Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = erbium-doped optical amplifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2149 KiB  
Article
Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
by Ziming Dong, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang and Yigang Li
Photonics 2025, 12(7), 718; https://doi.org/10.3390/photonics12070718 - 16 Jul 2025
Viewed by 301
Abstract
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient [...] Read more.
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient amplification in an erbium–ytterbium-based hybrid slot waveguide consisting of a silicon nitride waveguide and a thin-film active layer/electron-beam resist. The electron-beam resist as the upper cladding layer not only possesses the role of protecting the waveguide but also has tighter optical confinement in the vertical cross-section direction. On this basis, an accurate and comprehensive dynamic model of an erbium–ytterbium co-doped amplifier is realized by introducing quenched ions. A modal gain of above 20 dB is achieved at the signal wavelength of 1530 nm in a 1.4 cm long hybrid slot waveguide, with fractions of quenched ions fq = 30%. In addition, the proposed hybrid waveguide amplifiers exhibit higher modal gain than conventional air-clad amplifiers under the same conditions. Endowing silicon nitride photonic integrated circuits with efficient amplification enriches the integration of various active functionalities on silicon. Full article
Show Figures

Figure 1

14 pages, 4193 KiB  
Article
Comparative Analysis of Two Types of Combined Power-Over-Fiber and Radio-Over-Fiber Systems Using Raman Amplification for Different Link Lengths
by Paulo Kiohara, Romildo H. Souza, Véronique Quintard, Mikael Guegan, Laura Ghisa, André Pérennou and Olympio L. Coutinho
Sensors 2025, 25(13), 4159; https://doi.org/10.3390/s25134159 - 4 Jul 2025
Viewed by 330
Abstract
The use of analog radio-over-fiber (RoF) systems combined with power-over-fiber (PoF) systems has been proposed in recent years for applications involving remote sensors used in hazardous environments or where electrical wiring may be impractical. This article presents a hybrid architecture topology that combines [...] Read more.
The use of analog radio-over-fiber (RoF) systems combined with power-over-fiber (PoF) systems has been proposed in recent years for applications involving remote sensors used in hazardous environments or where electrical wiring may be impractical. This article presents a hybrid architecture topology that combines PoF and RoF, using Raman amplification to obtain RF gain. The first emphasis is placed on the use of two types of high-power laser sources (HPLSs) for the PoF system: a 1480 nm Raman-based HPLS and a 1550 nm HPLS that is based on an erbium-doped fiber amplifier (EDFA). The second emphasis of this paper is on how these two HPLSs simulate Raman scattering (SRS) in the fiber, considering different lengths of SMF 28 for the link. Thus, a comparative analysis is proposed considering the effects induced on the RF signal, mainly focused on its RF power gain (GRF), noise figure (NF), and spurious-free dynamic range (SFDR). The obtained results show that the architecture using a PoF system based on the 1550 nm HPLS benefits from a lower noise figure degradation, even when the noise generated by the optical amplification is considered. Full article
(This article belongs to the Special Issue Optical Communications in Sensor Networks)
Show Figures

Figure 1

12 pages, 4233 KiB  
Article
L-Band Erbium-Doped Fiber Optimization and Transmission Investigation
by Kaihua Hu, Li Pei, Jianshuai Wang, Zhouyi Hu, Wenxuan Xu, Long Zhang, Jing Li and Li Zhong
Photonics 2025, 12(5), 480; https://doi.org/10.3390/photonics12050480 - 13 May 2025
Viewed by 440
Abstract
The optical spectrum resource in the C-band has been used up due to dense wavelength division multiplexing (DWDM). Because of devices’ compatibility with both the C-band and the L-band, the L-band is a good choice for further capacity expansion. Meanwhile, the mode division [...] Read more.
The optical spectrum resource in the C-band has been used up due to dense wavelength division multiplexing (DWDM). Because of devices’ compatibility with both the C-band and the L-band, the L-band is a good choice for further capacity expansion. Meanwhile, the mode division multiplexing (MDM) method has been applied to increase the number of channels. However, the few-mode erbium-doped fiber amplifier must be redesigned to overcome the power differences among channels. In this work, a few-mode erbium-doped fiber (FM-EDF) is optimized and manufactured. Then, an in-line gain-equalized L-band FM-EDFA is constructed. The experimental results show that the FM-EDFA works well in the wavelength range between 1575 nm and 1610 nm. The minimum differential modal gain (DMG) is 0.54 dB, and the maximum modal gain is 22.22 dB. Due to the excellent performance of the L-band FM-EDFA, a DSP-free transmission scheme in the L-band is demonstrated. The bit error rates (BERs) of each channel are below 1 × 10−5 with a DSP-free receiver. Full article
(This article belongs to the Special Issue Optical Fiber Amplifiers and Their Applications)
Show Figures

Figure 1

8 pages, 1555 KiB  
Communication
Tunable All-Fiber Femtosecond Electro-Optic Optical Frequency Comb Operating at 1.5 μm
by Aiguo Zhang, Ke Dai, Lin Huang, Liwen Sheng, Zhiming Liu, Yudong Cui, Xiang Hao and Yusheng Zhang
Photonics 2025, 12(4), 311; https://doi.org/10.3390/photonics12040311 - 28 Mar 2025
Viewed by 588
Abstract
We propose and demonstrate a tunable femtosecond electro-optic optical frequency comb by shaping a continuous-wave seed laser in an all-fiber configuration. The seed laser, operating at 1.5 μm, is first cascade-phase-modulated and subsequently de-chirped to generate low-contrast pulses of approximately 8 ps at [...] Read more.
We propose and demonstrate a tunable femtosecond electro-optic optical frequency comb by shaping a continuous-wave seed laser in an all-fiber configuration. The seed laser, operating at 1.5 μm, is first cascade-phase-modulated and subsequently de-chirped to generate low-contrast pulses of approximately 8 ps at a repetition rate of 5.95 GHz. These pulses are then refined into clean, high-quality picosecond pulses using a Mamyshev regenerator. The generated source is further amplified using an erbium–ytterbium-doped fiber amplifier operating in a highly nonlinear regime, yielding output pulses compressed to around 470 fs. Tunable continuously across a 5.7~6 GHz range with a 1 MHz resolution, the picosecond pulses undergo nonlinear propagation in the final amplification stage, leading to output pulses that can be further compressed to a few hundred femtoseconds. By using a tunable bandpass filter, the center wavelength and spectral bandwidth can be flexibly tuned. This system eliminates the need for mode-locked cavities, simplifying conventional ultrafast electro-optic combs by relying solely on phase modulation, while delivering femtosecond pulses at multiple-gigahertz repetition rates. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

32 pages, 5714 KiB  
Article
Polynomial Modeling of Noise Figure in Erbium-Doped Fiber Amplifiers
by Rocco D’Ingillo, Alberto Castronovo, Stefano Straullu and Vittorio Curri
Fibers 2025, 13(3), 34; https://doi.org/10.3390/fib13030034 - 14 Mar 2025
Viewed by 884
Abstract
Erbium-Doped Fiber Amplifiers (EDFAs) are fundamental to optical communication networks, providing signal amplification while introducing noise that affects system performance. Accurate noise figure estimation is critical for optimizing link budgets, monitoring optical Signal-to-Noise Ratio (OSNR), and enabling real-time network optimization. Traditional analytical models, [...] Read more.
Erbium-Doped Fiber Amplifiers (EDFAs) are fundamental to optical communication networks, providing signal amplification while introducing noise that affects system performance. Accurate noise figure estimation is critical for optimizing link budgets, monitoring optical Signal-to-Noise Ratio (OSNR), and enabling real-time network optimization. Traditional analytical models, while computationally efficient, often fail to capture device-specific variations, whereas machine-learning-based approaches require large training datasets and introduce high computational overhead. This paper proposes a polynomial regression model for real-time EDFA noise figure estimation, striking a balance between accuracy and computational efficiency. The model leverages Generalized Least Squares (GLS) regression to fit a multivariate polynomial function to measured EDFA noise figure data, ensuring robustness against measurement noise and dataset variations. The proposed method is benchmarked against experimental measurements from multiple EDFAs, achieving prediction errors that are within the measurement uncertainty of Optical Spectrum Analyzers (OSAs). Furthermore, the model demonstrates strong generalization across different EDFA architectures, outperforming analytical models while requiring significantly less data than deep-learning approaches. Computational efficiency is also analyzed, showing that inference time is below 0.2 ms per evaluation, making the model suitable for real-time digital-twin applications in optical networks. Future work will explore hybrid modeling approaches, integrating physics-based regression with Machine Learning (ML) to enhance performance in high-variance spectral regions. These results highlight the potential of lightweight polynomial regression models as an alternative to complex ML-based solutions, enabling scalable and efficient EDFA performance prediction for next-generation optical networks. Full article
Show Figures

Figure 1

12 pages, 28322 KiB  
Article
Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources
by Jia Guo, Hao Zhang, Wenbin Lin and Wei Xu
Photonics 2025, 12(2), 115; https://doi.org/10.3390/photonics12020115 - 27 Jan 2025
Viewed by 1236
Abstract
The ASE (Amplified Spontaneous Emission) light source, based on erbium-doped fiber (EDF), is a broadband light source with advantages such as high power, excellent temperature stability, and low coherent light generation. It is widely used in the field of fiber optic sensing. However, [...] Read more.
The ASE (Amplified Spontaneous Emission) light source, based on erbium-doped fiber (EDF), is a broadband light source with advantages such as high power, excellent temperature stability, and low coherent light generation. It is widely used in the field of fiber optic sensing. However, traditional ASE sources suffer from temperature sensitivity and low efficiency, which can compromise the accuracy and stability of the output light’s average wavelength. This study focuses on optimizing the erbium-doped fiber (EDF) to improve the temperature stability and efficiency of the ASE light source. Through simulations, we found that the appropriate doping concentration and length of the EDF are key factors in enhancing the stability and efficiency of the ASE source. Inorganic metal chloride vapor-phase doping combined with an improved chemical vapor deposition process was used to fabricate the erbium-doped fiber, ensuring low background loss, minimal OH absorption, and uniform distribution of the erbium ions in the core of the fiber. The optimized EDFs were integrated into the ASE source, achieving a power conversion efficiency of 53.6% and a temperature stability of 0.118 ppm/°C within the temperature range of −50 °C to 70 °C. This study offers a practical approach for improving the performance of ASE light sources and advancing the development of high-precision fiber optic sensing technologies. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Materials Based on Nonlinear Photonics)
Show Figures

Figure 1

13 pages, 2840 KiB  
Article
Experimental Investigation of a Hybrid S-Band Amplifier Based on Two Parametric Wavelength Converters and an Erbium-Doped Fiber Amplifier
by Cheng Guo, Afshin Shamsshooli, Michael Vasilyev, Youichi Akasaka, Paparao Palacharla, Ryuichi Sugizaki and Shigehiro Takasaka
Photonics 2025, 12(2), 100; https://doi.org/10.3390/photonics12020100 - 23 Jan 2025
Viewed by 1103
Abstract
Multi-band optical communication presents a promising avenue for the significant enhancement of fiber-optic transmission capacity without incurring additional costs related to new cable deployment via the utilization of the bandwidth beyond the established C&L bands. However, a big challenge in its field implementation [...] Read more.
Multi-band optical communication presents a promising avenue for the significant enhancement of fiber-optic transmission capacity without incurring additional costs related to new cable deployment via the utilization of the bandwidth beyond the established C&L bands. However, a big challenge in its field implementation lies in the high cost and suboptimal performance of optical amplifiers, stemming from the underdeveloped state of rare-earth-doped fiber-optic amplifier technologies for these bands. Fiber-optic parametric amplifiers provide an alternative for wideband optical amplification, yet their low power efficiency limits their practical use in the field. In this paper, we study a hybrid optical amplifier that combines the excellent power efficiency of rare-earth-doped amplifiers with broadband wavelength conversion capability of parametric amplifiers. It uses wavelength converters to shift signals between the S- and L-bands, amplifying them with an L-band erbium-doped fiber amplifier, and converting them back to the S-band. We experimentally demonstrate such a hybrid S-band amplifier, characterize its performance with 16-QAM input signals, and evaluate its power efficiency and four-wave-mixing-induced crosstalk. This hybrid approach paves the way for scalable expansion of optical communication bands without waiting for advancements in rare-earth-doped amplifier technology. Full article
Show Figures

Figure 1

11 pages, 6537 KiB  
Article
Cavity Wavelength on Erbium-Doped Fiber Ring Laser Depending on Fabry–Pérot Etalon Steering Angle
by Cheng-Kai Yao, Ting-Po Fan, Ming-Che Chan and Peng-Chun Peng
Appl. Sci. 2025, 15(2), 822; https://doi.org/10.3390/app15020822 - 15 Jan 2025
Viewed by 1010
Abstract
This study presents the liquid crystal Fabry–Pérot etalon (LC-FP) as the preferred laser wavelength tuning solution within a erbium-doped fiber ring laser architecture. The laser cavity wavelength can be adjusted by applying varying voltages to the LC-FP. Furthermore, tuning the laser wavelength can [...] Read more.
This study presents the liquid crystal Fabry–Pérot etalon (LC-FP) as the preferred laser wavelength tuning solution within a erbium-doped fiber ring laser architecture. The laser cavity wavelength can be adjusted by applying varying voltages to the LC-FP. Furthermore, tuning the laser wavelength can be facilitated by modifying the incident light through changes in the steering angle of the LC-FP, which is attributed to the angular dispersion characteristics of the device. The operational range for the steering angle of the LC-FP is ± 4 to 18 degrees. This architectural framework is adept at facilitating the generation of single-wavelength and dual-wavelength lasers within the C band. The tunable range for a single wavelength is approximately 13 nm, while the tunable range for dual wavelengths is around 14 nm, with a wavelength spacing of approximately 17.5 nm. These capabilities are primarily influenced by the operational wavelength of the erbium-doped fiber amplifier (EDFA), the operating wavelength of the collimator that directs the fiber optic beam into the LC-FP, and the fixed thickness of the LC-FP. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

15 pages, 2203 KiB  
Article
OpticalTrust: A Sensor-to-Blockchain Framework Using Free-Space Optical Communication
by Parveen Bajaj, Aman Kataria, Vikram Puri, Sachin Gupta and Hong Min
Sensors 2024, 24(23), 7797; https://doi.org/10.3390/s24237797 - 5 Dec 2024
Cited by 2 | Viewed by 1047
Abstract
In the dynamic landscape of the tech industry, the escalating requirement for swift and secure data transmission has catalyzed innovation in integrated communication systems. Free-Space Optics (FSOs) has emerged as a promising contender in optical communications. While conventional optical fiber systems can achieve [...] Read more.
In the dynamic landscape of the tech industry, the escalating requirement for swift and secure data transmission has catalyzed innovation in integrated communication systems. Free-Space Optics (FSOs) has emerged as a promising contender in optical communications. While conventional optical fiber systems can achieve bit rates of up to 40 Gbps with proper design, they are limited primarily by electronics rather than semiconductor laser capabilities. This study presents an integrated framework that combines FSOs, blockchain technology, and sensor networks to address challenges in data transmission, security, and environmental adaptation. This study analyzes FSOs system performance through the Quality (Q) Factor and Bit Error Rate (BER), comparing systems with and without Erbium-Doped Fiber Amplifiers (EDFAs) across various bit rates (8, 12, 16, and 20 Gbps) and transmission distances (5–25 km). To enhance data security and reliability, a blockchain architecture is incorporated with smart contracts and an InterPlanetary File System (IPFS) for storing and validating results generated from FSOs simulation. Additionally, this study explores the design of sensor network models for FSOs technology by investigating how distributed sensor arrays can be theoretically integrated with FSOs systems, with testing focused on FSOs performance and blockchain implementation. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 3394 KiB  
Article
High-Performance Fiber Ring Laser Based on Polarization Space Parity-Time Symmetry Breaking
by Fengling Zhang, Zhengmao Wu, Xin Tong and Guangqiong Xia
Photonics 2024, 11(6), 501; https://doi.org/10.3390/photonics11060501 - 25 May 2024
Cited by 1 | Viewed by 1880
Abstract
This work proposes and experimentally demonstrates a high-performance polarization space parity-time (PT) symmetric fiber ring laser to achieve a low-noise, narrow-linewidth, and highly stable single-longitudinal-mode output. The gain/loss and coupling coefficients are regulated by adjusting a polarization controller (PC) and the pumping current [...] Read more.
This work proposes and experimentally demonstrates a high-performance polarization space parity-time (PT) symmetric fiber ring laser to achieve a low-noise, narrow-linewidth, and highly stable single-longitudinal-mode output. The gain/loss and coupling coefficients are regulated by adjusting a polarization controller (PC) and the pumping current of an erbium-doped fiber amplifier (EDFA) within the ring cavity. The results show that the single longitudinal mode oscillation of the laser can be implemented by PT symmetry breaking. The frequency noise spectral density and the linewidth characteristics of the laser are evaluated by the short-delay self-heterodyne method. The results reveal that excellent low-frequency noise (181 Hz2/Hz at a 10 kHz offset frequency) and narrow fundamental linewidth (68 Hz) can be achieved. Additionally, the laser exhibits outstanding stability with only 0.64 pm wavelength drift over 30 min. By tuning an optical tunable filter (OTF), the wavelength tunable range of the laser can cover the entire C-band. Furthermore, the impacts of different fiber length on the frequency noise spectral density and the filter bandwidth on stability are analyzed, offering guidance for component selection in such laser systems. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

9 pages, 2057 KiB  
Communication
Linear Fiber Laser Configurations for Optical Concentration Sensing in Liquid Solutions
by Liliana Soares, Rosa Ana Perez-Herrera, Susana Novais, António Ferreira, Susana Silva and Orlando Frazão
Photonics 2024, 11(5), 393; https://doi.org/10.3390/photonics11050393 - 24 Apr 2024
Cited by 1 | Viewed by 1449
Abstract
In this study, different configurations based on linear fiber lasers were proposed and experimentally demonstrated to measure the concentration of liquid solutions. Samples of paracetamol liquid solutions with different concentrations, in the range from 52.61 to 201.33 g/kg, were used as a case-study. [...] Read more.
In this study, different configurations based on linear fiber lasers were proposed and experimentally demonstrated to measure the concentration of liquid solutions. Samples of paracetamol liquid solutions with different concentrations, in the range from 52.61 to 201.33 g/kg, were used as a case-study. The optical gain was provided by a commercial bidirectional Erbium-Doped Fiber Amplifier (EDFA) and the linear cavity was obtained using two commercial Fiber Bragg Gratings (FBGs). The main difference of each configuration was the coupling ratio of the optical coupler used to extract the system signal. The sensing head corresponded to a Single-Mode Fiber (SMF) tip that worked as an intensity sensor. The results reveal that, despite the optical coupler used (50:50, 60:40, 70:30 or 80:20), all the configurations reached the laser condition, however, the concentration sensing was only possible using a laser drive current near to the threshold value. The configurations using a 70:30 and an 80:20 optical coupler allowed paracetamol concentration measurements with a higher sensitivity of (3.00 ± 0.24) pW/(g/kg) to be performed. In terms of resolution, the highest value obtained was 1.75 g/kg, when it was extracted at 20% of the output power to the linear cavity fiber laser configuration. Full article
(This article belongs to the Special Issue Single Frequency Fiber Lasers and Their Applications)
Show Figures

Figure 1

15 pages, 4229 KiB  
Review
Recent Advances, Applications, and Perspectives in Erbium-Doped Fiber Combs
by Pengpeng Yan, Weiming Xu, Heng Hu, Zhenqiang Zhang, Zhaoyang Li and Rong Shu
Photonics 2024, 11(3), 192; https://doi.org/10.3390/photonics11030192 - 21 Feb 2024
Cited by 5 | Viewed by 3244
Abstract
Optical frequency combs have emerged as a new generation of metrological tools, driving advancements in various fields such as free-space two-way time–frequency transfer, low-noise microwave source generation, and gas molecule detection. Among them, fiber combs based on erbium-doped fiber mode-locked lasers have garnered [...] Read more.
Optical frequency combs have emerged as a new generation of metrological tools, driving advancements in various fields such as free-space two-way time–frequency transfer, low-noise microwave source generation, and gas molecule detection. Among them, fiber combs based on erbium-doped fiber mode-locked lasers have garnered significant attention due to their numerous advantages, including low noise, high system integration, and cost-effectiveness. In this review, we discuss recent developments in erbium-doped fiber combs and analyze the advantages and disadvantages of constructing fiber combs utilizing different erbium-doped mode-locked fiber lasers. First, we provide a brief introduction to the basic principles of optical frequency combs. Then, we explore erbium-doped fiber combs implemented utilizing various mode-locking techniques, such as nonlinear polarization rotation (NPR), real saturable absorber (SA), and nonlinear amplifying loop mirror (NALM). Finally, we present an outlook on the future perspectives of erbium-doped fiber combs. Full article
(This article belongs to the Special Issue Advances in Sensoring and Measurement with Optical Frequency Comb)
Show Figures

Figure 1

9 pages, 2427 KiB  
Communication
C- and L-Bands Wavelength-Tunable Mode-Locked Fiber Laser
by Jiajing Lang, Cheng Chen, Pu Zhang, Mei Qi and Haowei Chen
Photonics 2023, 10(12), 1379; https://doi.org/10.3390/photonics10121379 - 14 Dec 2023
Cited by 3 | Viewed by 2658
Abstract
We report a single-wavelength tunable mode-locked fiber laser. The single wavelength can be tuned from 1537.49 nm to 1608.06 nm by introducing a Sagnac loop filter. As far as we know, this is the widest single-wavelength tuning range achieved in an erbium-doped mode-locked [...] Read more.
We report a single-wavelength tunable mode-locked fiber laser. The single wavelength can be tuned from 1537.49 nm to 1608.06 nm by introducing a Sagnac loop filter. As far as we know, this is the widest single-wavelength tuning range achieved in an erbium-doped mode-locked all-fiber laser based on nonlinear amplifying loop mirror (NALM). The laser’s pulse width changes from 549 fs to 808 fs throughout the tuning process, the maximum average output power is 5.72 mW, and the single-pulse energy is 0.34 nJ at a central wavelength of 1556.53 nm. This laser source can serve as an efficient tool for applications that require a broad tunability range. The combination of femtosecond pulses and extensive wavelength tuning capabilities makes this laser system highly valuable in fields such as fiber optic communications, spectroscopy, sensing, and other applications that benefit from ultrafast and tunable laser sources. Full article
(This article belongs to the Special Issue New Advances in Ultrashort Pulse Fiber Lasers and Their Applications)
Show Figures

Figure 1

9 pages, 1994 KiB  
Communication
Dual-Stage Double-Pass Extended L-Band Erbium-Doped Fiber Amplifier with Improved Gain Performance
by Haoxian Lao, Jiyu Ruan, Manbing Lin, Li Zhong, Song Wang, Pengbai Xu and Xinyong Dong
Photonics 2023, 10(11), 1266; https://doi.org/10.3390/photonics10111266 - 16 Nov 2023
Cited by 6 | Viewed by 2696
Abstract
Extended L-band erbium-doped fiber amplifiers (EDFAs) have attracted much attention in recent years despite their relatively low gain levels. In this paper, a dual-stage extended L-band EDFA with improved gain level is demonstrated by using an Er/Yb/P co-doped fiber-based double-pass structure assisted by [...] Read more.
Extended L-band erbium-doped fiber amplifiers (EDFAs) have attracted much attention in recent years despite their relatively low gain levels. In this paper, a dual-stage extended L-band EDFA with improved gain level is demonstrated by using an Er/Yb/P co-doped fiber-based double-pass structure assisted by a low noise pre-amplifier. High gain levels of up to 48.79 dB at 1566 nm and 20.05 dB at 1621.4 nm are achieved with saturated output power at 1605 nm of 20.58 dBm under a total pump power of only 400 mW. Bandwidths with the gain of more than 20 and 30 dB are reached up to 66 nm (1555.4–1621.4 nm) and 58.4 nm (1557.5–1615.9 nm), respectively. The noise figure benefited by using the low noise pre-amplifier is 5.40 ± 1.55 dB in the 1565–1610 nm range. The wide gain bandwidth, high gain level and relatively low pump power give it great potential for future high-capacity optical fiber communication systems. Full article
(This article belongs to the Special Issue Design and Applications of Optical Amplifiers)
Show Figures

Figure 1

15 pages, 3991 KiB  
Article
Experimental–Simulation Analysis of a Radiation Tolerant Erbium-Doped Fiber Amplifier for Space Applications
by Alberto Facchini, Adriana Morana, Luciano Mescia, Cosimo Campanella, Md Mizan Kabir Shuvo, Thierry Robin, Emmanuel Marin, Youcef Ouerdane, Aziz Boukenter and Sylvain Girard
Appl. Sci. 2023, 13(20), 11589; https://doi.org/10.3390/app132011589 - 23 Oct 2023
Cited by 3 | Viewed by 2693
Abstract
Research on optical amplifiers has highlighted how ionizing radiation negatively impacts the performance of erbium-doped fiber amplifiers (EDFAs), through the degradation of their gain. The amplitudes and kinetics of this degradation are mainly explained by the radiation-induced attenuation (RIA) phenomenon at the pump [...] Read more.
Research on optical amplifiers has highlighted how ionizing radiation negatively impacts the performance of erbium-doped fiber amplifiers (EDFAs), through the degradation of their gain. The amplitudes and kinetics of this degradation are mainly explained by the radiation-induced attenuation (RIA) phenomenon at the pump and signal wavelengths. In this work, the gain degradation of a radiation tolerant EDFA (exploiting a cerium-co-doped active optical fiber) induced by ionizing radiation up to 3 kGy (SiO2), at two dose rates, 0.28 Gy/s and 0.093 Gy/s, is studied through an experimental/simulation approach. Using a home-made simulation code based on the rate and power propagation equations and including the RIA effects, the radiation-dependent performance of EDFAs were estimated. The variations in the spectroscopic parameters caused by irradiation were also characterized, but our results show that they give rise to EDFA gain degradation of about 1%. To overcome the issue of overestimating the RIA during the radiation tests on the sole active rare-earth-doped fiber, a new RIA experimental setup is introduced allowing us to better consider the photobleaching mechanisms related to the pumping at 980 nm. A good agreement between experimental and simulated gain degradation dose dependences was obtained for two different irradiation conditions, thus also validating the simulation code for harsh environments applications. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

Back to TopTop