Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (156)

Search Parameters:
Keywords = epitaxial transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3338 KiB  
Article
Monolithically Integrated GaAs Nanoislands on CMOS-Compatible Si Nanotips Using GS-MBE
by Adriana Rodrigues, Anagha Kamath, Hannah-Sophie Illner, Navid Kafi, Oliver Skibitzki, Martin Schmidbauer and Fariba Hatami
Nanomaterials 2025, 15(14), 1083; https://doi.org/10.3390/nano15141083 - 12 Jul 2025
Viewed by 277
Abstract
The monolithic integration of III-V semiconductors with silicon (Si) is a critical step toward advancing optoelectronic and photonic devices. In this work, we present GaAs nanoheteroepitaxy (NHE) on Si nanotips using gas-source molecular beam epitaxy (GS-MBE). We discuss the selective growth of fully [...] Read more.
The monolithic integration of III-V semiconductors with silicon (Si) is a critical step toward advancing optoelectronic and photonic devices. In this work, we present GaAs nanoheteroepitaxy (NHE) on Si nanotips using gas-source molecular beam epitaxy (GS-MBE). We discuss the selective growth of fully relaxed GaAs nanoislands on complementary metal oxide semiconductor (CMOS)-compatible Si(001) nanotip wafers. Nanotip wafers were fabricated using a state-of-the-art 0.13 μm SiGe Bipolar CMOS pilot line on 200 mm wafers. Our investigation focuses on understanding the influence of the growth conditions on the morphology, crystalline structure, and defect formation of the GaAs islands. The morphological, structural, and optical properties of the GaAs islands were characterized using scanning electron microscopy, high-resolution X-ray diffraction, and photoluminescence spectroscopy. For samples with less deposition, the GaAs islands exhibit a monomodal size distribution, with an average effective diameter ranging between 100 and 280 nm. These islands display four distinct facet orientations corresponding to the {001} planes. As the deposition increases, larger islands with multiple crystallographic facets emerge, accompanied by a transition from a monomodal to a bimodal growth mode. Single twinning is observed in all samples. However, with increasing deposition, not only a bimodal size distribution occurs, but also the volume fraction of the twinned material increases significantly. These findings shed light on the growth dynamics of nanoheteroepitaxial GaAs and contribute to ongoing efforts toward CMOS-compatible Si-based nanophotonic technologies. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

15 pages, 2579 KiB  
Article
Photo-Scanning Capacitance Microscopy and Spectroscopy Study of Epitaxial GaAsN Layers and GaAsN P-I-N Solar Cell Structures
by Adam Szyszka, Wojciech Dawidowski, Damian Radziewicz and Beata Ściana
Nanomaterials 2025, 15(14), 1066; https://doi.org/10.3390/nano15141066 - 9 Jul 2025
Viewed by 355
Abstract
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit [...] Read more.
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit inhomogeneity in their opto-electrical properties. By combining localized cross-section SCM measurements with wavelength-tunable optical excitation (800–1600 nm), we resolved carrier concentration profiles, internal electric fields, and deep-level transitions across the device structure at a nanoscale resolution. A comparative analysis between electrochemical capacitance–voltage (EC-V) profiling and photoluminescence spectroscopy confirmed multiple localized transitions, attributed to compositional fluctuations and nitrogen-induced defects within GaAsN. The SCM method revealed spatial variations in energy states, including discrete nitrogen-rich regions and gradual variations in the nitrogen content throughout the layer depth, which are not recognizable using standard characterization methods. Our results demonstrate the unique capability of the photo-scanning capacitance microscopy and spectroscopy technique to provide spatially resolved insights into complex dilute nitride structures, offering a universal and accessible tool for semiconductor structures and optoelectronic devices evaluation. Full article
(This article belongs to the Special Issue Spectroscopy and Microscopy Study of Nanomaterials)
Show Figures

Graphical abstract

16 pages, 3258 KiB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 267
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

16 pages, 48638 KiB  
Article
Epitaxial Growth of Ni-Mn-Ga on Al2O3(112¯0) Single-Crystal Substrates by Pulsed Laser Deposition
by Manuel G. Pinedo-Cuba, José M. Caicedo-Roque, Jessica Padilla-Pantoja, Justiniano Quispe-Marcatoma, Carlos V. Landauro, Víctor A. Peña-Rodríguez and José Santiso
Surfaces 2025, 8(2), 35; https://doi.org/10.3390/surfaces8020035 - 30 May 2025
Viewed by 2815
Abstract
Magnetic shape memory alloys have attracted considerable attention due to their multifunctional properties. Among these materials, Ni-Mn-Ga alloys are distinguished by their ability to achieve up to 10% strain when exposed to a magnetic field, a characteristic predominantly observed in single-crystal samples. Consequently, [...] Read more.
Magnetic shape memory alloys have attracted considerable attention due to their multifunctional properties. Among these materials, Ni-Mn-Ga alloys are distinguished by their ability to achieve up to 10% strain when exposed to a magnetic field, a characteristic predominantly observed in single-crystal samples. Consequently, it is essential to develop nanomaterials with a crystal structure closely resembling that of a single crystal. In this study, an epitaxial Ni-Mn-Ga thin film was fabricated using Pulsed Laser Deposition on an Al2O3 (112¯0) single-crystal substrate. The crystal structure was characterised through X-ray diffraction methodologies, such as symmetrical 2θω scans, pole figures, and reciprocal space maps. The results indicated that the sample was mainly in a slightly distorted cubic austenite phase, and some incipient martensite phase also appeared. A detailed microstructural analysis, performed by transmission electron microscopy, confirmed that certain regions of the sample exhibited an incipient transformation to the martensite phase. Regions closer to the substrate retained the austenite phase, suggesting that the constraint imposed by the substrate inhibits the phase transition. These results indicate that it is possible to grow high crystalline quality thin films of Ni-Mn-Ga by Pulsed Laser Deposition. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Figure 1

10 pages, 6353 KiB  
Article
Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on 3×3-Sn Reconstructed Si(111) Surface
by Zhujuan Li, Qichao Tian, Kaili Wang, Yuyang Mu, Zhenjie Fan, Xiaodong Qiu, Qinghao Meng, Can Wang and Yi Zhang
Appl. Sci. 2025, 15(11), 6150; https://doi.org/10.3390/app15116150 - 29 May 2025
Viewed by 428
Abstract
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth [...] Read more.
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth of SnSe2 films on a 3×3-Sn reconstructed Si(111) surface. The analysis of reflection high-energy electron diffraction reveals the in-plane lattice orientation as SnSe2[110]//3-Sn [112]//Si [110]. In addition, the flat morphology of SnSe2 film was identified by scanning tunneling microscopy (STM), implying the relatively strong adsorption effect of 3-Sn/Si(111) substrate to the SnSe2 adsorbates. Subsequently, the interfacial charge transfer was observed by X-ray photoemission spectroscopy. Afterwards, the direct characterization of electronic structures was obtained via angle-resolved photoemission spectroscopy. In addition to proving the presence of interfacial charge transfer again, a new relatively flat in-gap band was found in monolayer and few-layer SnSe2, which disappeared in multi-layer SnSe2. The interface strain-induced partial structural phase transition of thin SnSe2 films is presumed to be the reason. Our results provide important information on the characterization and effective modulation of electronic structures of SnSe2 grown on 3-Sn/Si(111), paving the way for the further study and application of SnSe2 in 2D electronic devices. Full article
Show Figures

Figure 1

16 pages, 4702 KiB  
Article
Exploiting the Modulation Effects of Epitaxial Vanadium Film in a Quasi-BIC-Based Terahertz Metamaterial
by Chang Lu, Junxiao Liu, Sihong Chen and Junxiong Guo
Materials 2025, 18(10), 2197; https://doi.org/10.3390/ma18102197 - 10 May 2025
Viewed by 2446
Abstract
Terahertz (THz) metamaterials based on phase-change materials (PCMs) offer promising approaches to the dynamic modulation of electromagnetic responses. In this study, we design and experimentally demonstrate a tunable THz metamaterial composed of a symmetric split-ring resonator (SRR) pair, with the left halves covered [...] Read more.
Terahertz (THz) metamaterials based on phase-change materials (PCMs) offer promising approaches to the dynamic modulation of electromagnetic responses. In this study, we design and experimentally demonstrate a tunable THz metamaterial composed of a symmetric split-ring resonator (SRR) pair, with the left halves covered by a 35 nm thick epitaxial vanadium dioxide (VO2) film, enabling the simultaneous exploitation of both permittivity- and conductivity-induced modulation mechanisms. During the metal–insulator transition (MIT) of VO2, cooperative changes in permittivity and conductivity lead to the excitation, redshift, and eventual disappearance of a quasi-bound state in the continuum (QBIC) resonance. Finite element simulations, using optical parameters of VO2 film defined by the Drude–Smith model, predict the evolution of the transmission spectra well. These results indicate that the permittivity change originating from mesoscopic carrier confinement is a non-negligible factor in THz metamaterials hybridized with VO2 film and also reveal the potential for developing reconfigurable THz metamaterials based on the dielectric modulation effects of VO2 film. Full article
Show Figures

Figure 1

15 pages, 3554 KiB  
Article
Study of ZrO2 Gate Dielectric with Thin SiO2 Interfacial Layer in 4H-SiC Trench MOS Capacitors
by Qimin Huang, Yunduo Guo, Anfeng Wang, Zhaopeng Bai, Lin Gu, Zhenyu Wang, Chengxi Ding, Yi Shen, Hongping Ma and Qingchun Zhang
Materials 2025, 18(8), 1741; https://doi.org/10.3390/ma18081741 - 10 Apr 2025
Viewed by 675
Abstract
The transition of SiC MOSFET structure from planar to trench-based architectures requires the optimization of gate dielectric layers to improve device performance. This study utilizes a range of characterization techniques to explore the interfacial properties of ZrO2 and SiO2/ZrO2 [...] Read more.
The transition of SiC MOSFET structure from planar to trench-based architectures requires the optimization of gate dielectric layers to improve device performance. This study utilizes a range of characterization techniques to explore the interfacial properties of ZrO2 and SiO2/ZrO2 gate dielectric films, grown via atomic layer deposition (ALD) in SiC epitaxial trench structures to assess their performance and suitability for device applications. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements showed the deposition of smooth film morphologies with roughness below 1 nm for both ZrO2 and SiO2/ZrO2 gate dielectrics, while SE measurements revealed comparable physical thicknesses of 40.73 nm for ZrO2 and 41.55 nm for SiO2/ZrO2. X-ray photoelectron spectroscopy (XPS) shows that in SiO2/ZrO2 thin films, the binding energies of Zr 3d5/2 and Zr 3d3/2 peaks shift upward compared to pure ZrO2. Electrical characterization showed an enhancement of EBR (3.76 to 5.78 MV·cm−1) and a decrease of ION_EBR (1.94 to 2.09 × 10−3 A·cm−2) for the SiO2/ZrO2 stacks. Conduction mechanism analysis identified suppressed Schottky emission in the stacked film. This indicates that the incorporation of a thin SiO2 layer effectively mitigates the small bandgap offset, enhances the breakdown electric field, reduces leakage current, and improves device performance. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

22 pages, 11419 KiB  
Article
A Modified Model Dielectric Function for Analyzing Optical Spectra of InGaN Nanofilms on Sapphire Substrates
by Devki N. Talwar, Hao-Hsiung Lin and Jason T. Haraldsen
Nanomaterials 2025, 15(7), 485; https://doi.org/10.3390/nano15070485 - 24 Mar 2025
Viewed by 431
Abstract
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable [...] Read more.
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable in the development of low-dimensional heterostructure-based photonic devices. Adjusting the composition x and thickness d in epitaxially grown films has offered many possibilities of light emission across a wide spectral range, from ultraviolet through visible into near-infrared regions. Optical properties have played important roles in making semiconductor materials useful in electro-optic applications. Despite the efforts to grow InxGa1xN/Sapphire samples, no x- and d-dependent optical studies exist for ultrathin films. Many researchers have used computationally intensive methods to study the electronic band structures Ejk, and subsequently derive optical properties. By including inter-band transitions at critical points from Ejk, we have developed a semiempirical approach to comprehend the optical characteristics of InN, GaN and InxGa1xN. Refractive indices of InxGa1xN and sapphire substrate are meticulously integrated into a transfer matrix method to simulate d- and x-dependent reflectivity RE  and transmission TE spectra of nanostructured InxGa1xN/Sapphire epifilms. Analyses of RE and TE have offered accurate x-dependent shifts of energy gaps for InxGa1xN (x = 0.5, 0.7) in excellent agreement with the experimental data. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

13 pages, 4389 KiB  
Article
Reconfigurable Terahertz Metamaterials Based on the Refractive Index Change of Epitaxial Vanadium Dioxide Films Across the Metal–Insulator Transition
by Chang Lu and Weizheng Liang
Nanomaterials 2025, 15(6), 439; https://doi.org/10.3390/nano15060439 - 13 Mar 2025
Cited by 1 | Viewed by 620
Abstract
The intrinsic metal–insulator transition (MIT) of VO2 films near room temperature presents significant potential for reconfigurable metamaterials in the terahertz (THz) frequency range. While previous designs primarily focused on changes in electrical conductivity across the MIT, the accompanying dielectric changes due to [...] Read more.
The intrinsic metal–insulator transition (MIT) of VO2 films near room temperature presents significant potential for reconfigurable metamaterials in the terahertz (THz) frequency range. While previous designs primarily focused on changes in electrical conductivity across the MIT, the accompanying dielectric changes due to the mesoscopic carrier confinement effect have been largely unexplored. In this study, we integrate asymmetric split-ring resonators on 35 nm epitaxial VO2 film and identify a “dielectric window” at the early stages of the MIT. This is characterized by a redshift in the resonant frequency without a significant degradation in the resonant quality. This phenomenon is attributed to an inhomogeneous phase transition in the VO2 film, which induces a purely dielectric change at the onset of the MIT, while the electrical conductivity transition occurs later, slightly above the percolation threshold. Our findings provide deeper insights into the THz properties of VO2 films and pave the way for dielectric-based, VO2 hybrid reconfigurable metamaterials. Full article
Show Figures

Graphical abstract

12 pages, 3362 KiB  
Article
Scalable and Contamination-Free Selenium-Assisted Exfoliation of Transition Metal Dichalcogenides WSe2 and MoSe2
by Rehan Younas, Guanyu Zhou and Christopher L. Hinkle
Processes 2025, 13(3), 791; https://doi.org/10.3390/pr13030791 - 8 Mar 2025
Viewed by 1689
Abstract
In two-dimensional (2D) materials research, exfoliating 2D transition metal dichalcogenides (TMDs) from their growth substrates for device fabrication remains a significant challenge. Current methods, such as those involving polymers, metals, or chemical etchants, suffer from limitations like contamination, defect introduction, and a lack [...] Read more.
In two-dimensional (2D) materials research, exfoliating 2D transition metal dichalcogenides (TMDs) from their growth substrates for device fabrication remains a significant challenge. Current methods, such as those involving polymers, metals, or chemical etchants, suffer from limitations like contamination, defect introduction, and a lack of scalability. Here, we demonstrate a selenium capping-based exfoliation technique. Its advantage lies in its ability to enable the clean, contamination-free exfoliation and transfer of TMD films. We successfully exfoliated and transferred monolayer and multilayer TMD films, including WSe2 and MoSe2. The selenium capping layer not only enables seamless exfoliation but also protects the film from oxidation, as confirmed by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach is versatile and applicable to a range of TMDs and thicknesses, paving the way for the high-quality, scalable integration of 2D materials into nanoelectronic devices. Full article
Show Figures

Figure 1

9 pages, 1969 KiB  
Article
A Study of the Hall Effect on Doped and Undoped Praseodymium Nickelate Perovskite Thin Films and the Impact of the Reduction Process
by Alex Misiak, Mufeed Keenari, Yohann Breard, Wilfrid Prellier, Alain Pautrat and Adrian David
Coatings 2025, 15(3), 287; https://doi.org/10.3390/coatings15030287 - 1 Mar 2025
Viewed by 1010
Abstract
PrNiO3 and Pr0.8Sr0.2NiO3 epitaxial thin films were deposited by pulsed laser deposition (PLD) on different substrates and studied for Hall effect and resistivity behavior. Conductive behavior is observed in the doped composition, and a normal Hall effect [...] Read more.
PrNiO3 and Pr0.8Sr0.2NiO3 epitaxial thin films were deposited by pulsed laser deposition (PLD) on different substrates and studied for Hall effect and resistivity behavior. Conductive behavior is observed in the doped composition, and a normal Hall effect allows to determine charge carrier’s density and mobility. The doped compositions show a high concentration of charge carriers (≈1023 cm−3 at 300 K), and it appears that they can be controlled by the strains. Sr doping enhances the transport properties, leading to a transition from semiconducting to metallic behavior. The impact of the reduction process on charge carrier concentration and mobility is also studied. Full article
Show Figures

Figure 1

17 pages, 1770 KiB  
Article
Revisiting the Mechanistic Pathway of Gas-Phase Reactions in InN MOVPE Through DFT Calculations
by Xiaokun He, Nan Xu, Yuan Xue, Hong Zhang, Ran Zuo and Qian Xu
Molecules 2025, 30(4), 971; https://doi.org/10.3390/molecules30040971 - 19 Feb 2025
Viewed by 743
Abstract
III-nitrides are crucial materials for solar flow batteries due to their versatile properties. In contrast to the well-studied MOVPE reaction mechanism for AlN and GaN, few works report gas-phase mechanistic studies on the growth of InN. To better understand the reaction thermodynamics, this [...] Read more.
III-nitrides are crucial materials for solar flow batteries due to their versatile properties. In contrast to the well-studied MOVPE reaction mechanism for AlN and GaN, few works report gas-phase mechanistic studies on the growth of InN. To better understand the reaction thermodynamics, this work revisited the gas-phase reactions involved in metal–organic vapor-phase epitaxy (abbreviated as MOVPE) growth of InN. Utilizing the M06-2X function in conjunction with Pople’s triple-ζ split-valence basis set with polarization functions, this work recharacterized all stationary points reported in previous literature and compared the differences between the structures and reaction energies. For the reaction pathways which do not include a transition state, rigorous constrained geometry optimizations were utilized to scan the PES connecting the reactants and products in adduct formation and XMIn (M, D, T) pyrolysis, confirming that there are no TSs in these pathways, which is in agreement with the previous findings. A comprehensive bonding analysis indicates that in TMIn:NH3, the In-N demonstrates strong coordinate bond characteristics, whereas in DMIn:NH3 and MMIn:NH3, the interactions between the Lewis acid and base fragments lean toward electrostatic attraction. Additionally, the NBO computations show that the H radical can facilitate the migration of electrons that are originally distributed between the In-C bonds in XMIn. Based on this finding, novel reaction pathways were also investigated. When the H radical approaches MMInNH2, MMIn:NH3 rather than MMInHNH2 will generate and this is followed by the elimination of CH4 via two parallel paths. Considering the abundance of H2 in the environment, this work also examines the reactions between H2 and XMIn. The Mulliken charge distributions indicated that intermolecular electron transfer mainly occurs between the In atom and N atom whiling forming (DMInNH2)2, whereas it predominately occurs between the In atom and the N atom intramolecularly when generating (DMInNH2)3. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

37 pages, 6344 KiB  
Review
IR Sensors, Related Materials, and Applications
by Nikolaos Argirusis, Achilleas Achilleos, Niyaz Alizadeh, Christos Argirusis and Georgia Sourkouni
Sensors 2025, 25(3), 673; https://doi.org/10.3390/s25030673 - 23 Jan 2025
Cited by 5 | Viewed by 6239
Abstract
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing [...] Read more.
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing aspects of thermal imaging being mid-wave infrared (MWIR) and long-wave infrared (LWIR). Infrared detectors for thermal imaging have many uses in industrial applications, security, search and rescue, surveillance, medical, research, meteorology, climatology, and astronomy. Presently, high-performance infrared imaging technology mostly relies on epitaxially grown structures of the small-bandgap bulk alloy mercury–cadmium–telluride (MCT), indium antimonide (InSb), and GaAs-based quantum well infrared photodetectors (QWIPs), contingent upon the application and wavelength range. Nanostructures and nanomaterials exhibiting appropriate electrical and mechanical properties including two-dimensional materials, graphene, quantum dots (QDs), quantum dot in well (DWELL), and colloidal quantum dot (CQD) will significantly enhance the electronic characteristics of infrared photodetectors, transition metal dichalcogenides, and metal oxides, which are garnering heightened interest. The present manuscript gives an overview of IR sensors, their types, materials commonly used in them, and examples of related applications. Finally, a summary of the manuscript and an outlook on prospects are given. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

23 pages, 3584 KiB  
Review
Recent Advances of Colossal Magnetoresistance in Versatile La-Ca-Mn-O Material-Based Films
by Navjyoti Boora, Rafiq Ahmad, Shafaque Rahman, Nguyen Quoc Dung, Akil Ahmad, Mohammed B. Alshammari and Byeong-Il Lee
Magnetochemistry 2025, 11(1), 5; https://doi.org/10.3390/magnetochemistry11010005 - 16 Jan 2025
Cited by 2 | Viewed by 1953
Abstract
Hole-doped manganese oxides exhibit a gigantic negative magnetoresistance, referred to as colossal magnetoresistance (CMR), owing to the interplay between double-exchange (DE) ferromagnetic metal and charge-ordered antiferromagnetic insulator/semiconductor phases. Magnetoresistive manganites display a sharp resistivity drop at the metal–insulator transition temperature (TMI). [...] Read more.
Hole-doped manganese oxides exhibit a gigantic negative magnetoresistance, referred to as colossal magnetoresistance (CMR), owing to the interplay between double-exchange (DE) ferromagnetic metal and charge-ordered antiferromagnetic insulator/semiconductor phases. Magnetoresistive manganites display a sharp resistivity drop at the metal–insulator transition temperature (TMI). CMR effects in perovskite manganites, specifically La0.67Ca0.33MnO3 (La-Ca-Mn-O or LCMO), have been extensively investigated. This review paper provides a comprehensive introduction to the crystallographic structure, as well as the electronic and magnetic properties, of LCMO films. Furthermore, we delve into a detailed discussion of the effects of epitaxial strain induced by different substrates on LCMO films. Additionally, we review the early findings and diverse applications of LCMO thin films. Finally, we outline potential challenges and prospects for achieving superior LCMO film properties. Full article
(This article belongs to the Special Issue Magnetic Materials, Thin Films and Nanostructures—2nd Edition)
Show Figures

Figure 1

16 pages, 6665 KiB  
Review
Doped, Two-Dimensional, Semiconducting Transition Metal Dichalcogenides in Low-Concentration Regime
by Mallesh Baithi and Dinh Loc Duong
Crystals 2024, 14(10), 832; https://doi.org/10.3390/cryst14100832 - 25 Sep 2024
Cited by 4 | Viewed by 3150
Abstract
Doping semiconductors is crucial for controlling their carrier concentration and enabling their application in devices such as diodes and transistors. Furthermore, incorporating magnetic dopants can induce magnetic properties in semiconductors, paving the way for spintronic devices without an external magnetic field. This review [...] Read more.
Doping semiconductors is crucial for controlling their carrier concentration and enabling their application in devices such as diodes and transistors. Furthermore, incorporating magnetic dopants can induce magnetic properties in semiconductors, paving the way for spintronic devices without an external magnetic field. This review highlights recent advances in growing doped, two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors through various methods, like chemical vapor deposition, molecular beam epitaxy, chemical vapor transport, and flux methods. It also discusses approaches for achieving n- and p-type doping in 2D TMDC semiconductors. Notably, recent progress in doping 2D TMDC semiconductors to induce ferromagnetism and the development of quantum emitters is covered. Experimental techniques for achieving uniform doping in chemical vapor deposition and chemical vapor transport methods are discussed, along with the challenges, opportunities, and potential solutions for growing uniformly doped 2D TMDC semiconductors. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

Back to TopTop