Effect of Ultrasonic Pretreatment on the Extraction Process of Essential Oils from Grapefruit (Citrus paradisi) By-Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Conditioning
2.2. Extraction Methods
2.3. Hydrodistillation Extraction
2.4. Solvent Extraction
2.5. Ultrasound-Assisted Extraction
2.6. Chemical–Proximate Composition and Antioxidant Activity Evaluation
Proximate Composition
- ▪
- The proximate composition of the grapefruit peel was determined using the official methods described by [29], as follows:
- ▪
- Moisture (Method 925.09): calculated as weight loss after drying 2 g of sample in an oven at 110 °C for 2 h.
- ▪
- Ash (Method 923.03): determined by weighing the residue after incinerating the sample in a muffle furnace at 550 °C for 2 h.
- ▪
- Protein (Method 2001.11): determined by digesting 0.1 g of defatted sample in H2SO4, followed by distillation and nitrogen recovery in boric acid, and titration with 0.1 N NaOH.
- ▪
- Fat (Method 920.39): determined by continuous solvent extraction using petroleum ether in a Soxhlet system.
2.7. Antioxidant Activity Evaluation
2.8. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield
3.2. Proximate Composition Determination
Sample | %Protein | %Lipids | %Moisture | %Ash | Reference |
---|---|---|---|---|---|
Mandarin | 7.55 ± 0.24 | 1.45 ± 0.16 | 4.33 ± 0.07 | 3.96 ± 0.21 | [49] |
Grapefruit | 4.22 ± 0.25 | 2.01 ± 0.10 | 7.81 ± 0.10 | 2.99 ± 0.20 | [49] |
- | - | 62.55 | 5.09 | [50] | |
Orange | 6.00 | 3.40 | - | 6.90 | [38] |
1.96 | 2.2 | - | 3.92 | [51] | |
Grapefruit | 4.5 ± 0.34 | 3.6 ± 1.2 | 7.17 ± 0.65 | 5.13 ± 0.46 | Present research |
3.3. Antioxidant Activity
3.4. Hydrodistillation
3.5. Solvent Extraction
3.6. Ultrasound-Assisted Solvent Extraction
3.7. Total Flavonoids and Phenolics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirabella, N.; Castellani, V.; Sala, S. Current options for valorization of food manufacturing waste. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Nile, S.H.; Lee, E.T.; Lee, Y.R. Economical and environmentally friendly approaches for the extraction of bioactive compounds from citrus peels. J. Food Sci. Technol. 2016, 53, 2678–2689. [Google Scholar]
- Larrauri, J.A.; Rupérez, P.; Borroto, B.; Saura-Calixto, F. Seasonal changes in the composition and properties of a high dietary fibre powder from grapefruit peel. J. Sci. Food Agric. 1997, 74, 308–312. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Xu, Y.; Cao, Y.; Jiang, Z.; Ding, T.; Liu, D. Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chem. 2015, 178, 106–114. [Google Scholar] [CrossRef]
- Uysal, B.; Sozmen, F.; Aktas, O.; Oksal, B.S.; Kose, E.O. Essential oil composition and antibacterial activity of the grapefruit (Citrus paradisi L.) peel essential oils obtained by solvent-free microwave extraction: Comparison with hydrodistillation. Int. J. Food Sci. Technol. 2011, 46, 1455–1461. [Google Scholar] [CrossRef]
- Qin, X.; Dong, X.; Tang, J.; Chen, Y.; Xie, J.; Cheng, Y.; Yu, Q. Comparative analysis of dietary fibers from grapefruit peel prepared by ultrafine grinding: Structural properties, adsorption capacities, in vitro prebiotic activities. Food Biosci. 2023, 56, 103163. [Google Scholar] [CrossRef]
- Gan, J.; Huang, Z.; Yu, Q.; Peng, G.; Chen, Y.; Xie, J.; Xie, M. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocoll. 2020, 101, 105549. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Bailina, Y.; Ge, Z.; Ding, T.; Ye, X.; Liu, D. Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J. Food Eng. 2014, 126, 72–81. [Google Scholar] [CrossRef]
- Goksu, A.; Duran, G.; Çilingir, S.; Çevik, M.; Sabanci, S. Performance evaluation of pectin extraction from grapefruit peel powder by ohmic heating. J. Food Process. Preserv. 2022, 46, e16813. [Google Scholar] [CrossRef]
- Öztürk, T.; Özbek, H.N.; Koçak Yanık, D. Environmentally friendly approach to pectin extraction from grapefruit peel: Microwave-assisted high-pressure CO2/H2O. Foods 2024, 13, 476. [Google Scholar] [CrossRef]
- Buzarovska, A.; Krstev, A.; Iliev, I. The application of ultrasound technology in the extraction of bioactive compounds from natural sources. Molecules 2020, 25, 1397. [Google Scholar] [CrossRef]
- Madiha Yusoff, I.; Mat Taher, Z.; Rahmat, Z.; Chua, L. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Bioactive effects of essential oils: A review. Food Chem. Toxicol. 2008, 46, 450–457. [Google Scholar] [CrossRef]
- Mason, T.J.; Lorimer, J.P. Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing*; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Brahmi, F.; Mokhtari, O.; Legssyer, B.; Hamdani, I.; Bouammali, B. Chemical and biological characterization of essential oils extracted from citrus fruits peels. Mater. Today Proc. 2021, 45, 7794–7799. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction from cash crops. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Özogul, Y.; Özogul, F.; Kulawik, P. The antimicrobial effect of grapefruit peel essential oil and its nanoemulsion on fish spoilage bacteria and food-borne pathogens. LWT 2021, 136, 110362. [Google Scholar] [CrossRef]
- Ibrahim, F.M.; Abdelsalam, E.; Mohammed, R.S.; Ashour, W.E.S.; Vilas-Boas, A.A.; Pintado, M.; El Habbasha, E.S. Polyphenol-rich extracts and essential oil from Egyptian grapefruit peel as potential antioxidant, antimicrobial, and anti-inflammatory food additives. Appl. Sci. 2024, 14, 2776. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Horžić, D.; Jambrak, A.R.; Belščak-Cvitanović, A.; Komes, D.; Lelas, V. Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food Bioprocess Technol. 2012, 5, 2858–2870. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P. Recent advances in valorization of citrus fruits processing waste: A way forward towards environmental sustainability. Food Sci. Biotechnol. 2021, 7, 1601–1626. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.K.; Garg, N.; Verma, A.K.; Kumar, S.; Trivedi, M. Optimization and extraction of oil from mango seed kernel (Mangifera indica). Indian J. Agric. Sci. 2017, 87, 943–946. [Google Scholar] [CrossRef]
- Colina-Márquez, J.A.; Contreras, E.; Ruiz, J.; Monroy, L. Comparación de dos métodos de extracción para el aceite esencial de la cáscara de pomelo (Citrus maxima). Rev. Ing-Nova 2022, 1, 85–98. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Lee, J.L.; Chong, G.H.; Ota, M.; Guo, H.; Smith, R.L., Jr. Solvent Replacement Strategies for Processing Pharmaceuticals and Bio-Related Compounds—A Review. Liquids 2024, 4, 352–381. [Google Scholar] [CrossRef]
- Jagannath, A.; Biradar, R. Comparative evaluation of Soxhlet and ultrasonics on lemon peel extraction. J. Food Chem. Nanotechnol. 2019, 5, 56–64. [Google Scholar] [CrossRef]
- Islam, M.; Malakar, S.; Dwivedi, U.; Kumar, N.; Prabakar, P.K.; Kishore, A.; Kumar, A. Impact of different drying techniques on grapefruit peels and subsequent optimization of ultrasonic extraction conditions for bioactive compounds. J. Food Process Eng. 2023, 46, e14331. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; A.O.A.C.: Tokyo, Japan, 2005. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- McDonnell, C.; Tiwari, B.K. Chapter Five- Ultrasound: A clean, green extraction technology for bioactives and contaminants. Compr. Anal. Chem. 2017, 76, 11–129. [Google Scholar]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Bodea, I.M.; Garre Pérez, A.; Cătunescu, G.M.; Palop, A. A Review on Microwave and Ultrasound-Assisted Extractions of Essential Oil from Orange Peel Waste. Food Bioprocess Technol. 2025, 18, 7060–7081. [Google Scholar] [CrossRef]
- Kutlu, N.; Pandiselvam, R.; Kamiloglu, A.; Saka, I.; Sruthi, N.U.; Kothakota, A.; Socol, C.T.; Maerescu, C.M. Impact of ultrasonication on food color profile. Ultrason. Sonochem. 2022, 89, 106109. [Google Scholar] [CrossRef]
- Chatel, G.; Colmenares, J.C. Sonochemistry: From basic principles to innovative applications. Top. Curr. Chem. 2017, 375, 1–33. [Google Scholar] [CrossRef]
- Muhamad, I.I.; Hassan, N.D.; Mamat, S.N.H.; Nawi, N.M.; Rashid, W.A.; Tan, N.A. Extraction Technologies and Solvents of Phytocompounds from Plant Materials: Physicochemical Characterization and Identification of Ingredients and Bioactive Compounds from Plant Extract Using Various Instrumentations. In Ingredients Extraction by Physicochemical Methods in Food; Grumezescu, E.A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 523–560. [Google Scholar]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef]
- Echenique, J.V.F.; Álvarez-Rivera, G.; Luna, V.M.A.; Antonio, A.F.V.D.C.; Mazalli, M.R.; Ibáñez, E.; Cifuentes, A.; Oliveira, A.L.D. Pressurized liquid extraction with ethanol in an intermittent process for rice bran oil: Evaluation of process variables on the content of β-sitosterol and phenolic compounds, antioxidant capacity, acetylcholinesterase inhibitory activity, and oil quality. LWT—Food Sci. Technol. 2024, 207, 116650. [Google Scholar] [CrossRef]
- Rincón, A.V.; Padilla, C. Composición química y compuestos bioactivos de harina de las cáscaras de naranja (Citrus sinensis), mandarina (Citrus reticulata) y toronja (Citrus paradisi) cultivadas en Venezuela. Arch. Latinoam. De Nutr. 2005, 55, 305–310. [Google Scholar]
- Guo, H.; Yin-Jian, Z.; Ding-Tao, W.; Xu, D.; Hong, G.; Ayyash Mutamed, A.; De-Guang, Z.; Hua-Bin, L.; Hong-Yan, L.; Ren-You, G. Quality evaluation of citrus varieties based on phytochemical profiles and nutritional properties. Front. Nutr. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Mazariegos-Moterroso, J.A. Identificación y Cuantificación de los Componentes Principales del Aceite Esencial del Flavedo (Cáscara) de Citrus reshni (Mandarina Cleopatra), Citrus reticulata (Mandarina común) y Citrus reticulata Blanco o Citrus tangerina (Mandarina Dancy) por Medio de Cromatografía de Gases Acoplada a Espectrometría de Masas. Bachelor’s Thesis, Universidad de san Carlos de Guatemala, Guatemala City, Guatemala, 2008. [Google Scholar]
- Castro Aguilar, A.D. Extracción del Material Péctico en Residuos Agroindustriales Cítricos Mediante un Reactor Termo-Mecano-Químico. Bachelor’s Thesis, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico, 2018. [Google Scholar]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Campanella, O.H.; Welti-Chanes, J. Influence of drying method on composition and prebiotic potential of dietary fibre concentrates from fruit peels. J. Food Qual. 2018, 1–11. [Google Scholar] [CrossRef]
- Arroyo Games, R.; León, R. Densidad de Carga y Método de Extracción en el Rendimiento y Calidad de Aceite Esencial de los Flavedos de dos Variedades de Naranja (Citrus sinensis). Bachelor’s Thesis, Universidad Nacional del Santa, Ancash, Peru, 2014. [Google Scholar]
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Sanches Silva, A.; Ramos, F. Citrus by-products: Valuable source of bioactive compounds for food applications. Antioxidants 2023, 12, 38. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.M.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochemistry 2021, 70, 105293. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska-Turak, E.; Sitkiewicz, I.; Janowicz, M. Influence of Ultrasound on the Rheological Properties, Color, Carotenoid Content, and Other Physical Characteristics of Carrot Puree. Appl. Sci. 2024, 14, 10466. [Google Scholar] [CrossRef]
- Ramos, P.R.; Sponchiado, J.; Echenique, J.V.F.; Dacanal, G.C.; Oliveira, A.L. Kinetics of Vegetable Oils (Rice Bran, Sunflower Seed, and Soybean) Extracted by Pressurized Liquid Extraction in Intermittent Process. Processes 2024, 12, 1107. [Google Scholar] [CrossRef]
- Zhong, Y.; Tong, F.; Yan, J.; Tan, H.; Abudurexiti, A.; Zhang, R.; Lei, Y.; Li, D.; Ma, X. Differences in the flavonoid composition of the leaves, fruits, and branches of mulberry are distinguished based on a plant metabolomics approach. Open Life Sci. 2024, 19, 20220886. [Google Scholar] [CrossRef]
- Nuñez, D.; Bayas-Morejón, F.; Ramón, E.R.; Remache-Agualongo, M. Extraction of essential oil from orange peel (Citrus sinensis) by steam stripping. PalArch’s J. Archaeol. Egypt/Egyptol. 2020, 17, 10853–10860. [Google Scholar]
- Wang, J.; Wang, J.; Ye, J.; Kranthi Vanga, S.; Raghavan, V. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 2019, 96, 128–136. [Google Scholar] [CrossRef]
- Ashokkumar, M. The characterization of acoustic cavitation bubbles–an overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Askarniya, Z.; Sun, X.; Wang, Z.; Boczkaj, G. Cavitation-based technologies for pretreatment and processing of food wastes: Major applications and mechanisms—A review. Chem. Eng. J. 2023, 454, 140388. [Google Scholar] [CrossRef]
Treatment | Citrus paradisi |
---|---|
E1 | 2.6 ± 0.58 |
U1 | 7.6 ± 1.5 |
E2 | 20 ± 2.7 |
U2 | 17 ± 1.8 |
E3 | 8.6 ± 0.96 |
U3 | 12 ± 1.4 |
A1 | 0.7 ± 0.03 |
A2 | 1.5 ± 0.49 |
Treatments | TEAC mmol TE/g | DPPH µg/mL | Flavonoides mg/mL | Fenoles mg/mL |
---|---|---|---|---|
A1 | 77.6 ± 2.34 | 51.82 ± 5.56 | 0.86 ± 0.03 | 0.96 ± 0.04 |
A2 | 358.6 ± 4.40 | 2413.03 ± 3.17 | 0.82 ± 0.06 | 1.19 ± 0.07 |
E1 | 303.2 ± 3.26 | 96.4 ± 4.44 | 1.14 ± 0.22 | 0.95 ± 0.02 |
E2 | 12,606.8 ± 0.51 | 1073.5 ± 1.07 | 14.74 ± 1.6 | 8.56 ± 0.02 |
E3 | 13,366.5 ± 7.66 | 4363.9 ± 4.14 | 9.21 ± 0.84 | 8.32 ± 0.18 |
U1 | 264.9 ± 4.07 | 123.6 ± 5.36 | 1.64 ± 0.17 | 0.8 ± 0.05 |
U2 | 13,525.1 ± 1.72 | 4933.33 ± 0.71 | 9.41 ± 0.15 | 5.33 ± 0.09 |
U3 | 641.0 ± 1.40 | 2127.42 ± 1.07 | 4.14 ± 0.12 | 2.19 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadena-Cadena, F.; Arias-Moscoso, J.L.; Argentel-Martínez, L.; Torres Velazquez, J.R.; Cuevas-Acuña, D.A.; Buitimea Cantua, N.E.; Concha-Frías, B. Effect of Ultrasonic Pretreatment on the Extraction Process of Essential Oils from Grapefruit (Citrus paradisi) By-Products. BioTech 2025, 14, 59. https://doi.org/10.3390/biotech14030059
Cadena-Cadena F, Arias-Moscoso JL, Argentel-Martínez L, Torres Velazquez JR, Cuevas-Acuña DA, Buitimea Cantua NE, Concha-Frías B. Effect of Ultrasonic Pretreatment on the Extraction Process of Essential Oils from Grapefruit (Citrus paradisi) By-Products. BioTech. 2025; 14(3):59. https://doi.org/10.3390/biotech14030059
Chicago/Turabian StyleCadena-Cadena, Francisco, Joe Luis Arias-Moscoso, Leandris Argentel-Martínez, Jony R. Torres Velazquez, Dulce Alondra Cuevas-Acuña, Nydia Estrellita Buitimea Cantua, and Bartolo Concha-Frías. 2025. "Effect of Ultrasonic Pretreatment on the Extraction Process of Essential Oils from Grapefruit (Citrus paradisi) By-Products" BioTech 14, no. 3: 59. https://doi.org/10.3390/biotech14030059
APA StyleCadena-Cadena, F., Arias-Moscoso, J. L., Argentel-Martínez, L., Torres Velazquez, J. R., Cuevas-Acuña, D. A., Buitimea Cantua, N. E., & Concha-Frías, B. (2025). Effect of Ultrasonic Pretreatment on the Extraction Process of Essential Oils from Grapefruit (Citrus paradisi) By-Products. BioTech, 14(3), 59. https://doi.org/10.3390/biotech14030059