Tunable All-Fiber Femtosecond Electro-Optic Optical Frequency Comb Operating at 1.5 μm
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoghooghi, N.; Xing, S.; Chang, P.; Lesko, D.; Lind, A.; Rieker, G.; Diddams, S. Broadband 1-GHz Mid-Infrared Frequency Comb. Light. Sci. Appl. 2022, 11, 264. [Google Scholar] [CrossRef] [PubMed]
- Imrul Kayes, M.; Rochette, M. Fourier Transform Spectroscopy by Repetition Rate Sweeping of a Single Electro-Optic Frequency Comb. Opt. Lett. 2018, 43, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical Frequency Metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Yin, K.; Li, Y.; Zheng, X.; Jiang, T. Sub-100 Fs All-Fiber Broadband Electro-Optic Optical Frequency Comb at 1.5 Μm. Opt. Express 2020, 28, 34761–34771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, X.; Jiang, W.; Zhu, S.; Wang, F. A Pulse-Duration Compensation Scheme for GHz Electro-Optic Frequency Comb. IEEE Photon. Technol. Lett. 2024, 36, 1325–1328. [Google Scholar] [CrossRef]
- Ye, H.; Pontagnier, L.; Cormier, E.; Santarelli, G. Multi-Gigahertz Femtosecond Pulses from Linear and Nonlinear Propagation of a Phase-Modulated Laser. Opt. Lett. 2022, 47, 5405–5408. [Google Scholar] [CrossRef]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Kahn, J.; Loncar, M. Broadband Electro-Optic Frequency Comb Generation in an Integrated Microring Resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef]
- Cundiff, S.T.; Ye, J. Colloquium: Femtosecond Optical Frequency Combs. Rev. Mod. Phys. 2003, 75, 325–342. [Google Scholar] [CrossRef]
- Gosalia, R.K.; Aguinaldo, R.; Green, J.; Leopardi, H.; Brereton, P.; Malaney, R. Classical and Quantum Frequency Combs for Satellite-Based Clock Synchronization. APL Photonics 2024, 9, 100903. [Google Scholar] [CrossRef]
- Sekhar, P.; Kate Kreider, M.; Fredrick, C.; Ninan, J.P.; Bender, C.F.; Terrien, R.; Mahadevan, S.; Diddams, S.A. Tunable 30 GHz Laser Frequency Comb for Astronomical Spectrograph Characterization and Calibration. Opt. Lett. 2024, 49, 6257–6260. [Google Scholar] [CrossRef]
- Hu, H.; Oxenløwe, L.K. Chip-Based Optical Frequency Combs for High-Capacity Optical Communications. Nanophotonics 2021, 10, 1367–1385. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Z.; Cong, Z.; Gao, G.; Zhang, A.; Guo, H.; Yao, G.; Liu, Z. Stable 5-GHz Fundamental Repetition Rate Passively SESAM Mode-Locked Er-Doped Silica Fiber Lasers. Opt. Express 2021, 29, 9021–9029. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Nguyen, D.; Zong, J.; Chavez-Pirson, A. All-Fiber Fundamentally Mode-Locked 12 GHz Laser Oscillator Based on an Er/Yb-Doped Phosphate Glass Fiber. Opt. Lett. 2014, 39, 1418–1421. [Google Scholar] [CrossRef]
- Chen, X.; Lin, W.; Wang, W.; Guan, X.; Wen, X.; Qiao, T.; Wei, X.; Yang, Z. High-Power Femtosecond All-Fiber Laser System at 1.5 Μm with a Fundamental Repetition Rate of 4.9 GHz. Opt. Lett. 2021, 46, 1872–1875. [Google Scholar] [CrossRef] [PubMed]
- Barh, A.; Alaydin, B.Ö.; Heidrich, J.; Gaulke, M.; Golling, M.; Phillips, C.R.; Keller, U. High-Power Low-Noise 2-GHz Femtosecond Laser Oscillator at 2.4 Μm. Opt. Express 2022, 30, 5019–5025. [Google Scholar] [CrossRef]
- Aubourg, A.; Lhermite, J.; Hocquet, S.; Cormier, E.; Santarelli, G. Generation of Picosecond Laser Pulses at 1030 Nm with Gigahertz Range Continuously Tunable Repetition Rate. Opt. Lett. 2015, 40, 5610–5613. [Google Scholar] [CrossRef]
- Kadioglu, M.K.; Aslan, B.; Elahi, P. High-Power 120 Fs Pulses at 1.23 GHz from a Single-Mode Er/Yb-Doped Fiber Laser. Appl. Opt. 2024, 63, 9239–9244. [Google Scholar] [CrossRef]
- Yao, B.C.; Rao, Y.J.; Wang, Z.N.; Wu, Y.; Zhou, J.H.; Wu, H.; Fan, M.Q.; Cao, X.L.; Zhang, W.L.; Chen, Y.F.; et al. Graphene Based Widely-Tunable and Singly-Polarized Pulse Generation with Random Fiber Lasers. Sci. Rep. 2015, 5, 18526. [Google Scholar] [CrossRef]
- Ye, H.; Leroi, F.; Pontagnier, L.; Santarelli, G.; Boullet, J.; Cormier, E. High-Power Nonlinear Amplification of an Ultrafast Electro-Optic Frequency Comb with Flexible GHz Repetition Rate. Opt. Express 2022, 30, 10605–10613. [Google Scholar] [CrossRef]
- Carlson, D.R.; Hickstein, D.D.; Zhang, W.; Metcalf, A.J.; Quinlan, F.; Diddams, S.A.; Papp, S.B. An Ultrafast Electro-Optic Light Source with Sub-Cycle Precision. Science 2018, 361, 1358–1363. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, X.; Zhang, L.; Zheng, Z. Single-Cavity Dual-Comb Fiber Lasers and Their Applications. Front. Phys. 2023, 10, 1070284. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Ishizawa, A.; Kou, R.; Xu, X.; Yoshida, K.; Tsuchizawa, T.; Aihara, T.; Nishikawa, T.; Cong, G.; Hitachi, K.; et al. Sub-30-fs Fibre-coupled Electro-optic Modulation Comb at 1.5 Μm with a 25-GHz Repetition Rate. Electron. Lett. 2023, 59, e12830. [Google Scholar] [CrossRef]
- Metcalf, A.J.; Fredrick, C.D.; Diddams, S.A.; Terrien, R.C.; Papp, S.B. 30 GHz Electro-Optic Frequency Comb Spanning 300 THz in the near Infrared and Visible. Opt. Lett. 2019, 44, 2673–2676. [Google Scholar] [CrossRef]
- Deakin, C.; Zhou, Z.; Liu, Z. Phase Noise of Electro-Optic Dual Frequency Combs. Opt. Lett. 2021, 46, 1345–1348. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-S.; Park, J.; Jin, J. Comb-Mode Resolved Spectral Domain Interferometer Enabled by a Broadband Electro-Optic Frequency Comb. Photon. Res. 2023, 11, 72–80. [Google Scholar] [CrossRef]
- Metcalf, A.J.; Torres-Company, V.; Leaird, D.E.; Weiner, A.M. High-Power Broadly Tunable Electrooptic Frequency Comb Generator. IEEE J. Select. Top. Quantum Electron. 2013, 19, 231–236. [Google Scholar] [CrossRef]
- Eliason, T.; Parker, P.A.; Reber, M.A.R. Electro-Optic Frequency Comb Generation via Cascaded Modulators Driven at Lower Frequency Harmonics. Opt. Express 2024, 32, 36394–36404. [Google Scholar] [CrossRef]
- Imany, P.; Odele, O.D.; Jaramillo-Villegas, J.A.; Leaird, D.E.; Weiner, A.M. Characterization of Coherent Quantum Frequency Combs Using Electro-Optic Phase Modulation. Phys. Rev. A 2018, 97, 013813. [Google Scholar] [CrossRef]
- Fu, W.; Wright, L.G.; Wise, F.W. High-Power Femtosecond Pulses without a Modelocked Laser. Optica 2017, 4, 831–834. [Google Scholar] [CrossRef]
- Närhi, M.; Fedotov, A.; Aksenova, K.; Fiebrandt, J.; Schönau, T.; Gerecke, M.; Gumenyuk, R. Design Guidelines for Ultrashort Pulse Generation by a Mamyshev Regenerator. Opt. Express 2021, 29, 15699–15710. [Google Scholar] [CrossRef]
- Mamyshev, P.V. All-Optical Data Regeneration Based on Self-Phase Modulation Effect. In Proceedings of the 24th European Conference on Optical Communication, ECOC ’98 (IEEE Cat. No.98TH8398), Madrid, Spain, 20–24 September 1998; Telefonica: Madrid, Spain, 1998; Volume 1, pp. 475–476. [Google Scholar]
- Wang, D.; Huo, L.; Li, Y.; Zhang, D.; Wang, L.; Li, H.; Jiang, X.; Lou, C. Pedestal-Free 25-GHz Subpicosecond Optical Pulse Source for 16 × 25-Gb/s OTDM Based on Phase Modulation and Dual-Stage Nonlinear Compression. Appl. Opt. 2018, 57, 2930–2934. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, K.; Kikuchi, K. Optical Signal Processing by Phase Modulation and Subsequent Spectral Filtering Aiming at Applications to Ultrafast Optical Communication Systems. IEEE J. Select. Topics Quantum Electron. 2008, 14, 551–565. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, K.; Tao, Y.; Shao, W. Dissipative Solitons in Centimeter-Scale Fiber Lasers. J. Light. Technol. 2023, 41, 6779–6785. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, A.; Dai, K.; Huang, L.; Sheng, L.; Liu, Z.; Cui, Y.; Hao, X.; Zhang, Y. Tunable All-Fiber Femtosecond Electro-Optic Optical Frequency Comb Operating at 1.5 μm. Photonics 2025, 12, 311. https://doi.org/10.3390/photonics12040311
Zhang A, Dai K, Huang L, Sheng L, Liu Z, Cui Y, Hao X, Zhang Y. Tunable All-Fiber Femtosecond Electro-Optic Optical Frequency Comb Operating at 1.5 μm. Photonics. 2025; 12(4):311. https://doi.org/10.3390/photonics12040311
Chicago/Turabian StyleZhang, Aiguo, Ke Dai, Lin Huang, Liwen Sheng, Zhiming Liu, Yudong Cui, Xiang Hao, and Yusheng Zhang. 2025. "Tunable All-Fiber Femtosecond Electro-Optic Optical Frequency Comb Operating at 1.5 μm" Photonics 12, no. 4: 311. https://doi.org/10.3390/photonics12040311
APA StyleZhang, A., Dai, K., Huang, L., Sheng, L., Liu, Z., Cui, Y., Hao, X., & Zhang, Y. (2025). Tunable All-Fiber Femtosecond Electro-Optic Optical Frequency Comb Operating at 1.5 μm. Photonics, 12(4), 311. https://doi.org/10.3390/photonics12040311