Recent Advances, Applications, and Perspectives in Erbium-Doped Fiber Combs
Abstract
:1. Introduction
2. Principle of Optical Frequency Combs
3. Optical Frequency Combs Based on Er:fiber Mode-Locked Lasers
3.1. NPR-Based Er:fiber Optical Frequency Comb
3.2. Real SA-Based Er:fiber Optical Frequency Comb
3.3. NALM-Based Er:fiber Optical Frequency Comb
4. Applications
4.1. Free-Space Time–Frequency Transfer
4.2. Low-Noise Microwave Generation
4.3. Gas Molecule Detection
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.; Windeler, R.S.; Hall, J.L.; Cundiff, S.T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 2000, 288, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Soboń, G.; Abramski, K.M. Fiber-based laser frequency combs. Bull. Pol. Acad. Sci. Tech. Sci. 2012, 60, 697–706. [Google Scholar] [CrossRef]
- Shen, B.; Chang, L.; Liu, J.; Wang, H.; Yang, Q.F.; Xiang, C.; Wang, R.N.; He, J.; Liu, T.; Xie, W.; et al. Integrated turnkey soliton microcombs. Nature 2020, 582, 365–369. [Google Scholar] [CrossRef]
- Giorgetta, F.R.; Swann, W.C.; Sinclair, L.C.; Baumann, E.; Coddington, I.; Newbury, N.R. Optical two-way time and frequency transfer over free space. Nat. Photonics 2013, 7, 434–438. [Google Scholar] [CrossRef]
- Sinclair, L.C.; Bergeron, H.; Swann, W.C.; Khader, I.; Cossel, K.C.; Cermak, M.; Newbury, N.R.; Deschênes, J.D. Femtosecond optical two-way time-frequency transfer in the presence of motion. Phys. Rev. A 2019, 99, 023844. [Google Scholar] [CrossRef]
- Lu, Q.; Shen, Q.; Guan, J.; Li, M.; Chen, J.; Liao, S.; Zhang, Q.; Peng, C. Sensitive linear optical sampling system with femtosecond precision. Rev. Sci. Instrum. 2020, 91, 035113. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Liu, T.A.; Newbury, N.R.; Coddington, I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers. Opt. Express 2011, 19, 18501–18509. [Google Scholar] [CrossRef]
- Wu, G.; Xiong, S.; Ni, K.; Zhu, Z.; Zhou, Q. Parameter optimization of a dual-comb ranging system by using a numerical simulation method. Opt. Express 2015, 23, 32044–32053. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, T.; Wang, Z.; Zhang, K.; Xue, B.; Li, J.; He, M.; Qu, X. Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry. Appl. Phys. Lett. 2017, 111, 251901. [Google Scholar] [CrossRef]
- Zhu, Z.B.; Wu, G.H. Dual-comb ranging. Engineering 2018, 4, 772–778. [Google Scholar] [CrossRef]
- Shi, H.S.; Song, Y.J.; Li, R.M.; Li, Y.P.; Cao, H.; Tian, H.C.; Liu, B.W.; Chai, L.; Hu, M.L. Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement. Nanotechnol. Precis. Eng. 2018, 1, 205–217. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Sinclair, L.C.; Bergeron, H.; Swann, W.C.; Baumann, E.; Deschênes, J.D.; Newbury, N.R. Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency. Phys. Rev. Lett. 2018, 120, 050801. [Google Scholar] [CrossRef]
- Boulder Atomic Clock Optical Network (BACON) Collaboration*. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 2021, 591, 564–569. [Google Scholar] [CrossRef]
- Stenger, J.; Tamm, C.; Haverkamp, N.; Weyers, S.; Telle, H.R. Absolute frequency measurement of the 435.5-Nm 171Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser. Opt. Lett. 2001, 26, 1589–1591. [Google Scholar] [CrossRef]
- Walla, F.; Jerez, B.; Martın-Mateos, P.; de Dios, C.; Acedo, P. Absolute-frequency high-resolution real-time terahertz dual-comb spectrometer. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter and Terahertz Waves, Cancun, Mexico, 27 August–1 September 2017. [Google Scholar]
- Li, P.; Chen, F.; Peng, C.; Li, Z. Optical measurement by a dual-frequency comb based on rayleigh scattered stokes Light. Opt. Commun. 2019, 440, 214–219. [Google Scholar] [CrossRef]
- Kryukov, P.G. Lasers and fiber optics for astrophysics. Phys.-Usp. 2018, 61, 1072–1078. [Google Scholar] [CrossRef]
- Obrzud, E.; Rainer, M.; Harutyunyan, A.; Chazelas, B.; Cecconi, M.; Ghedina, A.; Molinari, E.; Kundermann, S.; Lecomte, S.; Pepe, F.; et al. Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb. Opt. Express 2018, 26, 34830–34841. [Google Scholar] [CrossRef]
- Millo, J.; Abgrall, M.; Lours, M.; English, E.M.L.; Jiang, H.; Guéna, J.; Clairon, A.; Tobar, M.E.; Bize, S.; Le Coq, Y.; et al. Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock. Appl. Phys. Lett. 2009, 94, 141105. [Google Scholar] [CrossRef]
- Hati, A.; Nelson, C.W.; Barnes, C.; Lirette, D.; Desalvo, J.A.; Howe, D.A. Ultra-low-noise regenerative frequency divider. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 2596–2598. [Google Scholar] [CrossRef]
- Hati, A.; Nelson, C.W.; Barnes, C.; Lirette, D.; Fortier, T.; Quinlan, F.; Desalvo, J.A.; Ludlow, A.; Diddams, S.A.; Howe, D.A. State-of-the-art RF signal generation from optical frequency division. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1796–1803. [Google Scholar] [CrossRef]
- Xie, X.P.; Bouchand, R.; Nicolodi, D.; Giunta, M.; Hänsel, W.; Lezius, M.; Joshi, A.; Datta, S.; Alexandre, C.; Lours, M.; et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photonics 2016, 11, 44–47. [Google Scholar] [CrossRef]
- Davila-Rodriguez, J.; Baynes, F.N.; Ludlow, A.D.; Fortier, T.M.; Leopardi, H.; Diddams, S.A.; Quinlan, F. Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation. Opt. Lett. 2017, 42, 1277–1280. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr solitons in optical microresonators. Science 2018, 361, eaan8083. [Google Scholar] [CrossRef]
- Peng, J.L.; Ahn, H.; Shu, R.H.; Chui, H.C.; Nicholson, J.W. Highly stable, frequency-controlled mode-locked erbium fiber laser comb. Appl. Phys. B 2006, 86, 49–53. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, J.; Leng, J.; Lai, S.; Zhao, J. Highly precise stabilization of intracavity prism-based Er:fiber frequency comb using optical-microwave phase detector. Opt. Lett. 2014, 39, 6454–6457. [Google Scholar] [CrossRef]
- Hao, Q.; Zhang, Q.; Chen, F.; Yang, K.; Zeng, H. All-optical 20-μHz-level repetition rate stabilization of mode locking with a nonlinear amplifying loop mirror. J. Light. Technol. 2016, 34, 2833–2837. [Google Scholar] [CrossRef]
- Hänsel, W.; Hoogland, H.; Giunta, M.; Schmid, S.; Steinmetz, T.; Doubek, R.; Mayer, P.; Dobner, S.; Cleff, C.; Fischer, M.; et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation. Appl. Phys. B 2017, 123, 41. [Google Scholar] [CrossRef]
- Chen, F.; Hao, Q.; Zeng, H. Optimization of an NALM mode-locked all-PM Er:fiber laser system. IEEE Photonics Technol. Lett. 2017, 29, 2119–2122. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, P.; Luo, J.; Huang, K.; Hao, Q.; Zeng, H. Comparison on different repetition rate locking methods in Er-doped fiber laser. Laser Phys. 2018, 28, 055108. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Tang, X.; Liu, Q.; Zou, H. Inverse saturable absorption mechanism in mode-locked fiber lasers with a nonlinear amplifying loop mirror. Photonics 2023, 10, 261. [Google Scholar] [CrossRef]
- Yang, K.; Hao, Q.; Zeng, H. All-optical high-precision repetition rate locking of an Yb-doped fiber laser. IEEE Photonics Technol. Lett. 2015, 27, 852–855. [Google Scholar] [CrossRef]
- Li, Y.; Kuse, N.; Rolland, A.; Stepanenko, Y.; Radzewicz, C.; Fermann, M.E. Low Noise, self-referenced all polarization maintaining ytterbium fiber laser frequency comb. Opt. Express 2017, 25, 18017–18023. [Google Scholar] [CrossRef]
- Chang, Y.; Jiang, T.; Zhang, Z.; Wang, A. All-fiber Yb:fiber frequency comb. Chin. Opt. Lett. 2019, 17, 053201. [Google Scholar] [CrossRef]
- Guo, Z.; Hao, Q.; Yang, S.; Liu, T.; Hu, H.; Zeng, H. Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system. IEEE Photonics J. 2017, 9, 1600507. [Google Scholar] [CrossRef]
- Mayer, A.S.; Grosinger, W.; Fellinger, J.; Winkler, G.; Perner, L.W.; Droste, S.; Salman, S.H.; Li, C.; Heyl, C.M.; Hartl, I.; et al. Flexible all-pM NALM Yb:fiber laser design for frequency comb applications: Operation regimes and their noiseproperties. Opt. Express 2020, 28, 18946–18969. [Google Scholar] [CrossRef]
- Sun, B.; Luo, J.; Yan, Z.; Liu, K.; Ji, J.; Wang, Q.J.; Yu, X. 1867-2010 nm tunable femtosecond thulium- doped all-fiber laser. Opt. Express 2017, 25, 8997–9002. [Google Scholar] [CrossRef]
- Michalska, M.; Swiderski, J. All-Fiber Thulium-Doped Mode-Locked Fiber Laser and Amplifier Based on Nonlinear Fiber Loop Mirror. Opt. Laser Technol. 2019, 118, 121–125. [Google Scholar] [CrossRef]
- Ososkov, Y.; Khegai, A.; Riumkin, K.; Mkrtchyan, A.; Gladush, Y.; Krasnikov, D.; Nasibulin, A.; Yashkov, M.; Guryanov, A.; Melkumov, M. All-PM Fiber Tm-Doped Laser with Two Fiber Lyot Filters Mode-Locked by CNT. Photonics 2022, 9, 608. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, W.; Zeng, X.; Cheng, X.; Jiang, H.; Cui, S.; Feng, Y. All-polarization-maintaining, ultra-compact Tm-doped fiber laser designed for mid-infrared comb. IEEE Photonics Technol. Lett. 2022, 34, 89–92. [Google Scholar] [CrossRef]
- Duan, L.; Li, Y. 35 Fs, All-polarization-maintaining MOPA laser system. Laser Phys. Lett. 2020, 17, 035101. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Z.; Cong, Z.; Gao, G.; Zhang, A.; Guo, H.; Yao, G.; Liu, Z. Stable 5-GHz fundamental repetition rate passively SESAM mode-locked Er-doped silica fiber lasers. Opt. Express 2021, 29, 9021–9029. [Google Scholar] [CrossRef]
- Li, X.; Zou, W.; Chen, J. Passive harmonic hybrid mode-locked fiber laser with extremely broad spectrum. Opt. Express 2015, 23, 21424–21433. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, S.; Yan, L.; Zhang, L.; Zhang, X.; Guo, W.; Zhang, S.; Jiang, H. Robust optical-frequency-comb based on the hybrid mode-locked Er:fFiber femtosecond laser. Opt. Express 2017, 25, 21719–21725. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.N.; Yang, F.; Li, L.; Zhao, C.; Xu, B.; Jin, S.; Cao, S.; Fang, Z. Er-doped mode-locked fiber laser with a hybrid structure of a step-index–graded-index multimode fiber as the saturable absorber. J. Light. Technol. 2017, 35, 5280–5285. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, B.; Wang, K.; Chen, S.; Bai, J. Generating narrow bandwidth pulses in a hybrid mode-locked fiber laser. Opt. Lett. 2021, 46, 1097–1100. [Google Scholar] [CrossRef]
- Minoshima, K. High-Precision Absolute Length Metrology Using Fiber-Based Optical Frequency Combs. In Proceedings of the 2010 International Conference on Electromagnetics in Advanced Applications, Sydney, Australia, 20–24 September 2010. [Google Scholar]
- Ye, J.; Cundiff, S.T. Femtosecond Optical Frequency Comb: Principle, Operation and Applications; Springer Science & Business Media: New York, NY, USA, 2005. [Google Scholar]
- Sinclair, L.C.; Deschênes, J.D.; Sonderhouse, L.; Swann, W.C.; Khader, I.H.; Baumann, E.; Newbury, N.R.; Coddington, I. Invited article: A compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 2015, 86, 081301. [Google Scholar] [CrossRef]
- Hitachi, K.; Ishizawa, A.; Nishikawa, T.; Asobe, M.; Sogawa, T. Carrier-envelope offset locking with a 2f-to-3f self-feferencing interferometer using a dual-pitch PPLN ridge waveguide. Opt. Express 2014, 22, 1629–1635. [Google Scholar] [CrossRef]
- Hitachi, K.; Ishizawa, A.; Tadanaga, O.; Nishikawa, T.; Mashiko, H.; Sogawa, T.; Gotoh, H. Frequency stabilization of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer. Appl. Phys. Lett. 2015, 106, 231106. [Google Scholar] [CrossRef]
- Kim, J.; Song, Y. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications. Adv. Opt. Photonics 2016, 8, 465–540. [Google Scholar] [CrossRef]
- Tian, H.; Song, Y.; Hu, M. Noise measurement and reduction in mode-locked lasers: Fundamentals for low-noise optical frequency combs. Appl. Sci. 2021, 11, 7650. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhan, L.; Xu, K.; Wu, J.; Xia, Y.; Lin, J. Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter. Opt. Lett. 2008, 33, 324326. [Google Scholar] [CrossRef]
- Gao, J.; Ning, T.; Liu, Y.; Shang, X.; Han, X.; Guo, Q.; Guo, L.; Lu, Z.; Wang, Z.; Zhang, H.; et al. Generation of High-Energy Rectangular Pulses in a Nonlinear Polarization Rotation Mode-Locked Ring Fiber Laser. Appl. Opt. 2019, 58, 7897–7903. [Google Scholar] [CrossRef]
- Adler, F.; Moutzouris, K.; Leitenstorfer, A.; Schnatz, H.; Lipphardt, B.; Grosche, G.; Tauser, F. Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies. Opt. Express 2004, 12, 5872–5880. [Google Scholar] [CrossRef]
- Inaba, H.; Daimon, Y.; Hong, F.-L.; Onae, A.; Minoshima, K.; Schibli, T.R.; Matsumoto, H.; Hirano, M.; Okuno, T.; Onishi, M.; et al. Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb. Opt. Express 2006, 14, 5223–5231. [Google Scholar] [CrossRef]
- Nakajima, Y.; Inaba, H.; Hosaka, K.; Minoshima, K.; Onae, A.; Yasuda, M.; Kohno, T.; Kawato, S.; Kobayashi, T.; Katsuyama, T.; et al. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. Opt. Express 2010, 18, 1667–1676. [Google Scholar] [CrossRef]
- Yan, L.L.; Zhang, Y.Y.; Zhang, L.; Fan, S.T.; Zhang, X.F.; Guo, W.G.; Zhang, S.G.; Jiang, H.F. Attosecond-resolution Er:fiber-based optical frequency comb. Chin. Phys. Lett. 2015, 32, 104207. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Yan, L.; Zhang, P.; Rao, B.; Han, W.; Guo, W.; Zhang, S.; Jiang, H. Steering optical comb frequencies by rotating the polarization state. Opt. Lett. 2017, 42, 5145–5148. [Google Scholar] [CrossRef]
- Liu, T.; Yan, M.; Shen, X.; Zeng, H. Realization of carrier envelope phase control in an erbium-doped all-fiber comb via an intracavity electrical polarization controller. Opt. Lett. 2021, 46, 4041–4044. [Google Scholar] [CrossRef]
- Xie, G.; Liu, Y.; Zhou, L.; Zhu, Z.; Deng, Z.; Luo, D.; Gu, C.; Li, W. Self-referenced frequency comb from a polarization-maintaining Er:fiber laser based nonlinear polarization evolution. Results Phys. 2021, 22, 103886. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Wang, P. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers. IEEE Photonics Technol. Lett. 2012, 24, 539–541. [Google Scholar] [CrossRef]
- Mashiko, Y.; Fujita, E.; Tokurakawa, M. Tunable noise-like pulse generation in mode-locked Tm fiber laser with a SESAM. Opt. Express 2016, 24, 26515–26520. [Google Scholar] [CrossRef]
- Armas-Rivera, I.; Rodriguez-Morales, L.A.; Durán-Sánchez, M.; Avazpour, M.; Carrascosa, A.; Silvestre, E.; Kuzin, E.A.; Andrés, M.V.; Ibarra-Escamilla, B. Wide Wavelength-tunable passive mode-locked erbium-doped fiber laser with a SESAM. Opt. Laser Technol. 2021, 134, 106593. [Google Scholar] [CrossRef]
- Coddington, I.; Sinclair, L.C.; Swann, W.S.; Newbury, N.R. All polarization-maintaining fiber erbium frequency combs for stable long-term operation. In Proceedings of the 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Kyoto, Japan, 30 June–4 July 2013. [Google Scholar]
- Togashi, H.; Nagaike, T.; Jin, L.; Sakakibara, Y.; Omoda, E.; Kataura, H.; Ozeki, Y.; Nishizawa, N. All polarization maintaining optical frequency comb based on Er-doped fiber laser with carbon nanotube. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 14–19 May 2017. [Google Scholar]
- Schweyer, S.M.; Eder, B.; Putzer, P.; Mayerbacher, M.; Lemke, N.; Schreiber, K.U.; Hugentobler, U.; Kienberger, R. All-in-fiber SESAM based comb oscillator with an intra-cavity electro-optic modulator for coherent high bandwidth stabilization. Opt. Express 2018, 26, 23798–23807. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, T.; Pan, R.; Hu, X.; Ye, F.; Zhang, W.; Zhao, W.; Wang, Y. Compact, high-performance all-polarization-maintaining Er:fiber frequency comb with single fiber actuator. IEEE Photonics J. 2020, 12, 7102508. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Liu, Y.; Luo, D.P.; Gu, C.L.; Zhou, L.; Xie, G.H.; Deng, Z.J.; Li, W.X. Tunable optical frequency comb from a compact and robust Er:fiber laser. High Power Laser Sci. 2020, 8, e17. [Google Scholar]
- Jang, H.; Jang, Y.-S.; Kim, S.; Lee, K.; Han, S.; Kim, Y.J.; Kim, S.W. Polarization maintaining linear cavity Er-doped fiber femtosecond laser. Laser Phys. Lett. 2015, 12, 105102. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Jang, Y.S.; Jang, H.; Han, S.; Lee, S.H.; Kang, K.I.; Lim, C.W.; Kim, Y.J.; Kim, S.W. Testing of a femtosecond pulse laser in outer space. Sci. Rep. 2014, 4, 5134. [Google Scholar] [CrossRef]
- Sinclair, L.C.; Coddington, I.; Swann, W.C.; Rieker, G.B.; Hati, A.; Iwakuni, K.; Newbury, N.R. Operation of an optically coherent frequency comb outside the metrology lab. Opt. Express 2014, 22, 6996–7006. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, X.; Hu, X.; Liu, Y.; Wang, Y.; Zhang, W.; Yang, Z.; Duan, L.; Zhao, W.; Cheng, Z. Environmental-adaptability analysis of an All polarization-maintaining fiber-based optical frequency comb. Opt. Express 2015, 23, 17549–17559. [Google Scholar] [CrossRef]
- Zhou, J.; Pan, W.; Feng, Y. Period multiplication in mode-locked figure-of-9 fiber lasers. Opt. Express 2020, 28, 17424–17433. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Salman, S.; Li, C.; Mahnke, C.; Hua, Y.; Droste, S.; Fellinger, J.; Mayer, A.; Heckl, O.; Heyl, C.; et al. Compact, All-PM fiber integrated and alignment-free ultrafast Yb:fiber NALM laser with sub-femtosecond timing jitter. J. Light. Technol. 2021, 39, 4431–4438. [Google Scholar] [CrossRef]
- Łaszczych, Z.; Soboń, G. Dispersion management of a nonlinear amplifying loop mirror-based erbium-doped fiber laser. Opt. Express 2021, 29, 2690–2702. [Google Scholar] [CrossRef]
- Ren, B.; Li, C.; Wang, T.; Guo, K.; Zhou, P. Stable Noise-like pulse generation from a NALM-based all-PM Tm-doped fiber laser. Opt. Express 2022, 30, 26464–26471. [Google Scholar] [CrossRef]
- Yuan, S.; Si, L.; Chen, J.; Chen, J.; Yu, H. Generation of 99.8 fs, 25 kW peak-power, dispersion-managed pulses directly from an Yb-doped figure-of-9 fiber laser. Materials 2022, 15, 7038. [Google Scholar] [CrossRef]
- Xiong, S.; Luo, D.; Liu, Y.; Wang, W.; Deng, Z.; Tang, Z.; Xie, G.; Zhou, L.; Zuo, Z.; Gu, C.; et al. Investigation of stable pulse mode-locking regimes in a NALM figure-9 Er-doped fiber laser. Opt. Express 2023, 31, 514–527. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.; Kim, Y.J.; Hussein, H.; Kim, S.W. Er-doped fiber frequency comb with mHz relative linewidth. Opt. Express 2009, 17, 11972–11977. [Google Scholar] [CrossRef]
- Kuse, N.; Jiang, J.; Lee, C.C.; Schibli, T.R.; Fermann, M.E. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror. Opt. Express 2016, 24, 3095–3102. [Google Scholar] [CrossRef]
- Ohmae, N.; Kuse, N.; Fermann, M.E.; Katori, H. All-polarization-maintaining, single-port Er:fiber comb for high-stability comparison of optical lattice clocks. Appl. Phys. Express 2017, 10, 062503. [Google Scholar] [CrossRef]
- Deng, Z.J.; Liu, Y.; Zhu, Z.W.; Luo, D.P.; Gu, C.L.; Zhou, L.; Xie, G.H.; Li, W.X. Ultra-precise optical phase-locking approach for ultralow noise frequency comb generation. Opt. Laser Technol. 2021, 138, 106906. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y.Y.; Li, M.K.; Rao, B.J.; Yan, L.L.; Chen, F.X.; Zhang, X.F.; Chen, Q.F.; Jiang, H.F.; Zhang, S.G. All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks. Chin. Phys. B 2022, 31, 054210. [Google Scholar] [CrossRef]
- Qingsong, J.; Tianshu, W.; Wanzhuo, M.; Zhen, W.; Qingchao, S.; Baoxue, B.; Huilin, J. Mode-locking thulium-doped fiber laser with 1.78-GHz repetition rate based on combination of nonlinear polarization rotation and semiconductor saturable absorber mirror. IEEE Photonics J. 2017, 9, 1502808. [Google Scholar] [CrossRef]
- Wang, T.; Ma, W.; Jia, Q.; Su, Q.; Liu, P.; Zhang, P. Passively mode-locked fiber lasers based on nonlinearity at 2 μm band. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1102011. [Google Scholar] [CrossRef]
- Hirooka, T.; Tokuhira, K.; Yoshida, M.; Nakazawa, M. 440 fs, 9.2 GHz Regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber. Opt. Express 2016, 24, 24255–24264. [Google Scholar] [CrossRef]
- Jiang, H.; Taylor, J.; Quinlan, F.; Fortier, T.; Diddams, S.A. Noise floor reduction of an Er:fiber laser-based photonic microwave generator. IEEE Photonics J. 2011, 3, 1004–1012. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, J.; Cheng, Z.; Li, S.; Feng, Y. GHz figure-9 Er-doped optical frequency comb based on nested fiber ring resonators. Laser Photonics Rev. 2023, 17, 2300537. [Google Scholar] [CrossRef]
- Lezius, M.; Wilken, T.; Deutsch, C.; Giunta, M.; Mandel, O.; Thaller, A.; Schkolnik, V.; Schiemangk, M.; Dinkelaker, A.; Kohfeldt, A. Space-borne frequency ccomb metrology. Optica 2016, 3, 1381–1387. [Google Scholar] [CrossRef]
- Pröbster, B.J.; Lezius, M.; Mandel, O.; Braxmaier, C.; Holzwarth, R. FOKUS II-space flight of a compact and vacuum compatible dual frequency ccomb system. J. Opt. Soc. Am. B 2021, 38, 932–939. [Google Scholar] [CrossRef]
- Deschênes, J.-D.; Sinclair, L.C.; Giorgetta, F.R.; Swann, W.C.; Baumann, E.; Bergeron, H.; Cermak, M.; Coddington, I.; Newbury, N.R. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X 2016, 6, 021016. [Google Scholar] [CrossRef]
- Sinclair, L.C.; Swann, W.C.; Bergeron, H.; Baumann, E.; Cermak, M.; Coddington, I.; Deschênes, J.D.; Giorgetta, F.R.; Juarez, J.C.; Khader, I.; et al. Synchronization of clocks through 12 km of strongly turbulent air over a city. Appl. Phys. Lett. 2016, 109, 151104. [Google Scholar] [CrossRef]
- Bergeron, H.; Sinclair, L.C.; Swann, W.C.; Khader, I.; Cossel, K.C.; Cermak, M.; Deschênes, J.D.; Newbury, N.R. Femtosecond time synchronization of optical clocks off of a flying quadcopter. Nat. Commun. 2019, 10, 1819. [Google Scholar] [CrossRef]
- Shen, Q.; Guan, J.Y.; Zeng, T.; Lu, Q.-M.; Huang, L.; Cao, Y.; Chen, J.P.; Tao, T.Q.; Wu, J.C.; Hou, L.; et al. Experimental simulation of time and frequency transfer via an optical satellite–ground link at 10−18 instability. Optica 2021, 8, 471–476. [Google Scholar] [CrossRef]
- Shen, Q.; Guan, J.Y.; Ren, J.G.; Zeng, T.; Hou, L.; Li, M.; Cao, Y.; Han, J.J.; Lian, M.Z.; Chen, Y.W.; et al. Free-space dissemination of time and frequency with 10−19 instability over 113 Km. Nature 2022, 610, 661–666. [Google Scholar] [CrossRef]
- Caldwell, E.D.; Deschenes, J.-D.; Ellis, J.; Swann, W.C.; Stuhl, B.K.; Bergeron, H.; Newbury, N.R.; Sinclair, L.C. Quantum-limited optical time transfer for future geosynchronous links. Nature 2023, 618, 721–726. [Google Scholar] [CrossRef]
- Quinlan, F.; Fortier, T.M.; Kirchner, M.S.; Taylor, J.A.; Thorpe, M.J.; Lemke, N.; Ludlow, A.D.; Jiang, Y.; Diddams, S.A. Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider. Opt. Lett. 2011, 36, 3260–3262. [Google Scholar] [CrossRef]
- Lavrič, A.; Batagelj, B.; Vidmar, M. Calibration of an RF/microwave phasenoise meter with a photonic delay line. Photonics 2022, 9, 533. [Google Scholar] [CrossRef]
- Wada, M.; Hong, F.-L.; Inaba, H. Frequency noise measurement and its uncertainty estimation of an optical frequency comb using a delay line interferometer. Meas. Sci. Technol. 2020, 31, 125012. [Google Scholar] [CrossRef]
- Quinlan, F.; Baynes, F.N.; Fortier, T.M.; Zhou, Q.; Cross, A.; Campbell, J.C.; Diddams, S.A. Optical amplification and pulse interleaving for low-noise photonic microwave generation. Opt. Lett. 2014, 39, 1581–1584. [Google Scholar] [CrossRef]
- Yan, L.L.; Zhao, W.-Y.; Zhang, Y.Y.; Tai, Z.Y.; Zhang, P.; Rao, B.J.; Ning, K.; Zhang, X.F.; Guo, W.G.; Zhang, S.G. Photonic generation of RF and microwave signal with relative frequency instability of 10−15. Chin. Phys. B 2018, 27, 030601. [Google Scholar] [CrossRef]
- Makhlouf, S.; Cojocari, O.; Hofmann, M.; Nagatsuma, T.; Preu, S.; Weimann, N.; Hubers, H.-W.; Stohr, A. Terahertz sources and receivers: From the past to the future. IEEE J. Microwaves 2023, 3, 894–912. [Google Scholar] [CrossRef]
- Razavian, S.; Babakhani, A. Silicon integrated THz comb radiator and receiver for broadband sensing and imaging applications. IEEE Trans. Microwave Theory Tech. 2021, 69, 4937–4950. [Google Scholar] [CrossRef]
- Okubo, S.; Iwakuni, K.; Inaba, H.; Hosaka, K.; Onae, A.; Sasada, H.; Hong, F.L. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm. Appl. Phys. Express 2015, 8, 082402. [Google Scholar] [CrossRef]
- Cossel, K.C.; Waxman, E.M.; Giorgetta, F.R.; Cermak, M.; Coddington, I.R.; Hesselius, D.; Ruben, S.; Swann, W.C.; Truong, G.W.; Rieker, G.B.; et al. Open-path dual-comb spectroscopy to an airborne retroreflector. Optica 2017, 4, 724–728. [Google Scholar] [CrossRef]
- Yang, H.; Wei, H.; Chen, K.; Zhang, S.; Li, Y. Simply-integrated dual-comb spectrometer via tunable repetition rates and avoiding self-referencing. Opt. Express 2017, 25, 8063–8072. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, M.; Hänsch, T.W.; Picqué, N. A phase-stable dual-comb interferometer. Nat. Commun. 2018, 9, 3035. [Google Scholar] [CrossRef]
- Herman, D.I.; Weerasekara, C.; Hutcherson, L.C.; Giorgetta, F.R.; Cossel, K.C.; Waxman, E.M.; Colacion, G.M.; Newbury, N.R.; Welch, S.M.; DePaola, B.D.; et al. Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. Sci. Adv. 2021, 7, eabe9765. [Google Scholar] [CrossRef]
- Cui, M.; Zeitouny, M.G.; Bhattacharya, N.; van den Berg, S.A.; Urbach, H.P.; Braat, J.J.M. High-accuracy long-distance measurements in air with a frequency comb laser. Opt. Lett. 2009, 34, 1982–1984. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.-J.; Lee, K.; Lee, S.; Kim, S.-W. Time-of-light measurement with femtosecond light pulses. Nat. Photonics 2010, 4, 716–720. [Google Scholar] [CrossRef]
- Wang, J.D.; Lu, Z.Z.; Wang, W.Q.; Zhang, F.M.; Chen, J.W.; Wang, Y.; Zheng, J.H.; Chu, S.T.; Zhao, W.; Little, B.E.; et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res. 2020, 8, 1964–1972. [Google Scholar] [CrossRef]
- Ren, X.Y.; Xu, B.; Fei, Q.L.; Liang, Y.; Ge, J.M.; Wang, X.Y.; Huang, K.; Yan, M.; Zeng, H.P. Single-photon counting laser ranging with optical frequency combs. IEEE Photon. Technol. Lett. 2021, 33, 27–30. [Google Scholar] [CrossRef]
- Preußler, S.; Wenzel, N.; Braun, R.-P.; Owschimikow, N.; Vogel, C.; Deninger, A.; Zadok, A.; Woggon, U.; Schneider, T. Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise. Opt. Express 2013, 21, 23950–23962. [Google Scholar] [CrossRef] [PubMed]
- Rohde, F.; Benkler, E.; Telle, H.R. High contrast, low noise selection and amplification of an individual optical frequency comb line. Opt. Lett. 2013, 38, 103–105. [Google Scholar] [CrossRef]
- Galindo-Santos, J.; Velasco, A.V.; Carrasco-Sanz, A.; Corredera, P. Brillouin filtering of optical combs for narrow linewidth frequency synthesis. Opt. Commun. 2016, 366, 33–37. [Google Scholar] [CrossRef]
- Subías, J.; Heras, C.; Pelayo, J.; Villuendas, F. All in Fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb. Opt. Express 2009, 17, 6753–6758. [Google Scholar] [CrossRef]
- Redding, B.; McKinney, J.D.; Schermer, R.T.; Murray, J.B. High-resolution wide-band optical frequency comb control using stimulated Brillouin scattering. Opt. Express 2022, 30, 22097–22106. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, J.; Cao, X.; Cui, S.; Jiang, H.; Feng, Y. Highly discriminative amplification of a single frequency comb line. Laser Photonics Rev. 2023, 2300769. [Google Scholar] [CrossRef]
- Lesko, D.M.B.; Timmers, H.; Xing, S.D.; Kowligy, A.; Lind, A.J.; Diddams, S.A. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photonics 2021, 15, 281–286. [Google Scholar] [CrossRef]
- Tian, H.C.; Zhu, R.C.; Li, R.M.; Xing, S.D.; Schibli, T.R.; Minoshima, K. Broadband, high-power optical frequency combs covering visible to near-infrared spectral range. Opt. Lett. 2024, 49, 538–541. [Google Scholar] [CrossRef]
- Lesko, D.M.B.; Chang, K.F.; Diddams, S.A. High-sensitivity frequency comb carrier-envelope-phase metrology in solid state high harmonic generation. Optica 2022, 9, 1156–1162. [Google Scholar] [CrossRef]
Type | Advantages | Disadvantages |
---|---|---|
NPR laser | simple structure, low noise, and easy implementation | non-polarization-maintaining structure |
Real SA laser | low mode-locking threshold, all-polarization-maintaining structure, repetition rate of up to several GHz, and good environmental adaptability | the risk of optical-induced damage |
NALM laser | all-polarization-maintaining structure, have no risk of photo-induced damage, and can have long-term operation | low frequency rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Xu, W.; Hu, H.; Zhang, Z.; Li, Z.; Shu, R. Recent Advances, Applications, and Perspectives in Erbium-Doped Fiber Combs. Photonics 2024, 11, 192. https://doi.org/10.3390/photonics11030192
Yan P, Xu W, Hu H, Zhang Z, Li Z, Shu R. Recent Advances, Applications, and Perspectives in Erbium-Doped Fiber Combs. Photonics. 2024; 11(3):192. https://doi.org/10.3390/photonics11030192
Chicago/Turabian StyleYan, Pengpeng, Weiming Xu, Heng Hu, Zhenqiang Zhang, Zhaoyang Li, and Rong Shu. 2024. "Recent Advances, Applications, and Perspectives in Erbium-Doped Fiber Combs" Photonics 11, no. 3: 192. https://doi.org/10.3390/photonics11030192
APA StyleYan, P., Xu, W., Hu, H., Zhang, Z., Li, Z., & Shu, R. (2024). Recent Advances, Applications, and Perspectives in Erbium-Doped Fiber Combs. Photonics, 11(3), 192. https://doi.org/10.3390/photonics11030192