Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (641)

Search Parameters:
Keywords = epigenetic diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 984 KiB  
Review
Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity
by Guihong Fang, Baolian Li, Li Zhu, Liqian Chen, Juan Xiao and Juncheng Chen
Biomolecules 2025, 15(8), 1140; https://doi.org/10.3390/biom15081140 - 7 Aug 2025
Abstract
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified [...] Read more.
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified efforts to develop plant and fungal polysaccharide therapeutic alternatives. These polysaccharide macromolecules have emerged as promising candidates because of their diverse biological activities and often act as natural prebiotics, exerting beneficial effects through multiple pathways. Plant and fungal polysaccharides can reduce blood glucose levels, alleviate inflammation and oxidative stress, modulate metabolic signaling pathways, inhibit nutrient absorption, and reshape gut microbial composition. These effects have been shown in cellular and animal models and are associated with mechanisms underlying obesity and related metabolic disorders. This review discusses the complexity of obesity and multifaceted role of plant and fungal polysaccharides in alleviating its symptoms and complications. Current knowledge on the anti-obesity properties of plant and fungal polysaccharides is also summarized. We highlight their regulatory effects, potential intervention pathways, and structure–function relationships, thereby providing novel insights into polysaccharide-based strategies for obesity management. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

14 pages, 1754 KiB  
Article
Dissecting Tumor Heterogeneity by Liquid Biopsy—A Comparative Analysis of Post-Mortem Tissue and Pre-Mortem Liquid Biopsies in Solid Neoplasias
by Tatiana Mögele, Kathrin Hildebrand, Aziz Sultan, Sebastian Sommer, Lukas Rentschler, Maria Kling, Irmengard Sax, Matthias Schlesner, Bruno Märkl, Martin Trepel, Maximilian Schmutz and Rainer Claus
Int. J. Mol. Sci. 2025, 26(15), 7614; https://doi.org/10.3390/ijms26157614 - 6 Aug 2025
Abstract
Tumor heterogeneity encompasses genetic, epigenetic, and phenotypic diversity, impacting treatment response and resistance. Spatial heterogeneity occurs both inter- and intra-lesionally, while temporal heterogeneity results from clonal evolution. High-throughput technologies like next-generation sequencing (NGS) enhance tumor characterization, but conventional biopsies still do not adequately [...] Read more.
Tumor heterogeneity encompasses genetic, epigenetic, and phenotypic diversity, impacting treatment response and resistance. Spatial heterogeneity occurs both inter- and intra-lesionally, while temporal heterogeneity results from clonal evolution. High-throughput technologies like next-generation sequencing (NGS) enhance tumor characterization, but conventional biopsies still do not adequately capture genetic heterogeneity. Liquid biopsy (LBx), analyzing circulating tumor DNA (ctDNA), provides a minimally invasive alternative, offering real-time tumor evolution insights and identifying resistance mutations overlooked by tissue biopsies. This study evaluates the capability of LBx to capture tumor heterogeneity by comparing genetic profiles from multiple metastatic lesions and LBx samples. Eight patients from the Augsburger Longitudinal Plasma Study with various types of cancer provided 56 postmortem tissue samples, which were compared against pre-mortem LBx-derived circulating-free DNA sequenced by NGS. Tissue analyses revealed significant mutational diversity (4–12 mutations per patient, VAFs: 1.5–71.4%), with distinct intra- and inter-lesional heterogeneity. LBx identified 51 variants (4–17 per patient, VAFs: 0.2–31.1%), which overlapped with mutations from the tissue samples by 33–92%. Notably, 22 tissue variants were absent in LBx, whereas 18 LBx-exclusive variants were detected (VAFs: 0.2–2.8%). LBx effectively captures tumor heterogeneity, but should be used in conjunction with tissue biopsies for comprehensive genetic profiling. Full article
(This article belongs to the Special Issue Liquid Biopsies in Oncology—3rd Edition)
Show Figures

Figure 1

28 pages, 1877 KiB  
Review
Unconventional Immunotherapies in Cancer: Opportunities and Challenges
by Meshael Alturki, Abdullah A. Alshehri, Ahmad M. Aldossary, Mohannad M. Fallatah, Fahad A. Almughem, Nojoud Al Fayez, Majed A. Majrashi, Ibrahim A. Alradwan, Mohammad Alkhrayef, Mohammad N. Alomary and Essam A. Tawfik
Pharmaceuticals 2025, 18(8), 1154; https://doi.org/10.3390/ph18081154 - 4 Aug 2025
Viewed by 337
Abstract
Conventional immunotherapy, including immune checkpoint blockade and chimeric antigen receptor (CAR)-T cells, has revolutionized cancer therapy over the past decade. Yet, the efficacy of these therapies is limited by tumor resistance, antigen escape mechanisms, poor persistence, and T-cell exhaustion, particularly in the treatment [...] Read more.
Conventional immunotherapy, including immune checkpoint blockade and chimeric antigen receptor (CAR)-T cells, has revolutionized cancer therapy over the past decade. Yet, the efficacy of these therapies is limited by tumor resistance, antigen escape mechanisms, poor persistence, and T-cell exhaustion, particularly in the treatment of solid tumors. The emergence of unconventional immunotherapies offers novel opportunities by leveraging diverse immune cell subsets and synthetic biologics. This review explores various immunotherapy platforms, including gamma delta T cells, invariant natural killer T cells, mucosal-associated invariant T cells, engineered regulatory T cells, and universal CAR platforms. Additionally, it expands on biologics, including bispecific and multispecific antibodies, cytokine fusions, agonists, and oncolytic viruses, showcasing their potential for modular engineering and off-the-shelf applicability. Distinct features of unconventional platforms include independence from the major histocompatibility complex (MHC), tissue-homing capabilities, stress ligand sensing, and the ability to bridge adaptive and innate immunity. Their compatibility with engineering approaches highlights their potential as scalable, efficient, and cost-effective therapies. To overcome translational challenges such as functional heterogeneity, immune exhaustion, tumor microenvironment-mediated suppression, and limited persistence, novel strategies will be discussed, including metabolic and epigenetic reprogramming, immune cloaking, gene editing, and the utilization of artificial intelligence for patient stratification. Ultimately, unconventional immunotherapies extend the therapeutic horizon of cancer immunotherapy by breaking barriers in solid tumor treatment and increasing accessibility. Continued investments in research for mechanistic insights and scalable manufacturing are key to unlocking their full clinical potential. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

26 pages, 1034 KiB  
Review
Metabolic Interactions in the Tumor Microenvironment of Classical Hodgkin Lymphoma: Implications for Targeted Therapy
by Michał Kurlapski, Alicja Braczko, Paweł Dubiela, Iga Walczak, Barbara Kutryb-Zając and Jan Maciej Zaucha
Int. J. Mol. Sci. 2025, 26(15), 7508; https://doi.org/10.3390/ijms26157508 - 4 Aug 2025
Viewed by 345
Abstract
Classical Hodgkin lymphoma (cHL) is a biologically and clinically unique malignancy characterized by rare Hodgkin and Reed–Sternberg (HRS) cells surrounded by a dense and diverse inflammatory infiltrate. These malignant cells actively reshape the tumor microenvironment (TME) through metabolic reprogramming and immune evasion strategies. [...] Read more.
Classical Hodgkin lymphoma (cHL) is a biologically and clinically unique malignancy characterized by rare Hodgkin and Reed–Sternberg (HRS) cells surrounded by a dense and diverse inflammatory infiltrate. These malignant cells actively reshape the tumor microenvironment (TME) through metabolic reprogramming and immune evasion strategies. This review synthesizes current knowledge on how metabolic alterations contribute to tumor survival, immune dysfunction, and therapeutic resistance in cHL. We discuss novel therapeutic approaches aimed at disrupting these processes and examine the potential of combining metabolic interventions with immune-based strategies—such as immune checkpoint inhibitors (CPIs), epigenetic modulators, bispecific antibodies, and CAR-T/CAR-NK cell therapies—which may help overcome resistance and enhance anti-tumor responses. Several agents are currently under investigation for their ability to modulate immune cell metabolism and restore effective immune surveillance. Altogether, targeting metabolic vulnerabilities within both tumor and immune compartments offers a promising, multifaceted strategy to improve clinical outcomes in patients with relapsed or refractory cHL. Full article
(This article belongs to the Special Issue Lymphoma: Molecular Pathologies and Therapeutic Strategies)
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 - 2 Aug 2025
Viewed by 345
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 - 1 Aug 2025
Viewed by 119
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

14 pages, 939 KiB  
Review
Revisiting Male Fertility in Livestock: The Case of Bull Sperm RNA
by Rene A. Ramírez-Sosa, Francisco J. Jahuey-Martínez, Monserrath Felix-Portillo and José A. Martínez-Quintana
Biology 2025, 14(8), 969; https://doi.org/10.3390/biology14080969 - 1 Aug 2025
Viewed by 311
Abstract
To achieve the goals of productivity and sustainability across diverse livestock systems, reproductive factors play a pivotal role. Historically, reproductive research has primarily focused on females, as they are responsible for maintaining pregnancy and delivering offspring following oocyte fertilization. However, since the early [...] Read more.
To achieve the goals of productivity and sustainability across diverse livestock systems, reproductive factors play a pivotal role. Historically, reproductive research has primarily focused on females, as they are responsible for maintaining pregnancy and delivering offspring following oocyte fertilization. However, since the early 2000s, the biological significance of sperm RNAs has been increasingly recognized in various livestock species. These RNAs contribute both genetically and epigenetically at the time of fertilization and during early embryonic development. Multiple types of sperm RNA have been identified in bovine, porcine, ovine, buffalo, and caprine spermatozoa. Notably, transcriptomic profiling has shown potential to differentiate between high- and low-fertility males, even when conventional semen quality values appear normal in both groups. This opens the possibility for more accurate identification of highly fertile sires. Nevertheless, a definitive marker or set of markers has yet to be established, likely due to the transcriptome’s sensitivity to environmental conditions and to the variability in evaluation methodologies. Therefore, global scientific efforts should aim to establish standardized, robust protocols, as sperm RNA represents a promising avenue for enhancing the sustainability of animal production systems. Full article
(This article belongs to the Special Issue The Biology of Animal Reproduction)
Show Figures

Figure 1

12 pages, 2351 KiB  
Review
circRNA/miRNA Networks Regulate KLF4 in Tumor Development
by Raffaele Frazzi, Enrico Farnetti and Davide Nicoli
Non-Coding RNA 2025, 11(4), 56; https://doi.org/10.3390/ncrna11040056 - 29 Jul 2025
Viewed by 170
Abstract
Background/Objectives: Krüppel-like factor 4 (KLF4) emerged as an epigenetically regulated gene in a variety of settings, including cell reprogramming and malignant cell proliferation. The aim of the present manuscript is to explore the relationship described in recent years between circular [...] Read more.
Background/Objectives: Krüppel-like factor 4 (KLF4) emerged as an epigenetically regulated gene in a variety of settings, including cell reprogramming and malignant cell proliferation. The aim of the present manuscript is to explore the relationship described in recent years between circular RNAs, miRNAs, and KLF4. These have been shown to be involved in cancers having diverse histological origins, including some of the most prevalent and deadly tumors for the human population. Expression and protein levels of this transcription factor correlate with invasiveness and prognosis in a context- and tissue-specific fashion. Methods: The literature was obtained through two main PubMed queries. The first is “miRNA and KLF4 and cancer” and is limited to the last 5 years. The second is “circRNA and KLF4”, which yielded publications between 2013 and 2024. The oncological publications were selected. Results: A number of circRNA/miRNA axes that regulate the downstream transcription factor KLF4 emerged in the last few years. circRNAs act as sponges for miRNAs and synergize with KLF4, which can function as either a tumor promoter or suppressor in different tumors. Conclusions: The axes represented by circRNA/miRNA/KLF4 emerged as a new layer of epigenetic regulation. These RNA-based modulators explain the complex regulation of this transcription factor and open the way to new therapeutic targeting possibilities. Full article
(This article belongs to the Section Detection and Biomarkers of Non-Coding RNA)
Show Figures

Figure 1

16 pages, 4900 KiB  
Review
Non-Canonical Functions of Adenosine Receptors: Emerging Roles in Metabolism, Immunometabolism, and Epigenetic Regulation
by Giovanni Pallio and Federica Mannino
Int. J. Mol. Sci. 2025, 26(15), 7241; https://doi.org/10.3390/ijms26157241 - 26 Jul 2025
Viewed by 226
Abstract
Adenosine receptors (ARs) are G protein-coupled receptors that are widely expressed across tissues, traditionally associated with cardiovascular, neurological, and immune regulation. Recent studies, however, have highlighted their non-canonical functions, revealing critical roles in metabolism, immunometabolism, and epigenetic regulation. AR subtypes, particularly A2A and [...] Read more.
Adenosine receptors (ARs) are G protein-coupled receptors that are widely expressed across tissues, traditionally associated with cardiovascular, neurological, and immune regulation. Recent studies, however, have highlighted their non-canonical functions, revealing critical roles in metabolism, immunometabolism, and epigenetic regulation. AR subtypes, particularly A2A and A2B, modulate glucose and lipid metabolism, mitochondrial activity, and energy homeostasis. In immune cells, AR signaling influences metabolic reprogramming and polarization through key regulators such as mTOR, AMPK, and HIF-1α, contributing to immune tolerance or activation depending on the context. Additionally, ARs have been implicated in epigenetic modulation, affecting DNA methylation, histone acetylation, and non-coding RNA expression via metabolite-sensitive mechanisms. Therapeutically, AR-targeting agents are being explored for cancer and chronic inflammatory diseases. While clinical trials with A2A antagonists in oncology show encouraging results, challenges remain due to receptor redundancy, systemic effects, and the need for tissue-specific selectivity. Future strategies involve biased agonism, allosteric modulators, and combination therapies guided by biomarker-based patient stratification. Overall, ARs are emerging as integrative hubs connecting extracellular signals with cellular metabolic and epigenetic machinery. Understanding these non-canonical roles may unlock novel therapeutic opportunities across diverse disease landscapes. Full article
Show Figures

Figure 1

25 pages, 2229 KiB  
Review
The Roles of Lactate and Lactylation in Diseases Related to Mitochondrial Dysfunction
by Fei Ma and Wei Yu
Int. J. Mol. Sci. 2025, 26(15), 7149; https://doi.org/10.3390/ijms26157149 - 24 Jul 2025
Viewed by 261
Abstract
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, [...] Read more.
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, mitochondrial dysfunction disrupts the energy balance. Lactate, historically perceived as a harmful metabolic byproduct. However, emerging research indicates that lactate has diverse biological functions, encompassing energy regulation, epigenetic remodeling, and signaling activities. Notably, the 2019 study revealed the role of lactate in regulating gene expression through histone and non-histone lactylation, thereby influencing critical biological processes. Metabolic reprogramming is a key adaptive mechanism of cells responding to stresses. The Warburg effect in tumor cells exemplifies this, with glucose preferentially converted to lactate for rapid energy, accompanied by metabolic imbalances, characterized by exacerbated aerobic glycolysis, lactate accumulation, suppressed mitochondrial oxidative phosphorylation, and compromised mitochondrial function, ultimately resulting in a vicious cycle of metabolic dysregulation. As molecular bridges connecting metabolism and epigenetics, lactate and lactylation offer novel therapeutic targets for diseases like cancer and neurodegenerative diseases. This review summarizes the interplay between metabolic reprogramming and mitochondrial dysfunction, while discussing lactate and lactylation’s mechanistic in the pathogenesis of related diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

47 pages, 4589 KiB  
Review
Understanding Sex Differences in Autoimmune Diseases: Immunologic Mechanisms
by Yu Rin Kim, YunJae Jung, Insug Kang and Eui-Ju Yeo
Int. J. Mol. Sci. 2025, 26(15), 7101; https://doi.org/10.3390/ijms26157101 - 23 Jul 2025
Viewed by 418
Abstract
Autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome show pronounced sex disparities in prevalence, severity, and clinical outcomes, with females disproportionately affected. Emerging evidence highlights sex-based differences in immune and inflammatory responses as key contributors to this bias. Genetic factors—including sex [...] Read more.
Autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome show pronounced sex disparities in prevalence, severity, and clinical outcomes, with females disproportionately affected. Emerging evidence highlights sex-based differences in immune and inflammatory responses as key contributors to this bias. Genetic factors—including sex chromosomes, skewed X chromosome inactivation, and sex-biased microRNAs—as well as sex hormones and pregnancy modulate gene expression and immune cell function in a sex-specific manner. Additionally, sex hormone-dependent epigenetic modifications influence the transcription of critical immune regulators. These genetic and hormonal factors collectively shape the activation, differentiation, and effector functions of diverse immune cell types. Environmental factors—including infections, gut microbiota, environmental chemicals and pollutants, and lifestyle behaviors such as diet, smoking, UV exposure, alcohol and caffeine intake, physical activity, and circadian rhythms—further modulate immune function and autoimmune disease pathogenesis in a sex-dependent manner. Together, these mechanisms contribute to the heightened risk and distinct clinical features of autoimmunity in females. A deeper understanding of sex-biased immune regulation will facilitate the identification of novel biomarkers, enable patient stratification, and inform the development of sex-specific diagnostic and therapeutic strategies for autoimmune diseases. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

34 pages, 2669 KiB  
Article
A Novel Quantum Epigenetic Algorithm for Adaptive Cybersecurity Threat Detection
by Salam Al-E’mari, Yousef Sanjalawe and Salam Fraihat
AI 2025, 6(8), 165; https://doi.org/10.3390/ai6080165 - 22 Jul 2025
Viewed by 393
Abstract
The escalating sophistication of cyber threats underscores the critical need for intelligent and adaptive intrusion detection systems (IDSs) to identify known and novel attack vectors in real time. Feature selection is a key enabler of performance in machine learning-based IDSs, as it reduces [...] Read more.
The escalating sophistication of cyber threats underscores the critical need for intelligent and adaptive intrusion detection systems (IDSs) to identify known and novel attack vectors in real time. Feature selection is a key enabler of performance in machine learning-based IDSs, as it reduces the input dimensionality, enhances the detection accuracy, and lowers the computational latency. This paper introduces a novel optimization framework called Quantum Epigenetic Algorithm (QEA), which synergistically combines quantum-inspired probabilistic representation with biologically motivated epigenetic gene regulation to perform efficient and adaptive feature selection. The algorithm balances global exploration and local exploitation by leveraging quantum superposition for diverse candidate generation while dynamically adjusting gene expression through an epigenetic activation mechanism. A multi-objective fitness function guides the search process by optimizing the detection accuracy, false positive rate, inference latency, and model compactness. The QEA was evaluated across four benchmark datasets—UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and TON_IoT—and consistently outperformed baseline methods, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Quantum Genetic Algorithm (QGA). Notably, QEA achieved the highest classification accuracy (up to 97.12%), the lowest false positive rates (as low as 1.68%), and selected significantly fewer features (e.g., 18 on TON_IoT) while maintaining near real-time latency. These results demonstrate the robustness, efficiency, and scalability of QEA for real-time intrusion detection in dynamic and resource-constrained cybersecurity environments. Full article
Show Figures

Figure 1

21 pages, 1425 KiB  
Review
Epigenetics and Gut Microbiota in the Pathogenesis and Treatment of Bipolar Disorder (BD)
by Shabnam Nohesara, Hamid Mostafavi Abdolmaleky, Ahmad Pirani and Sam Thiagalingam
Cells 2025, 14(14), 1104; https://doi.org/10.3390/cells14141104 - 18 Jul 2025
Viewed by 612
Abstract
Bipolar disorder (BD) is a multifactorial mental disease with a prevalence of 1–5% in adults, caused by complex interactions between genetic and environmental factors. Environmental factors contribute to gene expression alterations through epigenetic mechanisms without changing the underlying DNA sequences. Interactions between the [...] Read more.
Bipolar disorder (BD) is a multifactorial mental disease with a prevalence of 1–5% in adults, caused by complex interactions between genetic and environmental factors. Environmental factors contribute to gene expression alterations through epigenetic mechanisms without changing the underlying DNA sequences. Interactions between the gut microbiota (GM) and diverse external factors, such as nutritional composition, may induce epigenetic alterations and increase susceptibility to BD. While epigenetic mechanisms are involved in both the pathogenesis of BD and drug treatment responses, epigenetic marks could be employed as predictors and indicators of drug response. This review highlights recent studies on the potential role of epigenetic aberrations in the development and progression of BD. Next, we focus on drug response-related alterations in the epigenetic landscape, including DNA methylation, histone modifications, and non-coding RNAs. Afterward, we delve into the potential roles of GM-induced epigenetic changes in the pathogenesis of BD and GM-based therapeutic strategies aimed at improving BD outcomes through epigenetic modifications. We also discuss how BD drugs may exert beneficial effects through modulation of the GM and the epigenome. Finally, we consider future research strategies that could address existing challenges. Full article
(This article belongs to the Special Issue Biological Mechanisms in the Treatment of Neuropsychiatric Diseases)
Show Figures

Figure 1

28 pages, 2091 KiB  
Review
Spatiotemporal Heterogeneity of Tumor Glucose Metabolism Reprogramming: From Single-Cell Mechanisms to Precision Interventions
by Xiaoxue Chai, Qian Tao and Lili Li
Int. J. Mol. Sci. 2025, 26(14), 6901; https://doi.org/10.3390/ijms26146901 - 18 Jul 2025
Viewed by 602
Abstract
Glucose metabolism reprogramming as a defining hallmark of cancer has become a pivotal frontier in oncology research. Recent technological advances in single-cell sequencing, spatial omics, and metabolic imaging have transformed the field from static bulk analyses to dynamic investigations of spatiotemporal heterogeneity at [...] Read more.
Glucose metabolism reprogramming as a defining hallmark of cancer has become a pivotal frontier in oncology research. Recent technological advances in single-cell sequencing, spatial omics, and metabolic imaging have transformed the field from static bulk analyses to dynamic investigations of spatiotemporal heterogeneity at a single-cell resolution. This review systematically summarizes the current knowledge on tumor glucose metabolism dynamics, discussing spatial heterogeneity and temporal evolution patterns, metabolic subpopulation interactions revealed by single-cell metabolomics, the glucose metabolism–epigenetics–immunology regulatory axis, and therapeutic strategies targeting metabolic vulnerabilities. Recent technological advances in single-cell sequencing and spatial omics have transformed our understanding of tumor glucose metabolism by providing high-resolution insights into metabolic heterogeneity and regulatory mechanisms, contrasting with classical bulk analyses. Spatiotemporal heterogeneity critically influences therapeutic outcomes by enabling tumor cells to adapt metabolically under selective pressures (e.g., hypoxia, nutrient deprivation), fostering treatment resistance and relapse. Deciphering these dynamics is essential for developing spatiotemporally targeted strategies that address intratumoral diversity and microenvironmental fluctuations. By integrating cutting-edge advances, this review deepens our understanding of tumor metabolic complexity and provides a conceptual framework for developing spatiotemporally precise interventions. Full article
Show Figures

Figure 1

22 pages, 3999 KiB  
Review
The Role of Lactate in Immune Regulation: A Metabolic Rheostat via Transporters, Receptors, and Epigenetic Modifiers
by Eun Jung Choi, Yoon Young Jang, Eun Joo Choi and Chang Joo Oh
Cells 2025, 14(14), 1096; https://doi.org/10.3390/cells14141096 - 17 Jul 2025
Viewed by 695
Abstract
Lactate, once regarded as a metabolic byproduct, is now recognized as a critical immunometabolic regulator that shapes immune responses in both physiological and pathological contexts. This review examines how lactate accumulation occurs across diverse disease settings, including cancer, sepsis, and diabetes, through mechanisms [...] Read more.
Lactate, once regarded as a metabolic byproduct, is now recognized as a critical immunometabolic regulator that shapes immune responses in both physiological and pathological contexts. This review examines how lactate accumulation occurs across diverse disease settings, including cancer, sepsis, and diabetes, through mechanisms such as hypoxia, mitochondrial dysfunction, and pharmacologic intervention. We then explore how lactate modulates immunity via four integrated mechanisms: transporter-mediated flux, receptor signaling (e.g., GPR81), context-dependent metabolic rewiring, and histone/protein lactylation. Particular emphasis is placed on the dichotomous effects of endogenous versus exogenous lactate, with the former supporting glycolytic effector functions and the latter reprogramming immune cells toward regulatory phenotypes via redox shifts and epigenetic remodeling. The review also highlights how the directionality of lactate transport, and the metabolic readiness of the cell determine, whether lactate sustains inflammation or promotes resolution. After analyzing emerging data across immune cell subsets and disease contexts, we propose that lactate serves as a dynamic rheostat that integrates environmental cues with intracellular metabolic and epigenetic programming. Understanding these context-dependent mechanisms is essential for the rational design of lactate-targeted immunotherapies that aim to modulate immune responses without disrupting systemic homeostasis. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

Back to TopTop