Dual-Stage Double-Pass Extended L-Band Erbium-Doped Fiber Amplifier with Improved Gain Performance †
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Idler, W.; Buchali, F.; Schmalen, L.; Lach, E.; Braun, R.P.; Böcherer, G.; Schulte, P.; Steiner, F. Field trial of a 1 Tb/s super-channel network using probabilistically shaped constellations. J. Light. Technol. 2017, 35, 1399–1406. [Google Scholar] [CrossRef]
- Winzer, P.J.; Neilson, D.T.; Chraplyvy, A.R. Fiber-optic transmission and networking: The previous 20 and the next 20 years. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef] [PubMed]
- Cantono, M.; Schmogrow, R.; Newland, M.; Vusirikala, V.; Hofmeister, T. Opportunities and challenges of C+L transmission systems. J. Light. Technol. 2020, 38, 1050–1060. [Google Scholar] [CrossRef]
- Deng, N.; Zong, L.; Jiang, H.; Duan, Y.; Zhang, K. Challenges and enabling technologies for multi-band WDM optical networks. J. Light. Technol. 2022, 40, 3385–3394. [Google Scholar] [CrossRef]
- Singh, S.; Kaler, R.S. Flat-gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system. Photonics Technol. Lett. 2013, 25, 250–252. [Google Scholar] [CrossRef]
- Chung, H.S.; Lee, W.Y.; Chu, M.J.; Lee, Y.B.; Lee, H.H.; Lee, D.H. A low-noise L-band EDFA with a 1500-nm Raman-pumped dispersion-compensating fiber section. Photonics Technol. Lett. 2003, 15, 522–524. [Google Scholar] [CrossRef]
- Jalilpiran, S.; Fuertes, V.; Lefebvre, J.; Grégoire, N.; Durak, F.E.; Landry, N.; Wang, L.; Rivera, A.G.V.; Messaddeq, Y.; LaRochelle, S. Baria-silica erbium-doped fibers for extended L-band amplification. J. Light. Technol. 2023, 41, 4806–4814. [Google Scholar] [CrossRef]
- Lou, Y.; Chen, Y.; Gu, Z.M.; Qiu, Q.; Shi, C.J.; He, L.; Xing, Y.B.; Peng, J.G.; Li, H.Q.; Chu, Y.B.; et al. Er3+/Ce3+ co-doped phospho-silicate fiber for extend the L-band amplification. J. Light. Technol. 2021, 39, 5933–5938. [Google Scholar] [CrossRef]
- Qiu, Q.; He, L.; Gu, Z.M.; Chen, Y.; Lou, Y.; Zhao, X.Y.; Peng, J.G.; Li, H.Q.; Xing, Y.B.; Chu, Y.B.; et al. Extended L-band few-mode Er/Yb co-doped fiber amplifier with a cladding-pumped pseudo-two-stage configuration. Opt. Lett. 2022, 47, 2963–2966. [Google Scholar] [CrossRef]
- Zhai, Z.W.; Sahu, J.K. 1480 nm diode-pumped Er3+:Yb3+ co-doped phospho-alumino-silicate fiber for extending the L-band gain up to 1625 nm. J. Light. Technol. 2023, 41, 3432–3437. [Google Scholar] [CrossRef]
- Codemard, C.; Soh, D.; Ylä-Jarkko, K.; Sahu, J.; Laroche, M.; Nilsson, J. Cladding-pumped L-band phosphosilicate erbium-ytterbium co-doped fiber amplifier. In Proceedings of the Optical Amplifiers and Their Applications 2003, Otaru, Japan, 6–9 July 2003. [Google Scholar] [CrossRef]
- Masuda, H.; Miyamoto, Y. Low-noise extended L-band phosphorus co-doped silicate EDFA consisting of novel two-stage gain-flattened gain blocks. Electron. Lett. 2008, 44, 1082–1083. [Google Scholar] [CrossRef]
- Chen, Y.; Lou, Y.; Gu, Z.M.; Qiu, Q.; He, L.; Li, W.Z.; Yin, X.K.; Zhao, X.Y.; Liu, S.K.; Peng, J.G.; et al. Extending the L-band amplification to 1623 nm using Er/Yb/P co-doped phosphosilicate fiber. Opt. Lett. 2021, 46, 5834–5837. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.B.; Lou, Y.; Chen, Y.; Gu, Z.M.; Qiu, Q.; Liu, C.B.; Dai, N.L.; Li, J.Y. Ultra-broadband, high gain, and low noise extended L-band erbium-doped fiber and its amplification performance. Chin. J. Lasers 2021, 48, 0715001. [Google Scholar]
- Le, H.; Chu, Y.B.; Dai, N.L.; Li, J.Y. Silicate-based erbium-doped fiber extended to L-band and its amplification performance. Acta Phys. 2022, 71, 154204. [Google Scholar]
- Firstov, S.V.; Khopin, V.F.; Bufetov, I.; Firstova, E.; Guryanov, A.N.; Dianov, E. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers. Opt. Express 2011, 19, 19551–19561. [Google Scholar] [CrossRef]
- Firstov, S.V.; Riumkin, K.; Khegai, A.; Alyshev, S.V.; Melkumov, M.; Khopin, V.F.; Afanasiev, F.V.; Guryanov, A.N.; Dianov, E. Wideband bismuth and erbium co-doped optical fiber amplifier for C+L+U-telecommunication band. Laser Phys. Lett. 2017, 14, 110001. [Google Scholar] [CrossRef]
- Zeng, L.Z.; Wen, J.X.; Wu, Y.; Yang, L.; Pang, F.F.; Wang, T.Y. Exceeding 25 dB gain broad-spectrum amplification in L-band based on a Bi/Er/La co-doped silica fiber. IEEE Photonics Technol. Lett. 2023, 35, 990–993. [Google Scholar] [CrossRef]
- Lei, C.M.; Feng, H.L.; Messaddeq, Y.; LaRochelle, S. Investigation of C-band pumping for extended L-band EDFAs. J. Opt. Soc. Am. B 2020, 37, 2345–2352. [Google Scholar] [CrossRef]
- Lei, C.M.; Feng, H.L.; Messaddeq, Y.; LaRochelle, S. Investigation of bi-directionally, dual-wavelength pumped extended L-band EDFAs. IEEE Photonics Technol. Lett. 2020, 32, 1227–1230. [Google Scholar] [CrossRef]
- Bolshtyansky, M.; Mandelbaum, I.; Pan, F. Signal excited-state absorption in the L-band EDFA: Simulation and measurements. J. Light. Technol. 2005, 23, 2796–2799. [Google Scholar] [CrossRef]
- Townsend, J.E.; Barnes, W.L.; Crubb, S.G. Yb3+ sensitised Er3+ doped silica optical fibre with ultra-high transfer efficiency and gain. MRS Online Proc. Libr. 1991, 244, 143–147. [Google Scholar] [CrossRef]
- Likhachev, M.; Bubnov, M.; Zotov, K.; Lipatov, D.; Yashkov, M.; Guryanov, A.N. Effect of the AlPO4 join on the pump-to-signal conversion efficiency in heavily Er-doped fibers. Opt. Lett. 2009, 34, 3355–3357. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Sekiya, E.H.; Banno, M.; Nishimura, R.; Okazaki, T.; Hashimoto, Y.; Araki, T.; Ichii, K.; Saito, K. Effect of P-to-rare earth atomic ratio on energy transfer in Er-Yb-doped optical fiber. J. Light. Technol. 2020, 38, 4504–4512. [Google Scholar] [CrossRef]
- Nilsson, J.; Yun, S.Y.; Hwang, S.T.; Kim, J.M.; Kim, S.J. Long-wavelength erbium-doped fiber amplifier gain enhanced by ASE end-reflectors. IEEE Photonics Technol. Lett. 1998, 10, 1551–1553. [Google Scholar] [CrossRef]
- Hwang, S.T.; Song, K.W.; Kwon, H.J.; Koh, J.; Oh, Y.J.; Cho, K. Broad-band erbium-doped fiber amplifier with double-pass configuration. IEEE Photonics Technol. Lett. 2001, 13, 1289–1291. [Google Scholar] [CrossRef]
- Haleem, M.R.; Al-Mansoori, M.H.; Jamaludin, M.Z.; Abdullah, F.; Din, N.M. High gain double-pass L-band EDFA with dispersion compensation as feedback loop. Laser Phys. 2011, 21, 419–422. [Google Scholar] [CrossRef]
- Chang, C.L.; Wang, L.; Chiang, Y.J. A dual pumped double-pass L-band EDFA with high gain and low noise. Opt. Commun. 2006, 267, 108–112. [Google Scholar] [CrossRef]
- Mishra, A.R.; Kakade, R.N.; Kakade, P.D. Dual-stage EDFA for improving the performance of long-haul optical systems. IEEE Access 2022, 10, 13496–13514. [Google Scholar] [CrossRef]
- Bouzid, B. High-gain and low-noise-figure erbium-doped fiber amplifier employing dual stage quadruple pass technique. Opt. Rev. 2010, 17, 100–102. [Google Scholar] [CrossRef]
- Delavaux, J.M.P.; Nagel, J.A. Multi-stage erbium-doped fiber amplifier designs. J. Light. Technol. 1995, 13, 703–720. [Google Scholar] [CrossRef]
Structure | Pump Power (mW) | Gain Values (dB) | NF Values (dB) | ||
---|---|---|---|---|---|
@1566 nm | @1605 nm | @1566 nm | @1605 nm | ||
Dual stage double pass | 50 + 300 + 50 | 48.79 | 39.66 | 3.86 | 5.71 |
Single stage double pass | 300 + 50 | 46.96 | 38.36 | 7.59 | 7.70 |
Dual stage single pass | 50 + 300 + 250 | 42.48 | 23.05 | 3.80 | 5.74 |
50 + 300 + 50 | 36.62 | 21.39 | 3.75 | 5.61 | |
Single stage single pass | 300 + 250 | 39.66 | 22.57 | 5.70 | 5.10 |
300 + 50 | 27.85 | 18.76 | 4.87 | 5.04 |
Doped Ions | Fiber Length (m) | Total Pump Power (mW) | Gain Bandwidth (nm) | Maximum Gain (dB) | Minimum NF (dB) | Refs. |
---|---|---|---|---|---|---|
Er/Yb/P | 68 | 720 | 58 (≥20 dB, 1565–1623) | ~31 @ 1605 nm | ~4.4 @ 1605 nm | [13] |
Er/P/Al | 19 + 26 + 10 | 2180 | ~50 (≥23 dB, 1575–1625) ~33 (≥30 dB, 1590–1623) | ~37 @ 1605 nm | 4.7 @ 1605 nm | [15] |
Er/Yb/P/Al | 62 | 1200 | ~53 (≥19 dB, 1570–1623) | ~30 @ 1605 nm | 4.6 @ 1605 nm | [10] |
Er/Ba | 125 | 800 | ~63 (≥20 dB, 1560–1623) ~15 (≥30 dB, 1562–1577) | ~42 @ 1568 nm ~26 @ 1615 nm | / | [7] |
Er/Bi/La | 11 + 39 | 1880 | 58 (≥25 dB, 1562–1620) | ~42 @ 1566 nm ~31 @1610 nm | 5.8 @ 1610 nm | [18] |
EDF+ Er/Yb/P | 10 + 30 (double pass) | 400 | ~66 (≥20 dB, 1556–1621) ~58 (≥30 dB, 1558–1616) | ~49 @ 1566 nm ~40 @ 1605 nm | 3.86/4.67 @1566/1580 nm | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lao, H.; Ruan, J.; Lin, M.; Zhong, L.; Wang, S.; Xu, P.; Dong, X. Dual-Stage Double-Pass Extended L-Band Erbium-Doped Fiber Amplifier with Improved Gain Performance. Photonics 2023, 10, 1266. https://doi.org/10.3390/photonics10111266
Lao H, Ruan J, Lin M, Zhong L, Wang S, Xu P, Dong X. Dual-Stage Double-Pass Extended L-Band Erbium-Doped Fiber Amplifier with Improved Gain Performance. Photonics. 2023; 10(11):1266. https://doi.org/10.3390/photonics10111266
Chicago/Turabian StyleLao, Haoxian, Jiyu Ruan, Manbing Lin, Li Zhong, Song Wang, Pengbai Xu, and Xinyong Dong. 2023. "Dual-Stage Double-Pass Extended L-Band Erbium-Doped Fiber Amplifier with Improved Gain Performance" Photonics 10, no. 11: 1266. https://doi.org/10.3390/photonics10111266
APA StyleLao, H., Ruan, J., Lin, M., Zhong, L., Wang, S., Xu, P., & Dong, X. (2023). Dual-Stage Double-Pass Extended L-Band Erbium-Doped Fiber Amplifier with Improved Gain Performance. Photonics, 10(11), 1266. https://doi.org/10.3390/photonics10111266