Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,675)

Search Parameters:
Keywords = essential oil production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 505 KiB  
Article
Effect of Ultrasonic Pretreatment on the Extraction Process of Essential Oils from Grapefruit (Citrus paradisi) By-Products
by Francisco Cadena-Cadena, Joe Luis Arias-Moscoso, Leandris Argentel-Martínez, Jony R. Torres Velazquez, Dulce Alondra Cuevas-Acuña, Nydia Estrellita Buitimea Cantua and Bartolo Concha-Frías
BioTech 2025, 14(3), 59; https://doi.org/10.3390/biotech14030059 (registering DOI) - 7 Aug 2025
Abstract
This study evaluated the effect of ultrasonic pulse-assisted extraction on the yield and antioxidant activity of essential oils from grapefruit (Citrus paradisi) by-products using hydrodistillation and Soxhlet solvent extraction (hexane, acetone, ethanol). Ultrasound was applied at 40% amplitude for 20 min [...] Read more.
This study evaluated the effect of ultrasonic pulse-assisted extraction on the yield and antioxidant activity of essential oils from grapefruit (Citrus paradisi) by-products using hydrodistillation and Soxhlet solvent extraction (hexane, acetone, ethanol). Ultrasound was applied at 40% amplitude for 20 min before extraction. Results showed that ultrasound significantly increased extraction yield with hexane (from 2.6 ± 0.58% to 7.6 ± 1.5%) and acetone (from 8.6 ± 0.96% to 12 ± 1.4%), while ultrasound-assisted hydrodistillation nearly doubled the yield (from 0.7 ± 0.03% to 1.5 ± 0.49%). In contrast, ultrasound decreased yield with ethanol by 3%. Antioxidant activity measured by TEAC assay was highest in acetone extracts without ultrasound (13,366.5 ± 7.66 mmol TE/g) and ethanol extracts (12,606.8 ± 0.51 mmol TE/g). However, ultrasound combined with ethanol increased DPPH scavenging activity from 1073.5 ± 1.07 µg/mL to 4933.3 ± 0.71 µg/mL and maintained high flavonoid content (9.41 ± 0.15 mg/mL) and phenolics (5.33 ± 0.09 mg/mL). Ultrasound-assisted hydrodistillation also enhanced antioxidant capacity, with DPPH values rising from 51.82 ± 5.56 µg/mL to 2413.03 ± 3.17 µg/mL. These findings demonstrate that ultrasound effectively enhances essential oil extraction and antioxidant activity depending on the solvent used, underscoring the potential of this clean technology for valorizing citrus by-products. Full article
Show Figures

Figure 1

27 pages, 3377 KiB  
Article
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
by Janina Gospodarek, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń and Iwona B. Paśmionka
Molecules 2025, 30(15), 3300; https://doi.org/10.3390/molecules30153300 - 6 Aug 2025
Abstract
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures [...] Read more.
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%. Full article
17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

28 pages, 346 KiB  
Review
Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States
by Sushil Grewal and Debalina Saha
Horticulturae 2025, 11(8), 926; https://doi.org/10.3390/horticulturae11080926 (registering DOI) - 6 Aug 2025
Abstract
Weed management remains a critical challenge in the U.S. container ornamental production industry, where weeds not only compete with crops for limited resources but also harbor pests and pathogens, thereby diminishing plant quality and marketability. The paper explores the economic impact of weed [...] Read more.
Weed management remains a critical challenge in the U.S. container ornamental production industry, where weeds not only compete with crops for limited resources but also harbor pests and pathogens, thereby diminishing plant quality and marketability. The paper explores the economic impact of weed infestations, herbicide resistance development, and the limited availability of selective herbicides for ornamental crops in the United States. This review synthesizes current chemical weed control tactics, focusing not only on both preemergence and postemergence herbicides commonly used in ornamental nurseries, but also organic alternatives and integrated weed management (IWM) approaches as complementary strategies by evaluating their effectiveness, crop safety, and usage. There is a critical need for research in the areas of alternative chemical options such as insecticides, miticides (e.g., Zerotol and Tetra Curb Max), and organic products for liverwort control in greenhouses. Although essential oils and plant-based extracts show some potential, their effectiveness and practical use remain largely unexplored. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Graphical abstract

18 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Viewed by 298
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 - 4 Aug 2025
Viewed by 110
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

46 pages, 2160 KiB  
Review
Potential of Plant-Based Oil Processing Wastes/By-Products as an Alternative Source of Bioactive Compounds in the Food Industry
by Elifsu Nemli, Deniz Günal-Köroğlu, Resat Apak and Esra Capanoglu
Foods 2025, 14(15), 2718; https://doi.org/10.3390/foods14152718 - 2 Aug 2025
Viewed by 370
Abstract
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) [...] Read more.
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) with proven health-promoting effects. The utilization of them as natural, cost-effective, and food-grade functional ingredients in novel food formulations holds considerable potential. This review highlights the potential of waste/by-products generated during plant-based oil processing as a promising source of bioactive compounds and covers systematic research, including recent studies focusing on innovative extraction and processing techniques. It also sheds light on their promising potential for valorization as food ingredients, with a focus on specific examples of food fortification. Furthermore, the potential for value creation in the food industry is emphasized, taking into account associated challenges and limitations, as well as future perspectives. Overall, the current information suggests that the valorization of plant-based oil industry waste and by-products for use in the food industry could substantially reduce malnutrition and poverty, generate favorable health outcomes, mitigate environmental concerns, and enhance economic profit in a sustainable way by developing health-promoting, environmentally sustainable food systems. Full article
Show Figures

Figure 1

11 pages, 459 KiB  
Case Report
Urinary Multidrug-Resistant Klebsiella pneumoniae: Essential Oil Countermeasures in a One Health Case Report
by Mălina-Lorena Mihu, Cristiana Ştefania Novac, Smaranda Crăciun, Nicodim Iosif Fiţ, Cosmina Maria Bouari, George Cosmin Nadăş and Sorin Răpuntean
Microorganisms 2025, 13(8), 1807; https://doi.org/10.3390/microorganisms13081807 (registering DOI) - 1 Aug 2025
Viewed by 430
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to only 5 agents. One month later, repeat testing showed that tetracycline alone remained active, highlighting the strain’s rapidly evolving resistome. Given the scarcity of drug options, we performed an “aromatogram” with seven pure essential oils, propolis, and two commercial phytotherapeutic blends. Biomicin Forte® produced a 30 mm bactericidal halo, while thyme, tea tree, laurel, and palmarosa oils yielded clear inhibition zones of 11–22 mm. These in vitro data demonstrate that carefully selected plant-derived products can target CR-Kp where conventional antibiotics fail. Integrating aromatogram results into One Health’s stewardship plans may therefore help preserve last-line antibiotics and provide adjunctive options for persistent urinary infections. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

43 pages, 1138 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 - 1 Aug 2025
Viewed by 147
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
Show Figures

Figure 1

20 pages, 1334 KiB  
Article
Chitosan Nanoparticles Encapsulating Oregano Oil: Effects on In Vitro Ruminal Fermentation from Goat Rumen Fluid
by Gerardo Méndez-Zamora, Jorge R. Kawas, Sara Paola Hernández-Martínez, Gustavo Sobrevilla-Hernández, Sugey Ramona Sinagawa-García, Daniela S. Rico-Costilla and Jocelyn Cyan López-Puga
Animals 2025, 15(15), 2261; https://doi.org/10.3390/ani15152261 - 1 Aug 2025
Viewed by 192
Abstract
This study evaluated the effects of liquid oregano oil, chitosan nanoparticles with encapsulated liquid oregano oil, and a negative control of empty chitosan nanoparticles on in vitro ruminal fermentation. Three Boer goats were used as ruminal fluid donors, fed with a formulated ration [...] Read more.
This study evaluated the effects of liquid oregano oil, chitosan nanoparticles with encapsulated liquid oregano oil, and a negative control of empty chitosan nanoparticles on in vitro ruminal fermentation. Three Boer goats were used as ruminal fluid donors, fed with a formulated ration for 21 d for inoculum adaptation. Treatments tested on in vitro assays were diet without oregano oil or nanoparticles (CON); diet with 100 ppm of oregano oil in nanoparticles (100N); diet with 300 ppm of liquid oregano oil (300L); diet with 300 ppm of oregano oil in nanoparticles (300N); and diet with 300 ppm of empty nanoparticles (300CHN). The variables studied were in vitro dry matter digestibility (ivDMD), in vitro neutral detergent fiber digestibility (ivNDFDom), total gas production (TGP), ammonia nitrogen concentration (NH3), and pH. The experimental design was a randomized complete block design. Linear and quadratic regressions were used to identify dependence and inflection points. The ivDMD increased at 12, 36, and 48 h, with 300N and with 300L exhibiting increased ivNDFDom at 36 h. Ruminal pH was highest (p < 0.05) with 300CHN at 36 h. For first-order regression analysis of TGP, coefficients (β) were highest (p < 0.05) for 300N. In conclusion, 300N increased ruminal fermentation in vitro, as reflected by increases in ivDMD, ivNDFDom, and TGP. Full article
Show Figures

Figure 1

25 pages, 2023 KiB  
Article
Geographical Origin Authentication of Leaves and Drupes from Olea europaea via 1H NMR and Excitation–Emission Fluorescence Spectroscopy: A Data Fusion Approach
by Duccio Tatini, Flavia Bisozzi, Sara Costantini, Giacomo Fattori, Amedeo Boldrini, Michele Baglioni, Claudia Bonechi, Alessandro Donati, Cristiana Tozzi, Angelo Riccaboni, Gabriella Tamasi and Claudio Rossi
Molecules 2025, 30(15), 3208; https://doi.org/10.3390/molecules30153208 - 30 Jul 2025
Viewed by 225
Abstract
Geographical origin authentication of agrifood products is essential for ensuring their quality, preventing fraud, and maintaining consumers’ trust. In this study, we used proton nuclear magnetic resonance (1H NMR) and excitation–emission matrix (EEM) fluorescence spectroscopy combined with chemometric methods for the [...] Read more.
Geographical origin authentication of agrifood products is essential for ensuring their quality, preventing fraud, and maintaining consumers’ trust. In this study, we used proton nuclear magnetic resonance (1H NMR) and excitation–emission matrix (EEM) fluorescence spectroscopy combined with chemometric methods for the geographical origin characterization of olive drupes and leaves from different Tuscany subregions, where olive oil production is relevant. Single-block approaches were implemented for individual datasets, using principal component analysis (PCA) for data visualization and Soft Independent Modeling of Class Analogy (SIMCA) for sample classification. 1H NMR spectroscopy provided detailed metabolomic profiles, identifying key compounds such as polyphenols and organic acids that contribute to geographical differentiation. EEM fluorescence spectroscopy, in combination with Parallel Factor Analysis (PARAFAC), revealed distinctive fluorescence signatures associated with polyphenolic content. A mid-level data fusion strategy, integrating the common dimensions (ComDim) method, was explored to improve the models’ performance. The results demonstrated that both spectroscopic techniques independently provided valuable insights in terms of geographical characterization, while data fusion further improved the model performances, particularly for olive drupes. Notably, this study represents the first attempt to apply EEM fluorescence for the geographical classification of olive drupes and leaves, highlighting its potential as a complementary tool in geographic origin authentication. The integration of advanced spectroscopic and chemometric methods offers a reliable approach for the differentiation of samples from closely related areas at a subregional level. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

20 pages, 4117 KiB  
Review
Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection
by Yingfei Liu, Mengyuan Lv, Yuyang Wang, Jinchao Wei and Di Chen
Pharmaceuticals 2025, 18(8), 1137; https://doi.org/10.3390/ph18081137 - 30 Jul 2025
Viewed by 230
Abstract
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud [...] Read more.
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud and regulatory demands. Analytical challenges, such as matrix effects in complex oils and the cost trade-offs of green extraction methods, complicate these processes. This review examines recent advances in tocopherol analysis, focusing on extraction and detection techniques. Green methods like supercritical fluid extraction and deep eutectic solvents offer selectivity and sustainability, though they are costlier than traditional approaches. On the analytical side, hyphenated techniques such as supercritical fluid chromatography-mass spectrometry (SFC-MS) achieve detection limits as low as 0.05 ng/mL, improving sensitivity in complex matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides robust analysis, while spectroscopic and electrochemical sensors offer rapid, cost-effective alternatives for high-throughput screening. The integration of chemometric tools and miniaturized systems supports scalable workflows. Looking ahead, the incorporation of Artificial Intelligence (AI) in oil authentication has the potential to enhance the accuracy and efficiency of future analyses. These innovations could improve our understanding of tocopherol compositions in vegetable oils, supporting more reliable assessments of nutritional value and product authenticity. Full article
Show Figures

Graphical abstract

13 pages, 982 KiB  
Article
Salivary pH Modulation and Antimicrobial Properties of Oregano-Oil Jelly in Relation to Menstrual and Menopausal Status
by Georgiana Ioana Potra Cicalău, Gabriela Ciavoi, Ioana Scrobota, Ionut Daniel Venter, Madalin Florin Ganea, Marc Cristian Ghitea, Evelin Claudia Ghitea, Maria Flavia Gîtea, Timea Claudia Ghitea, Csaba Nagy, Diana Constanta Pelea, Luciana Dobjanschi, Octavia Gligor, Corina Moisa and Mariana Ganea
Nutrients 2025, 17(15), 2480; https://doi.org/10.3390/nu17152480 - 29 Jul 2025
Viewed by 235
Abstract
Background: Salivary pH plays a critical role in oral health by influencing enamel demineralization, buffering capacity, and the ecology of oral microbiota. Essential oils such as Origanum vulgare (oregano) possess well-documented antimicrobial properties that may reduce acidogenic bacterial activity. However, the effects of [...] Read more.
Background: Salivary pH plays a critical role in oral health by influencing enamel demineralization, buffering capacity, and the ecology of oral microbiota. Essential oils such as Origanum vulgare (oregano) possess well-documented antimicrobial properties that may reduce acidogenic bacterial activity. However, the effects of edible delivery systems like jellies on salivary pH modulation and their potential interactions with hormonal states remain poorly understood. Methods: This study evaluated the in vitro antimicrobial activity of an oregano-oil-based jelly formulation against standard bacterial (Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli) and fungal (Candida albicans) strains using the Kirby–Bauer disc diffusion method. Additionally, a human trial (n = 91) measured salivary pH before and after administration of the oregano-oil jelly. Participants were characterized by age, smoking status, menopausal status, and presence of menstruation. Multiple linear regression was used to identify predictors of final salivary pH. Results: The oregano-oil jelly demonstrated strong in vitro antimicrobial activity, with inhibition zones up to 8 mm for E. coli and C. albicans. In vivo, mean unstimulated salivary pH increased from 6.94 to 7.07 overall, indicating a mild alkalinizing effect. However, menstruating participants showed a significant decrease in final pH (from 7.03 to 6.78). Multiple regression identified menstruation as a significant negative predictor (β = −0.377, p < 0.001) and initial pH as a positive predictor (β = +0.275, p = 0.002). Menopausal status was not a significant predictor, likely due to the small sample size. Conclusions: Oregano-oil jellies may represent a promising natural approach to support oral health by increasing salivary pH and providing strong antimicrobial activity. However, physiological states such as menstruation can significantly modulate this response, underscoring the importance of personalized or phase-aware oral care strategies. Further studies with larger, diverse cohorts and controlled hormonal assessments are needed to validate these findings and optimize product formulations. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

20 pages, 949 KiB  
Article
Exploring the Antioxidant and Preservative Potential of Lippia origanoides Kunth Essential Oil in Pure and Encapsulated Forms for Cosmetic Applications
by M. Fernanda Lopes, Sandra M. Gomes, Wanderley P. Oliveira and Lúcia Santos
Cosmetics 2025, 12(4), 160; https://doi.org/10.3390/cosmetics12040160 - 28 Jul 2025
Viewed by 500
Abstract
The increasing demand for sustainable and safer alternatives in the cosmetic industry has driven the search for multifunctional natural ingredients. Essential oils (EOs), known for their antimicrobial and antioxidant activities, are promising candidates with which to replace synthetic preservatives and antioxidants. This study [...] Read more.
The increasing demand for sustainable and safer alternatives in the cosmetic industry has driven the search for multifunctional natural ingredients. Essential oils (EOs), known for their antimicrobial and antioxidant activities, are promising candidates with which to replace synthetic preservatives and antioxidants. This study aimed to evaluate the preservative and antioxidant potential of Lippia origanoides Kunth essential oil, in pure and encapsulated in β-cyclodextrin form, for cosmetic applications. The EO exhibited strong antioxidant activity, with low IC50 values in DPPH and ABTS assays, and demonstrated antimicrobial efficacy, particularly against Escherichia coli and Staphylococcus aureus. Six cosmetic cream formulations were developed and tested for physicochemical and microbiological stability. Formulations with pure EO maintained high antioxidant performance and remained free of bacterial and fungal contamination over time, outperforming the commercial preservatives. In contrast, formulations with encapsulated EO exhibited delayed antioxidant and antimicrobial activity, indicating gradual release. Overall, Lippia origanoides EO proved to be an effective natural alternative to synthetic preservatives and antioxidants. This approach aligns with the current trend of eco-friendly formulations, offering a sustainable solution by incorporating plant-derived bioactives into cosmetic products. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

Back to TopTop