G.K.; Avila, C.A.; Crosby, K.M.; Patil, B.S. Metabolomic Studies of Volatiles from Tomatoes Grown in Net-House and Open-Field Conditions. Food Chem. 2019, 275, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.J.; Jayaprakasha, G.K.; Rush, C.M.; Crosby, K.M.; Patil, B.S. Production System Influences Volatile Biomarkers in Tomato. Metabolomics 2018, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Baldwin, E.; Luo, W.; Zhao, W.; Brecht, J.; Bai, J. Key Tomato Volatile Compounds during Postharvest Ripening in Response to Chilling and Pre-Chilling Heat Treatments. Postharvest Biol. Technol. 2019, 154, 11–20. [Google Scholar] [CrossRef]
- Sanahuja, A.B.; Gallego, S.L.D.P.; Pérez, S.E.M.; García, A.V.; Moya, M.S.P. Influence of Cooking and Ingredients on the Antioxidant Activity, Phenolic Content and Volatile Profile of Different Variants of the Mediterranean Typical Tomato Sofrito. Antioxidants 2019, 8, 551. [Google Scholar] [CrossRef] [PubMed]
- Abreu, T.; Jasmins, G.; Bettencourt, C.; Teixeira, J.; Câmara, J.S.; Perestrelo, R. Tracing the Volatilomic Fingerprint of Grape Pomace as a Powerful Approach for Its Valorization. Curr. Res. Food Sci. 2023, 7, 100608. [Google Scholar] [CrossRef] [PubMed]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.M. The Pherobase: Database of Insect Pheromones and Semiochemicals. Available online: http://www.pherobase.com (accessed on 30 May 2025).
- Acree, T.E.; Arn, H. Flavornet. Available online: https://www.flavornet.org/d_kovats_db5.html (accessed on 15 June 2025).
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Abugu, M.; Tieman, D. The Dissection of Tomato Flavor: Biochemistry, Genetics, and Omics. Front. Plant Sci. 2023, 14, 1144113. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.Q.; Valdez, E.A.; Aguirre, N.C.; Duno, D.; Ocampo, G.T. Volatilomic Profile of the Tree Tomato (Solanum Betaceum Cav.) Pulp during Ripening and Senescence Using HS–SPME with GC–MS. LWT 2023, 186, 115213. [Google Scholar] [CrossRef]
- Cheng, G.; Chang, P.; Shen, Y.; Wu, L.; El-Sappah, A.H.; Zhang, F.; Liang, Y. Comparing the Flavor Characteristics of 71 Tomato (Solanum Lycopersicum) Accessions in Central Shaanxi. Front. Plant Sci. 2020, 11, 586834. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Liu, C.; Ruan, M.; Wang, R.; Ye, Q.; Wan, H.; Zhou, G.; Guo, S.; Cheng, Y.; Yao, Z. Detection and Comparative Analysis of VOCs between Tomato and Pepper Based on GC×GC-TOFMS. Sci. Rep. 2025, 15, 6140. [Google Scholar] [CrossRef] [PubMed]
Peak nº | RT (min) a | LRIcal b | LRIlit c | VOCs | Chemical Family | Globe | Kumato | Roma | Vine | Tamarilho | Cherry |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14.96 | 959 | 956 | 3-Pentanone | Carbonyl | 15 ± 2 a | 13 ± 1 a | 14.5 ± 0.1 a | 13 ± 1 a | 17.1 ± 0.3 a | 72 ± 8 b |
2 | 16.71 | 1001 | 1000 | 1-Penten-3-one | Carbonyl | 24 ± 3 a | 14.1 ± 0.4 b | 23 ± 2 a,c | 8 ± 1 b | 19 ± 1 b,c | 33 ± 5 a |
3 | 19.31 | 1058 | 1059 | Hexanal | Carbonyl | 171 ± 32 a | 531 ± 20 b | 138 ± 20 a | 134 ± 13 a | 594 ± 10 b | 526 ± 46 b |
4 | 19.91 | 1070 | 1076 | 2-Methyl-2-butenal | Carbonyl | - | 55 ± 4 | - | - | - | - |
5 | 24.08 | 1151 | 1155 | Limonene | Terpenoid | 13 ± 2 a | - | - | 3.0 ± 0.3 b | - | - |
6 | 24.46 | 1159 | 1160 | Heptanal | Carbonyl | - | 10 ± 1 a | 3.0 ± 0.3 b | 11 ± 1 a | 9 ± 1 a | |
7 | 24.55 | 1160 | 1177 | β-Terpinene | Terpenoid | 11 ± 1 a | - | - | 2.0 ± 0.2 b | - | - |
8 | 25.96 | 1186 | 1184 | 3-Methyl-1-butanol | Alcohol | - | 29 ± 3 a | - | - | 81 ± 1 b | 7 ± 1 c |
9 | 26.43 | 1194 | 1198 | (E)-2-Hexenal | Carbonyl | 284 ± 2 a | 1419 ± 141 b | 98 ± 16 a | 104 ± 5 a | 558 ± 65 c | 552 ± 45 c |
10 | 26.81 | 1200 | 1203 | 2-Pentyl furan | Furanic | 74 ± 8 a | 58 ± 3 b | 56 ± 8 b | 86 ± 10 a | - | 37 ± 3 c |
11 | 27.74 | 1219 | 1213 | 1-Pentanol | Alcohol | 16 ± 3 a | 23 ± 2 a | 16 ± 1 a | 12 ± 1 a | 45 ± 5 b | 89 ± 7 c |
12 | 28.19 | 1228 | 1224 | 3-Octanone | Carbonyl | 23 ± 3 a | - | 13 ± 1 b | 20 ± 1 a | - | - |
13 | 29.78 | 1258 | 1268 | Octanal | Carbonyl | 28 ± 3 a | 6 ± 1 b | 11 ± 2 b,c | 13 ± 1 c | 10 ± 2 b,c | 21 ± 4 a |
14 | 30.75 | 1276 | 1277 | 1-Hydroxy-2-propanone | Carbonyl | 39 ± 3 a | 40 ± 4 a | 11 ± 1 b | 35 ± 6 a | 10 ± 1 b | 106 ± 12 c |
15 | 31.44 | 1288 | 1295 | (E)-2-Penten-1-ol | Alcohol | 7 ± 1 a | 17 ± 1 b | 23 ± 3 b | - | 16 ± 2 b | 105 ± 8 c |
16 | 31.57 | 1290 | 1287 | (Z)-2-Heptenal | Carbonyl | 42 ± 8 a | 37 ± 3 a | 27 ± 5 a | 60 ± 5 a | 60 ± 11 a | 252 ± 34 b |
17 | 32.23 | 1301 | 1318 | 6-Methyl-5-hepten-2-one | Carbonyl | 141 ± 7 a | 91 ± 9 b | 105 ± 16 a | 474 ± 58 c | 82 ± 13 b | 190 ± 16 a |
18 | 33.16 | 1321 | 1326 | 1-Hexanol | Alcohol | 236 ± 20 a | 153 ± 18 a,b | 109 ± 19 b | 556 ± 43 c | 215 ± 22 a,b | 197 ± 17 a,b |
19 | 34.75 | 1352 | 1357 | (Z)-3-Hexen-1-ol | Alcohol | 65 ± 12 a,b | 54 ± 8 a,b | 123 ± 17 c | 43 ± 5 a,b | 81 ± 4 a | 64 ± 6 a,b |
20 | 35.22 | 1359 | 1355 | Methyl octanoate | Ester | 6.1 ± 0.4 a | - | 1.3 ± 0.1b | - | - | - |
21 | 35.23 | 1361 | 1375 | Nonanal | Carbonyl | - | - | - | - | 11 ± 1 | - |
22 | 35.61 | 1369 | 1363 | (E)-2-Hexen-1-ol | Alcohol | 270 ± 3 a | 50 ± 9 b | 29 ± 3 b,c | 88 ± 14 d | 35 ± 2 b,c | 63 ± 12 d |
23 | 35.76 | 1371 | 1378 | 2-Isobutylthiazole | Furanic | 32 ± 4 a | 44 ± 4 a | 6.7 ± 0.2 b | 78 ± 10 c | 35 ± 1 a | 105 ± 7 d |
24 | 36.89 | 1392 | 1377 | (E)-2-Octenal | Carbonyl | 49 ± 9 a | 83 ± 15 b | 54 ± 4 a,b | 148 ± 7 c | 205 ± 8 d | 106 ± 5 c |
25 | 37.99 | 1415 | 1418 | Acetic acid | Acid | 60 ± 10 a | 103 ± 20 a,b | 148 ± 20 b,c | 91 ± 7 a,b | 203 ± 31 c | 85 ± 15 a,b |
26 | 38.68 | 1430 | 1426 | 2-Furfural | Furanic | 46 ± 4 a | 27 ± 2 a,b | 75 ± 13c | 14 ± 1 b | 66 ± 7 c | 36 ± 4 a,b |
27 | 39.55 | 1449 | 1453 | 2-Ethyl-1-hexanol | Alcohol | 28 ± 2 a | - | 3.7 ± 0.3 b | 9 ± 1 c | 19 ± 1 d | 5.9 ± 0.2 b,c |
28 | 40.38 | 1466 | 1456 | 1,2,3,5-Tetramethyl benzene | Hydrocarbon | 50 ± 2 a | - | 10 ± 1 b | 9.1 ± 0.3 b | 71 ± 11 c | 9 ± 1 b |
29 | 40.93 | 1477 | 1504 | (E)-2-Hepten-1-ol | Alcohol | 33 ± 1 a | - | - | 26 ± 4 b | - | 42 ± 2 c |
30 | 41.61 | 1491 | 1493 | Benzaldehyde | Carbonyl | 39 ± 7 a | 43 ± 5 a,b | 14 ± 1 c | 7 ± 1 c | 25 ± 3 a,c | 54 ± 6 b |
31 | 42.21 | 1513 | 1532 | (E)-2-Nonenal | Carbonyl | - | 12 ± 1 a | 20 ± 2 a | - | 93 ± 13 b | - |
32 | 43.89 | 1540 | 1539 | 5-Methyl-2-furfural | Furanic | 33 ± 5 a | 25 ± 3 a,b | 51 ± 3 c | 11 ± 0.5 b | 43 ± 6 a,c | 34 ± 6 a,b |
33 | 44.48 | 1552 | 1548 | 2-Cyclopentene-1,4-dione | Carbonyl | 21 ± 2 a | 37 ± 4 b | 42 ± 2 b,c | 12 ± 1 a | 33 ± 3 b,c | 30 ± 4 a,b |
34 | 45.16 | 1567 | 1587 | (E)-2-Octen-1-ol | Alcohol | 69 ± 13 a | 9 ± 1 b | 22.9 ± 0.2 b | 32 ± 3 c | 30 ± 2 b,c | 54 ± 9 a |
35 | 46.71 | 1598 | 1604 | Butyrolactone | Lactone | 32 ± 1 a | 8 ± 1 b | 14 ± 2 b,c | 30 ± 4 a | 23 ± 4 a,c | 18 ± 2 c |
36 | 47.32 | 1613 | 1614 | 2-Furanmethanol | Furanic | 34 ± 3 a | 44 ± 4 b | 7.8 ± 0.2 c | 16 ± 1 c | 28 ± 5 a | 6 ± 1 c |
37 | 48.67 | 1644 | 1633 | (Z)-Citral | Terpenoid | 14 ± 2 a | - | - | 4 ± 0.3 b | 20 ± 1 c | - |
38 | 48.94 | 1650 | 2-Hydroxy benzaldehyde | Carbonyl | 23 ± 4 a | - | 21 ± 3 a | - | 3.4 ± 0.2 b | 39 ± 4 c | |
39 | 50.82 | 1693 | 1714 | (E)-Citral | Terpenoid | 22 ± 4 a | - | 18 ± 1 a | 11 ± 1 b | 35 ± 3 c | 5 ± 1 b |
40 | 51.52 | 1710 | 1709 | Naphthalene | Hydrocarbon | 27 ± 3 a | - | 15 ± 2 a,b | 7 ± 1 b | 24 ± 1 a | 55 ± 9 c |
41 | 52.19 | 1716 | 1696 | (E,Z)-2,4-Decadienal | Carbonyl | 77 ± 5 a | 41 ± 7 b | 25 ± 2 c | 22 ± 2 c | 70 ± 3 a | 102 ± 8 d |
42 | 53.23 | 1752 | 1753 | Methyl 2-hydroxybenzoate | Ester | 5.4 ± 0.4 a | 12 ± 1 a | 10± 1 a | - | - | 950 ± 140 b |
43 | 54.34 | 1778 | 1770 | (E,E)-2,4-Decadienal | Carbonyl | 46 ± 4 a | 16 ± 2 b | 88 ± 2 c | 12 ± 1 b | 46 ± 3 a | 94 ± 15 c |
44 | 54.55 | 1784 | 1791 | Ethyl 2-hydroxybenzoate | Ester | - | - | - | - | - | 50 ± 7 |
45 | 55.13 | 1797 | 1810 | Hexanoic acid | Acid | 46 ± 5 a | 23 ± 1b | 38 ± 6 a,b | 17 ± 2 b | 17.4 ± 0.4 b | 133 ± 14 c |
46 | 55.78 | 1812 | 1815 | 2-Methoxy phenol | Phenol | - | 18 ± 3a | 82 ± 11 b | - | 16 ± 1 a | 41 ± 5 c |
47 | 55.90 | 1815 | 1816 | Geranyl acetone | Terpenoid | 230 ± 20 a | 39 ± 1 b | 50 ± 6 b | 97 ± 2 c | 14 ± 1 b | 86 ± 8 c |
48 | 57.93 | 1861 | 1862 | Phenylethyl alcohol | Alcohol | - | - | - | - | 10.7 ± 0.3 a | 17 ± 1 b |
49 | 59.12 | 1887 | 1910 | 2-Ethylhexanoic acid | Acid | - | 42 ± 5 a | 6.7 ± 0.1 b | - | - | - |
50 | 59.49 | 1895 | 1891 | β-Damascenone | Terpenoid | 20 ± 2 a | - | 8 ± 1 b | 10 ± 1 b | 9 ± 1 b | 30 ± 3 c |
51 | 60.61 | 2018 | 2006 | 2,5-Furandicarboxaldehyde | Furanic | 21 ± 2 a | 5 ± 1 b | 15 ± 3 a | 9 ± 1 b | 35 ± 5 c | 42 ± 3 c |
52 | 61.87 | 2051 | 5HMF | Furanic | 27 ± 5 a | 249 ± 18 b | 261 ± 11 b | - | 36 ± 2 a | - | |
53 | 63.27 | 2087 | 2070 | Octanoic acid | Acid | 26 ± 1 a | 6.0 ± 0.1 b | 4.9 ± 0.5 b | 10 ± 2 b | 22 ± 1 a | 39 ± 6 c |
54 | 67.29 | 2137 | 2135 | Eugenol | Phenol | - | 23 ± 4 a | 23 ± 4 a | - | - | 29 ± 4 b |
55 | 70.6 | 2171 | - | Hydroxydihydromaltol | Carbonyl | 35 ± 4 a | 35 ± 4 a | 16 ± 2 b | - | 23 ± 2 c | 40 ± 2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasmins, G.; Azevedo, T.; Câmara, J.S.; Perestrelo, R. Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes. Separations 2025, 12, 188. https://doi.org/10.3390/separations12080188
Jasmins G, Azevedo T, Câmara JS, Perestrelo R. Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes. Separations. 2025; 12(8):188. https://doi.org/10.3390/separations12080188
Chicago/Turabian StyleJasmins, Gonçalo, Tânia Azevedo, José S. Câmara, and Rosa Perestrelo. 2025. "Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes" Separations 12, no. 8: 188. https://doi.org/10.3390/separations12080188
APA StyleJasmins, G., Azevedo, T., Câmara, J. S., & Perestrelo, R. (2025). Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes. Separations, 12(8), 188. https://doi.org/10.3390/separations12080188