Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on -Sn Reconstructed Si(111) Surface
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
PTMCs | Post-transition metal dichalcogenides |
CDW | Charge density wave |
ML | Monolayer |
MBE | Molecular beam epitaxy |
RHEED | Reflection high energy electron diffraction |
STM | Scanning tunneling microscopy |
XPS | X-ray photoemission spectroscopy |
ARPES | Angle-resolved photoemission spectroscopy |
UHV | Ultra-high-vacuum |
3D | Three-dimensional |
BZ | Brillouin zone |
CBM | Conduction band minimum |
VBM | Valence band maximum |
EDC | Energy distribution curve |
FL | Few-layer |
Multi-L | Multi-layer |
References
- Tan, S.M.; Chua, C.K.; Sedmidubský, D.; Sofer, Z.B.; Pumera, M. Electrochemistry of layered GaSe and GeS: Applications to ORR, OER and HER. Phys. Chem. Chem. Phys. 2016, 18, 1699–1711. [Google Scholar] [CrossRef]
- Wang, Y.; Szökölová, K.; Nasir, M.Z.M.; Sofer, Z.; Pumera, M. Electrochemistry of Layered Semiconducting AIIIBVI Chalcogenides: Indium Monochalcogenides (InS, InSe, InTe). ChemCatChem 2019, 11, 2634–2642. [Google Scholar] [CrossRef]
- Sucharitakul, S.; Goble, N.J.; Kumar, U.R.; Sankar, R.; Bogorad, Z.A.; Chou, F.-C.; Chen, Y.-T.; Gao, X.P.A. Intrinsic Electron Mobility Exceeding 103 cm2/(V s) in Multilayer InSe FETs. Nano Lett. 2015, 15, 3815–3819. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Yin, L.; Huang, Y.; Shifa, T.A.; Chu, J.; Wang, F.; Cheng, R.; Wang, Z.; He, J. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials. Nanoscale 2016, 8, 16802–16818. [Google Scholar] [CrossRef]
- Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, J.; Yoon, M.; Qiao, X.-F.; Zhang, X.; Feng, W.; Tan, P.; Zheng, W.; Liu, J.; Wang, X.; et al. Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Res. 2014, 7, 694–703. [Google Scholar] [CrossRef]
- Marvan, P.; Mazánek, V.; Sofer, Z. Shear-force exfoliation of indium and gallium chalcogenides for selective gas sensing applications. Nanoscale 2019, 11, 4310–4317. [Google Scholar] [CrossRef]
- Li, G.; Ding, G.; Gao, G. Thermoelectric properties of SnSe2 monolayer. J. Phys. Condens. Matter 2017, 29, 015001. [Google Scholar] [CrossRef] [PubMed]
- Shafique, A.; Samad, A.; Shin, Y.-H. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: A first principles study. Phys. Chem. Chem. Phys. 2017, 19, 20677–20683. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, K.; Wang, Z.; Shifa, T.A.; Wang, Q.; Wang, F.; Jiang, C.; He, J. Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. Nanoscale 2015, 7, 17375–17380. [Google Scholar] [CrossRef]
- Zhou, X.; Gan, L.; Tian, W.; Zhang, Q.; Jin, S.; Li, H.; Bando, Y.; Golberg, D.; Zhai, T. Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors. Adv. Mater. 2015, 27, 8035–8041. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Huang, B.-R.; Saravanan, A.; Sun, H.; Chen, S.-C. Self-Powered Broadband Photodetectors Based on Si/SnS2 and Si/SnSe2 p–n Heterostructures. Adv. Electron. Mater. 2024, 10, 2400164. [Google Scholar] [CrossRef]
- Chauhan, P.; Patel, A.B.; Solanki, G.K.; Patel, K.D.; Pathak, V.M.; Sumesh, C.K.; Narayan, S.; Jha, P.K. Rhenium substitutional doping for enhanced photoresponse of n-SnSe2/p-Si heterojunction based tunable and high-performance visible-light photodetector. Appl. Surf. Sci. 2021, 536, 147739. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, Y.; Luo, Z.; Hao, S.; Du, C.; Liang, Q.; Li, Z.; Khor, K.A.; Hippalgaonkar, K.; Xu, J.; et al. n-Type SnSe2 Oriented-Nanoplate-Based Pellets for High Thermoelectric Performance. Adv. Energy Mater. 2018, 8, 1702167. [Google Scholar] [CrossRef]
- Choi, J.; Jin, J.; Jung, I.G.; Kim, J.M.; Kim, H.J.; Son, S.U. SnSe2 nanoplate–graphene composites as anode materials for lithium ion batteries. Chem. Commun. 2011, 47, 5241–5243. [Google Scholar] [CrossRef]
- Wang, R.Y.; Caldwell, M.A.; Jeyasingh, R.G.D.; Aloni, S.; Shelby, R.M.; Wong, H.S.P.; Milliron, D.J. Electronic and optical switching of solution-phase deposited SnSe2 phase change memory material. J. Appl. Phys. 2011, 109, 113506. [Google Scholar] [CrossRef]
- Sun, M.; Yifeng, H.; Bo, S.; Jiwei, Z.; Sannian, S.; Song, Z. Si/SnSe2 Multilayer Films for Phase Change Memory Applications. Integr. Ferroelectr. 2012, 140, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Fan, J.-Q.; Wang, W.-L.; Zhang, D.; Wang, L.; Li, W.; He, K.; Song, C.-L.; Ma, X.-C.; Xue, Q.-K. Observation of interface superconductivity in a SnSe2 epitaxial graphene van der Waals heterostructure. Phys. Rev. B 2018, 98, 220508. [Google Scholar] [CrossRef]
- Mao, Y.; Ma, X.; Wu, D.; Lin, C.; Shan, H.; Wu, X.; Zhao, J.; Zhao, A.; Wang, B. Interfacial Polarons in van der Waals Heterojunction of Monolayer SnSe2 on SrTiO3 (001). Nano Lett. 2020, 20, 8067. [Google Scholar] [CrossRef]
- Wang, S.-Z.; Zhang, Y.-M.; Fan, J.-Q.; Ren, M.-Q.; Song, C.-L.; Ma, X.-C.; Xue, Q.-K. Charge density waves and Fermi level pinning in monolayer and bilayer SnSe2. Phys. Rev. B 2020, 102, 241408. [Google Scholar] [CrossRef]
- Wu, H.; Li, S.; Susner, M.; Kwon, S.; Kim, M.; Haugan, T.; Lv, B. Spacing dependent and cation doping independent superconductivity in intercalated 1T 2D SnSe2. 2D Mater. 2019, 6, 045048. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, E.; Fu, Y.; Chen, Z.; Pan, C.; Wang, C.; Wang, M.; Wang, Y.; Xu, K.; Cai, S.; et al. Gate-Induced Interfacial Superconductivity in 1T-SnSe2. Nano Lett. 2018, 18, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, M.; Cohen, M.L. Valence-band density of states and chemical bonding for several non-transition-metal layer compounds: SnSe2, PbI2, BiI3, and GaSe. Phys. Rev. B 1976, 14, 424. [Google Scholar] [CrossRef]
- Zhachuk, R.A.; Rogilo, D.I.; Petrov, A.S.; Sheglov, D.V.; Latyshev, A.V.; Colonna, S.; Ronci, F. Atomic structure of a single step and dynamics of Sn adatoms on the Si(111)−√3×√3-Sn surface. Phys. Rev. B 2021, 104, 125437. [Google Scholar] [CrossRef]
- Wu, X.; Ming, F.; Smith, T.S.; Liu, G.; Ye, F.; Wang, K.; Johnston, S.; Weitering, H.H. Superconductivity in a Hole-Doped Mott-Insulating Triangular Adatom Layer on a Silicon Surface. Phys. Rev. Lett. 2020, 125, 117001. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Tian, Q.; Meng, Q.; Zong, J.; Zhang, Y. Epitaxial Growth of Monolayer SnSe2 Films on Gd-Intercalated Quasi-Free-Standing Monolayer Graphene with Enhanced Interface Adsorption. J. Phys. Chem. C 2022, 126, 5751–5758. [Google Scholar] [CrossRef]
- Jiang, P.; Ma, X.; Ning, Y.; Song, C.; Chen, X.; Jia, J.-F.; Xue, Q.-K. Quantum Size Effect Directed Selective Self-Assembling of Cobalt Phthalocyanine on Pb(111) Thin Films. J. Am. Chem. Soc. 2008, 130, 7790–7791. [Google Scholar] [CrossRef]
- Huttmann, F.; Martínez-Galera, A.J.; Caciuc, V.; Atodiresei, N.; Schumacher, S.; Standop, S.; Hamada, I.; Wehling, T.O.; Blügel, S.; Michely, T. Tuning the van der Waals Interaction of Graphene with Molecules via Doping. Phys. Rev. Lett. 2015, 115, 236101. [Google Scholar] [CrossRef] [PubMed]
- Barr, T.L. An XPS study of Si as it occurs in adsorbents, catalysts, and thin films. Appl. Surf. Sci. 1983, 15, 1–35. [Google Scholar] [CrossRef]
- Sheverdyaeva, P.M.; Mahatha, S.K.; Ronci, F.; Colonna, S.; Moras, P.; Satta, M.; Flammini, R. Signature of surface periodicity in the electronic structure of Si(111)-(7 × 7). J. Phys. Condens. Matter Inst. Phys. J. 2017, 29, 215001. [Google Scholar] [CrossRef]
- Kinoshita, T.; Kono, S.; Sagawa, T. Angle-resolved photoelectron-spectroscopy study of the Si(111) √3×√3-Sn surface: Comparison with Si(111) √3 × √3-Al, -Ga, and -In surfaces. Phys. Rev. B 1986, 34, 3011. [Google Scholar] [CrossRef]
- Lobo, J.; Tejeda, A.; Mugarza, A.; Michel, E.G. Electronic structure of Sn/Si(111)-√3 × √3R30° as a function of Sn coverage. Phys. Rev. B 2003, 68, 235332. [Google Scholar] [CrossRef]
- Lochocki, E.B.; Vishwanath, S.; Liu, X.; Dobrowolska, M.; Furdyna, J.; Xing, H.G.; Shen, K.M. Electronic structure of SnSe2 films grown by molecular beam epitaxy. Appl. Phys. Lett. 2019, 114, 091602. [Google Scholar] [CrossRef]
- Gonzalez, J.M.; Oleynik, I.I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 2016, 94, 125443. [Google Scholar] [CrossRef]
- Bertrand, Y.; Solal, F.; Levy, F. Experimental band structure of 2H-SnSe2 by synchrotron radiation photoemission spectroscopy. J. Phys. C Solid State Phys. 1984, 17, 2879. [Google Scholar] [CrossRef]
- Brizolla, G.M.S.; Chaves, A.J.; Teles, L.K.; Guilhon, I.; Junior, J.M.P. Electrically controlled charge qubit in van der Waals heterostructures: From ab initio calculation to tight-binding models. Phys. Rev. B 2024, 109, 125416. [Google Scholar] [CrossRef]
- Ge, B.; Li, C.; Lu, W.; Ye, H.; Li, R.; He, W.; Wei, Z.; Shi, Z.; Kim, D.; Zhou, C.; et al. Dynamic Phase Transition Leading to Extraordinary Plastic Deformability of Thermoelectric SnSe2 Single Crystal. Adv. Energy Mater. 2023, 13, 2300965. [Google Scholar] [CrossRef]
- Chen, W.; Hu, M.; Zong, J.; Xie, X.; Meng, Q.; Yu, F.; Wang, L.; Ren, W.; Chen, A.; Liu, G.; et al. Epitaxial Growth of Single-Phase 1T’-WSe2 Monolayer with Assistance of Enhanced Interface Interaction. Adv. Mater. 2021, 33, 2004930. [Google Scholar] [CrossRef]
- Ugeda, M.M.; Pulkin, A.; Tang, S.; Ryu, H.; Wu, Q.; Zhang, Y.; Wong, D.; Pedramrazi, Z.; Martín-Recio, A.; Chen, Y.; et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 2018, 9, 3401. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Zong, J.; Chen, T.; Lin, D.; Yu, F.; Jin, S.; Zhou, L.; Zou, J.; Sun, J.; et al. Growth and Thermo-driven Crystalline Phase Transition of Metastable Monolayer 1T′-WSe2 Thin Film. Sci. Rep. 2019, 9, 2685. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Tian, Q.; Wang, K.; Mu, Y.; Fan, Z.; Qiu, X.; Meng, Q.; Wang, C.; Zhang, Y.
Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on
Li Z, Tian Q, Wang K, Mu Y, Fan Z, Qiu X, Meng Q, Wang C, Zhang Y.
Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on
Li, Zhujuan, Qichao Tian, Kaili Wang, Yuyang Mu, Zhenjie Fan, Xiaodong Qiu, Qinghao Meng, Can Wang, and Yi Zhang.
2025. "Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on
Li, Z., Tian, Q., Wang, K., Mu, Y., Fan, Z., Qiu, X., Meng, Q., Wang, C., & Zhang, Y.
(2025). Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on