Epigenetics and Gut Microbiota in the Pathogenesis and Treatment of Bipolar Disorder (BD)
Abstract
1. Introduction
2. Epigenetic Alterations and the Pathogenesis of BD
2.1. DNA Methylation
2.2. Histone Modifications
2.3. Non-Coding RNAs
3. Epigenetic Alterations in Response to Mood Stabilizers and Antipsychotic Drugs
3.1. Valproate
3.2. Lithium (Li)
3.3. Lamotrigine (LTG)
3.4. Atypical Antipsychotics
4. The Gut Microbiota, BD, and the Disease Severity
5. Microbiota-Based Therapeutic Approaches for the Treatment of BD
5.1. Probiotics
5.2. Postbiotics
5.3. Specific Diets (e.g., Ketogenic Diet)
5.4. Fecal Microbiota Transplantation (FMT)
5.5. Antipsychotic Medications
6. Conclusions, Challenges, and Prospectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, N.; Bergen, S.E. Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: Current knowledge and future directions. Front. Genet. 2021, 12, 686666. [Google Scholar] [CrossRef] [PubMed]
- Gordovez, F.J.A.; McMahon, F.J. The genetics of bipolar disorder. Mol. Psychiatry 2020, 25, 544–559. [Google Scholar] [CrossRef] [PubMed]
- Menculini, G.; Balducci, P.M.; Attademo, L.; Bernardini, F.; Moretti, P.; Tortorella, A. Environmental risk factors for bipolar disorders and high-risk states in adolescence: A systematic review. Medicina 2020, 56, 689. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A. Bipolar disorders. Lancet 2020, 396, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Parra, J.; Streit, F.; Forstner, A.J.; Strohmaier, J.; González, M.J.; Gil Flores, S.; Cabaleiro Fabeiro, F.J.; del Río Noriega, F.; Perez Perez, F.; Haro González, J. Clinical and genetic differences between bipolar disorder type 1 and 2 in multiplex families. Transl. Psychiatry 2021, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, M.; Greene, M.; Guerin, A.; Touya, M.; Wu, E. The economic burden of bipolar I disorder in the United States in 2015. J. Affect. Disord. 2018, 226, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Wisłowska-Stanek, A.; Kołosowska, K.; Maciejak, P. Neurobiological basis of increased risk for suicidal behaviour. Cells 2021, 10, 2519. [Google Scholar] [CrossRef] [PubMed]
- Rybakowski, J.K. Genetic influences on response to mood stabilizers in bipolar disorder: Current status of knowledge. CNS Drugs 2013, 27, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, L.E.; Youssef, N.A. Systematic review of epigenetic effects of pharmacological agents for bipolar disorders. Brain Sci. 2017, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Fries, G.; Walss-Bass, C.; Soares, J.; Quevedo, J. Non-genetic transgenerational transmission of bipolar disorder: Targeting DNA methyltransferases. Mol. Psychiatry 2016, 21, 1653–1654. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Inslicht, S.S.; Bhargava, A. Gut-brain axis: Role of microbiome, metabolomics, hormones, and stress in mental health disorders. Cells 2024, 13, 1436. [Google Scholar] [CrossRef] [PubMed]
- Nohesara, S.; Mostafavi-Abdolmaleky, H.; Dickerson, F.; Pinto-Tomas, A.A.; Jeste, D.V.; Thiagalingam, S. Associations of microbiome pathophysiology with social activity and behavior are mediated by epigenetic modulations: Avenues for designing innovative therapeutic strategies. Neurosci. Biobehav. Rev. 2025, 174, 106208. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, S.; Poli, L.; Şahin, F.N.; Patti, A.; Santacroce, L.; Bianco, A.; Greco, G.; Ghinassi, B.; Di Baldassarre, A.; Fischetti, F. The effects of physical activity on the gut microbiota and the gut–brain Axis in preclinical and human models: A narrative review. Nutrients 2022, 14, 3293. [Google Scholar] [CrossRef] [PubMed]
- Sanborn, V.; Gunstad, J. The potential mediation of the effects of physical activity on cognitive function by the gut microbiome. Geriatrics 2020, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Codoñer-Franch, P.; Gombert, M.; Martínez-Raga, J.; Cenit, M.C. Circadian disruption and mental health: The chronotherapeutic potential of microbiome-based and dietary strategies. Int. J. Mol. Sci. 2023, 24, 7579. [Google Scholar] [CrossRef] [PubMed]
- Khambadkone, S.G.; Cordner, Z.A.; Dickerson, F.; Severance, E.G.; Prandovszky, E.; Pletnikov, M.; Xiao, J.; Li, Y.; Boersma, G.J.; Talbot, C.C., Jr. Nitrated meat products are associated with mania in humans and altered behavior and brain gene expression in rats. Mol. Psychiatry 2020, 25, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.J.; Ringrose, R.N.; Harrington, G.J.; Mancuso, P.; Burant, C.F.; McInnis, M.G. Dietary intake and plasma metabolomic analysis of polyunsaturated fatty acids in bipolar subjects reveal dysregulation of linoleic acid metabolism. J. Psychiatr. Res. 2014, 57, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Kankaanpää, P.E.; Salminen, S.J.; Isolauri, E.; Lee, Y.K. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol. Lett. 2001, 194, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Dalton, A.; Mermier, C.; Zuhl, M. Exercise influence on the microbiome–gut–brain axis. Gut Microbes 2019, 10, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, P.; Pal, N.; Kumawat, M.; Shubham, S.; Sarma, D.K.; Tiwari, R.R.; Kumar, M.; Nagpal, R. Impact of environmental pollutants on gut microbiome and mental health via the gut–brain axis. Microorganisms 2022, 10, 1457. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Álvarez-Mon, M.A.; García-Montero, C.; Fraile-Martínez, Ó.; Monserrat, J.; Martinez-Rozas, L.; Rodríguez-Jiménez, R.; Álvarez-Mon, M.; Lahera, G. Microbiota–gut–brain axis mechanisms in the complex network of bipolar disorders: Potential clinical implications and translational opportunities. Mol. Psychiatry 2023, 28, 2645–2673. [Google Scholar] [CrossRef] [PubMed]
- ElRakaiby, M.; Dutilh, B.E.; Rizkallah, M.R.; Boleij, A.; Cole, J.N.; Aziz, R.K. Pharmacomicrobiomics: The impact of human microbiome variations on systems pharmacology and personalized therapeutics. Omics A J. Integr. Biol. 2014, 18, 402–414. [Google Scholar] [CrossRef]
- Selwyn, F.P.; Cheng, S.L.; Klaassen, C.D.; Cui, J.Y. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab. Dispos. 2016, 44, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Kuziel, G.A.; Rakoff-Nahoum, S. The gut microbiome. Curr. Biol. 2022, 32, R257–R264. [Google Scholar] [CrossRef] [PubMed]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The interplay between diet and the gut microbiome: Implications for health and disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Li, A.; Huang, T.; Lai, J.; Li, J.; Sublette, M.E.; Lu, H.; Lu, Q.; Du, Y.; Hu, Z. Gut microbiota changes in patients with bipolar depression. Adv. Sci. 2019, 6, 1900752. [Google Scholar] [CrossRef] [PubMed]
- Radford, E.J. An introduction to epigenetic mechanisms. Prog. Mol. Biol. Transl. Sci. 2018, 158, 29–48. [Google Scholar] [PubMed]
- Smigielski, L.; Jagannath, V.; Rössler, W.; Walitza, S.; Grünblatt, E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: A systematic review of empirical human findings. Mol. Psychiatry 2020, 25, 1718–1748. [Google Scholar] [CrossRef] [PubMed]
- Smith, Z.D.; Hetzel, S.; Meissner, A. DNA methylation in mammalian development and disease. Nat. Rev. Genet. 2024, 26, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhou, J.; Bartlett, A.; Zeng, Q.; Liu, H.; Castanon, R.G.; Kenworthy, M.; Altshul, J.; Valadon, C.; Aldridge, A. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 2023, 382, eadf5357. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xu, J.; Chen, Y.E.; Li, J.S.; Cui, Y.; Shen, L.; Li, J.J.; Li, W. The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nat. Commun. 2021, 12, 5285. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Camarillo, C.; Xu, J.; Arana, T.B.; Xiao, Y.; Zhao, Z.; Chen, H.; Ramirez, M.; Zavala, J.; Escamilla, M.A. Genome-Wide Methylome Analyses Reveal Novel Epigenetic Regulation Patterns in Schizophrenia and Bipolar Disorder. BioMed Res. Int. 2015, 2015, 201587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ke, X.; Hu, L.; Wang, J.; Gao, L.; Xie, J. Study on the epigenetic methylation modification of bipolar disorder major genes. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1421–1425. [Google Scholar] [PubMed]
- Gaine, M.E.; Seifuddin, F.; Sabunciyan, S.; Lee, R.S.; Benke, K.S.; Monson, E.T.; Zandi, P.P.; Potash, J.B.; Willour, V.L. Differentially methylated regions in bipolar disorder and suicide. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2019, 180, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleky, H.M.; Cheng, K.-H.; Faraone, S.V.; Wilcox, M.; Glatt, S.J.; Gao, F.; Smith, C.L.; Shafa, R.; Aeali, B.; Carnevale, J. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum. Mol. Genet. 2006, 15, 3132–3145. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleky, H.M.; Yaqubi, S.; Papageorgis, P.; Lambert, A.W.; Ozturk, S.; Sivaraman, V.; Thiagalingam, S. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr. Res. 2011, 129, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, Z.; Tochigi, M.; Jia, P.; Pal, M.; Mill, J.; Kwan, A.; Ioshikhes, I.; Vincent, J.; Kennedy, J.; Strauss, J. A multi-tissue analysis identifies HLA complex group 9 gene methylation differences in bipolar disorder. Mol. Psychiatry 2012, 17, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Dell, B.; Palazzo, M.C.; Benatti, B.; Camuri, G.; Galimberti, D.; Fenoglio, C.; Scarpini, E.; Di Francesco, A.; Maccarrone, M.; Altamura, A.C. Epigenetic modulation of BDNF gene: Differences in DNA methylation between unipolar and bipolar patients. J. Affect. Disord. 2014, 166, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Huzayyin, A.A.; Andreazza, A.C.; Turecki, G.; Cruceanu, C.; Rouleau, G.A.; Alda, M.; Young, L.T. Decreased global methylation in patients with bipolar disorder who respond to lithium. Int. J. Neuropsychopharmacol. 2014, 17, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleky, H.M.; Pajouhanfar, S.; Faghankhani, M.; Joghataei, M.T.; Mostafavi, A.; Thiagalingam, S. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and psychotic bipolar disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2015, 168, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, Z.; Jones, I.; Verma, R.; Saleh, L.; Trivedi, H.; Guintivano, J.; Akman, R.; Zandi, P.; Lee, R.S.; Potash, J.B. DNA methylation and expression of KCNQ 3 in bipolar disorder. Bipolar Disord. 2015, 17, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Starnawska, A.; Demontis, D.; McQuillin, A.; O’Brien, N.L.; Staunstrup, N.H.; Mors, O.; Nielsen, A.L.; Børglum, A.D.; Nyegaard, M. Hypomethylation of FAM63B in bipolar disorder patients. Clin. Epigenetics 2016, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Starnawska, A.; Demontis, D.; Pen, A.; Hedemand, A.; Nielsen, A.; Staunstrup, N.; Grove, J.; Als, T.; Jarram, A.; O’brien, N. CACNA1C hypermethylation is associated with bipolar disorder. Transl. Psychiatry 2016, 6, e831. [Google Scholar] [CrossRef] [PubMed]
- D’Addario, C.; Palazzo, M.C.; Benatti, B.; Grancini, B.; Pucci, M.; Di Francesco, A.; Camuri, G.; Galimberti, D.; Fenoglio, C.; Scarpini, E. Regulation of gene transcription in bipolar disorders: Role of DNA methylation in the relationship between prodynorphin and brain derived neurotrophic factor. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2018, 82, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.J.; Howlett, B.H.; Sanders, E.; Dass, S.E.; Msallaty, Z.; Mallisho, A.; Seyoum, B.; Yi, Z. Skeletal muscle DNA methylation modifications and psychopharmacologic treatment in bipolar disorder. Eur. Neuropsychopharmacol. 2019, 29, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zong, L.; Hou, Y.; Zhang, W.; Zhou, L.; Yang, Q.; Wang, L.; Jiang, W.; Li, Q.; Huang, X. Altered DNA methylation of the Alu y subfamily in schizophrenia and bipolar disorder. Epigenomics 2019, 11, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Nassan, M.; Veldic, M.; Winham, S.; Frye, M.A.; Larrabee, B.; Colby, C.; Biernacka, J.; Bellia, F.; Pucci, M.; Terenius, L. Methylation of Brain Derived Neurotrophic Factor (BDNF) Val66Met CpG site is associated with early onset bipolar disorder. J. Affect. Disord. 2020, 267, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Bundo, M.; Ueda, J.; Nakachi, Y.; Kasai, K.; Kato, T.; Iwamoto, K. Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal cortex of patients with bipolar disorder. Mol. Psychiatry 2021, 26, 3407–3418. [Google Scholar] [CrossRef] [PubMed]
- Mirza, S.; Lima, C.N.; Del Favero-Campbell, A.; Rubinstein, A.; Topolski, N.; Cabrera-Mendoza, B.; Kovács, E.H.; Blumberg, H.P.; Richards, J.G.; Williams, A.J. Blood epigenome-wide association studies of suicide attempt in adults with bipolar disorder. Transl. Psychiatry 2024, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ruiz, B.; Jiménez, E.; Aranda, S.; Verdolini, N.; Gutiérrez-Zotes, A.; Sáez, C.; Losantos, E.; Alonso-Lana, S.; Fatjó-Vilas, M.; Sarró, S. Associations of altered leukocyte DDR1 promoter methylation and childhood trauma with bipolar disorder and suicidal behavior in euthymic patients. Mol. Psychiatry 2024, 29, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, S.; Bhat, U.A.; Reddy, R.G.; Gupta, P.; Kumar, A. Histone deacetylase inhibitors and psychiatric disorders. In Epigenetics in Psychiatry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 657–699. [Google Scholar]
- Nestler, E.J.; Peña, C.J.; Kundakovic, M.; Mitchell, A.; Akbarian, S. Epigenetic basis of mental illness. Neuroscientist 2016, 22, 447–463. [Google Scholar] [CrossRef] [PubMed]
- Benes, F.M.; Lim, B.; Matzilevich, D.; Walsh, J.P.; Subburaju, S.; Minns, M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc. Natl. Acad. Sci. USA 2007, 104, 10164–10169. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-E.J.; Gilbert, T.M.; Catanese, M.C.; Hightower, B.G.; Peters, A.T.; Parmar, A.J.; Kim, M.; Wang, C.; Roffman, J.L.; Brown, H.E. In vivo human brain expression of histone deacetylases in bipolar disorder. Transl. Psychiatry 2020, 10, 224. [Google Scholar] [CrossRef] [PubMed]
- Arent, C.O.; Valvassori, S.S.; Fries, G.R.; Stertz, L.; Ferreira, C.L.; Lopes-Borges, J.; Mariot, E.; Varela, R.B.; Ornell, F.; Kapczinski, F. Neuroanatomical profile of antimaniac effects of histone deacetylases inhibitors. Mol. Neurobiol. 2011, 43, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Badrlou, E.; Taheri, M.; Dürsteler, K.M.; Beatrix Brühl, A.; Sadeghi-Bahmani, D.; Brand, S. A comprehensive review on the role of non-coding RNAs in the pathophysiology of bipolar disorder. Int. J. Mol. Sci. 2021, 22, 5156. [Google Scholar] [CrossRef] [PubMed]
- Leem, K.H.; Kim, S.; Kim, H.W.; Park, H.J. Downregulation of microRNA-330-5p induces manic-like behaviors in REM sleep-deprived rats by enhancing tyrosine hydroxylase expression. CNS Neurosci. Ther. 2023, 29, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.M.; Rybka, J.; Anderson, S.M.; Torrance, H.S.; Boxall, R.; Sussmann, J.E.; Porteous, D.J.; McIntosh, A.M.; Evans, K.L. Preliminary investigation of miRNA expression in individuals at high familial risk of bipolar disorder. J. Psychiatr. Res. 2015, 62, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Banach, E.; Dmitrzak-Weglarz, M.; Pawlak, J.; Kapelski, P.; Szczepankiewicz, A.; Rajewska-Rager, A.; Slopien, A.; Skibinska, M.; Czerski, P.; Hauser, J. Dysregulation of miR-499, miR-708 and miR-1908 during a depression episode in bipolar disorders. Neurosci. Lett. 2017, 654, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Bame, M.; McInnis, M.G.; O’Shea, K.S. MicroRNA alterations in induced pluripotent stem cell-derived neurons from bipolar disorder patients: Pathways involved in neuronal differentiation, axon guidance, and plasticity. Stem Cells Dev. 2020, 29, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Martinez, B.; Peplow, P.V. MicroRNAs as potential diagnostic biomarkers for bipolar disorder. Neural Regen. Res. 2025, 20, 1681–1695. [Google Scholar] [CrossRef] [PubMed]
- Shirvani Farsani, Z.; Zahirodin, A.; Ghaderian, S.M.H.; Shams, J.; Naghavi Gargari, B. The role of long non-coding RNA MALAT1 in patients with bipolar disorder. Metab. Brain Dis. 2020, 35, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Mokhtari, M.J. Up-regulation of HOXA-AS2 and MEG3 long non-coding RNAs acts as a potential peripheral biomarker for bipolar disorder. J. Cell. Mol. Med. 2024, 28, e70150. [Google Scholar] [CrossRef] [PubMed]
- Tabano, S.; Caldiroli, A.; Terrasi, A.; Colapietro, P.; Grassi, S.; Carnevali, G.S.; Fontana, L.; Serati, M.; Vaira, V.; Altamura, A.C. A miRNome analysis of drug-free manic psychotic bipolar patients versus healthy controls. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Camkurt, M.A.; Karababa, İ.F.; Erdal, M.E.; Kandemir, S.B.; Fries, G.R.; Bayazıt, H.; Ay, M.E.; Kandemir, H.; Ay, Ö.I.; Coşkun, S. MicroRNA dysregulation in manic and euthymic patients with bipolar disorder. J. Affect. Disord. 2020, 261, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, D.; Tufekci, K.U.; Keskinoglu, P.; Genc, S.; Özerdem, A. Circulating exosomal microRNAs in bipolar disorder. J. Affect. Disord. 2020, 262, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Lu, R.-B.; Wang, L.-J.; Chang, C.-H.; Lu, T.; Wang, T.-Y.; Tsai, K.-W. Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder. Sci. Rep. 2020, 10, 1131. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi, J.; Liu, H.; Wang, Q.; Chen, X.; Tang, H.; Yan, R.; Yao, Z.; Lu, Q. Plasma microRNA array analysis identifies overexpressed miR-19b-3p as a biomarker of bipolar depression distinguishing from unipolar depression. Front. Psychiatry 2020, 11, 757. [Google Scholar] [CrossRef] [PubMed]
- Tielke, A.; Martins, H.; Pelzl, M.A.; Maaser-Hecker, A.; David, F.S.; Reinbold, C.S.; Streit, F.; Sirignano, L.; Schwarz, M.; Vedder, H. Genetic and functional analyses implicate microRNA 499A in bipolar disorder development. Transl. Psychiatry 2022, 12, 437. [Google Scholar] [CrossRef] [PubMed]
- Gecys, D.; Dambrauskiene, K.; Simonyte, S.; Patamsyte, V.; Vilkeviciute, A.; Musneckis, A.; Butkute-Sliuoziene, K.; Lesauskaite, V.; Zemaitis, L.; Usaite, D. Circulating hsa-let-7e-5p and hsa-miR-125a-5p as Possible Biomarkers in the Diagnosis of Major Depression and Bipolar Disorders. Dis. Markers 2022, 2022, 3004338. [Google Scholar] [CrossRef] [PubMed]
- Davarinejad, O.; Foruzandeh, Z.; Mohammadi, P.; Golmohammadi, F.; Ghavi, D.; Alivand, M.; Chogan, M.; Zhaleh, H.; Rahmati, Y. Hsa-miR-19b-3p and Hsa-miR-23b-3P are the candidate biomarkers for bipolar disorder. Inform. Med. Unlocked 2022, 30, 100959. [Google Scholar] [CrossRef]
- Toste, C.C.; O’Donovan, M.C.; Bray, N.J. Mapping microRNA expression quantitative trait loci in the prenatal human brain implicates miR-1908-5p expression in bipolar disorder and other brain-related traits. Hum. Mol. Genet. 2023, 32, 2941–2949. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, M.; Brandl, E.J. Mood stabilizers: Valproate. In NeuroPsychopharmacotherapy; Springer: Cham, Switzerland, 2020; pp. 1–9. [Google Scholar]
- Mari, J.; Dieckmann, L.H.J.; Prates-Baldez, D.; Haddad, M.; da Silva, N.R.; Kapczinski, F. The efficacy of valproate in acute mania, bipolar depression and maintenance therapy for bipolar disorder: An overview of systematic reviews with meta-analyses. BMJ Open 2024, 14, e087999. [Google Scholar] [CrossRef] [PubMed]
- Haghshenas, S.; Putoux, A.; Reilly, J.; Levy, M.A.; Relator, R.; Ghosh, S.; Kerkhof, J.; McConkey, H.; Edery, P.; Lesca, G. Discovery of DNA methylation signature in the peripheral blood of individuals with history of antenatal exposure to valproic acid. Genet. Med. 2024, 26, 101226. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, A.; Dong, E.; Kundakovic, M.; Satta, R.; Grayson, D.R.; Costa, E. Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol. Sci. 2009, 30, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Dong, E.; Chen, Y.; Gavin, D.P.; Grayson, D.R.; Guidotti, A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics 2010, 5, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, S.; Yamamuro, Y. Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation. Neuroreport 2015, 26, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Backlund, L.; Wei, Y.B.; Martinsson, L.; Melas, P.A.; Liu, J.J.; Mu, N.; Östenson, C.-G.; Ekström, T.J.; Schalling, M.; Lavebratt, C. Mood stabilizers and the influence on global leukocyte DNA methylation in bipolar disorder. Mol. Neuropsychiatry 2015, 1, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Dzitoyeva, S.; Manev, H. Effect of valproic acid on mitochondrial epigenetics. Eur. J. Pharmacol. 2012, 690, 51–59. [Google Scholar] [CrossRef] [PubMed]
- D’addario, C.; Dell’Osso, B.; Palazzo, M.C.; Benatti, B.; Lietti, L.; Cattaneo, E.; Galimberti, D.; Fenoglio, C.; Cortini, F.; Scarpini, E. Selective DNA methylation of BDNF promoter in bipolar disorder: Differences among patients with BDI and BDII. Neuropsychopharmacology 2012, 37, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 2001, 276, 36734–36741. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.-T.; Wang, Z.; Hunsberger, J.G.; Chuang, D.-M. Therapeutic potential of mood stabilizers lithium and valproic acid: Beyond bipolar disorder. Pharmacol. Rev. 2013, 65, 105–142. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Cree, S.L.; Miller, A.L.; Pearson, J.F.; Kennedy, M.A. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms. Pharmacogenomics J. 2021, 21, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Borges, J.; Valvassori, S.S.; Varela, R.B.; Tonin, P.T.; Vieira, J.S.; Goncalves, C.L.; Streck, E.L.; Quevedo, J. Histone deacetylase inhibitors reverse manic-like behaviors and protect the rat brain from energetic metabolic alterations induced by ouabain. Pharmacol. Biochem. Behav. 2015, 128, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.Y.; Hsu, Y.C.; Liu, J.W.; Lee, D.C.; Chung, Y.F.; Chiu, I.M. The mood stabilizer valproate activates human FGF 1 gene promoter through inhibiting HDAC and GSK-3 activities. J. Neurochem. 2013, 126, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Pirooznia, M.; Guintivano, J.; Ly, M.; Ewald, E.; Tamashiro, K.; Gould, T.; Moran, T.; Potash, J. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene. Transl. Psychiatry 2015, 5, e600. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.P.; Rosen, C.; Kartan, S.; Guidotti, A.; Costa, E.; Grayson, D.R.; Chase, K. Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: Preliminary results from a clinical population. Schizophr. Res. 2006, 88, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Stertz, L.; Fries, G.R.; Aguiar, B.W.D.; Pfaffenseller, B.; Valvassori, S.S.; Gubert, C.; Ferreira, C.L.; Moretti, M.; Ceresér, K.M.; Kauer-Sant’Anna, M. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania. Braz. J. Psychiatry 2013, 36, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Valvassori, S.S.; Resende, W.R.; Varela, R.B.; Arent, C.O.; Gava, F.F.; Peterle, B.R.; Dal-Pont, G.C.; Carvalho, A.F.; Andersen, M.L.; Quevedo, J. The effects of histone deacetylase inhibition on the levels of cerebral cytokines in an animal model of mania induced by dextroamphetamine. Mol. Neurobiol. 2018, 55, 1430–1439. [Google Scholar] [CrossRef] [PubMed]
- Varela, R.B.; Resende, W.R.; Dal-Pont, G.C.; Gava, F.F.; Tye, S.J.; Quevedo, J.; Valvassori, S.S. HDAC inhibitors reverse mania-like behavior and modulate epigenetic regulatory enzymes in an animal model of mania induced by Ouabain. Pharmacol. Biochem. Behav. 2020, 193, 172917. [Google Scholar] [CrossRef] [PubMed]
- Logan, R.W.; Ozburn, A.R.; Arey, R.N.; Ketchesin, K.D.; Winquist, A.; Crain, A.; Tobe, B.T.; Becker-Krail, D.; Jarpe, M.B.; Xue, X. Valproate reverses mania-like behaviors in mice via preferential targeting of HDAC2. Mol. Psychiatry 2021, 26, 4066–4084. [Google Scholar] [CrossRef] [PubMed]
- Aluru, N.; Deak, K.L.; Jenny, M.J.; Hahn, M.E. Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish. Neurotoxicol. Teratol. 2013, 40, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luo, Y.; Liu, S.; Tan, L.; Wang, S.; Man, R. MicroRNA-134 plasma levels before and after treatment with valproic acid for epilepsy patients. Oncotarget 2017, 8, 72748. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Zhang, Y.; Pang, K.; Kang, H.; Park, H.; Lee, Y.; Lee, B.; Lee, H.-J.; Kim, W.-K.; Geum, D. Bipolar disorder associated microRNA, miR-1908-5p, regulates the expression of genes functioning in neuronal glutamatergic synapses. Exp. Neurobiol. 2016, 25, 296. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.T.; Bortolasci, C.C.; Spolding, B.; Panizzutti, B.; Liu, Z.S.; Kidnapillai, S.; Richardson, M.; Gray, L.; Smith, C.M.; Dean, O.M. Co-expression networks unveiled long non-coding RNAs as molecular targets of drugs used to treat bipolar disorder. Front. Pharmacol. 2022, 13, 873271. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, E.L. Lithium as a neuroprotective agent for bipolar disorder: An overview. Cell. Mol. Neurobiol. 2022, 42, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Papiol, S.; Schulze, T.G.; Heilbronner, U. Lithium response in bipolar disorder: Genetics, genomics, and beyond. Neurosci. Lett. 2022, 785, 136786. [Google Scholar] [CrossRef] [PubMed]
- Marie-Claire, C.; Lejeune, F.-X.; Mundwiller, E.; Ulveling, D.; Moszer, I.; Bellivier, F.; Etain, B. A DNA methylation signature discriminates between excellent and non-response to lithium in patients with bipolar disorder type 1. Sci. Rep. 2020, 10, 12239. [Google Scholar] [CrossRef] [PubMed]
- Zafrilla-López, M.; Acosta-Díez, M.; Mitjans, M.; Giménez-Palomo, A.; Saiz, P.A.; Barrot-Feixat, C.; Jiménez, E.; Papiol, S.; Ruiz, V.; Gavín, P. Lithium response in bipolar disorder: Epigenome-wide DNA methylation signatures and epigenetic aging. Eur. Neuropsychopharmacol. 2024, 85, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Bundo, M.; Sugawara, H.; Sunaga, F.; Ueda, J.; Tanaka, G.; Ishigooka, J.; Kasai, K.; Kato, T.; Iwamoto, K. Effect of mood stabilizers on DNA methylation in human neuroblastoma cells. Int. J. Neuropsychopharmacol. 2013, 16, 2285–2294. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, M.; Andrabi, M.M.; Kunjunni, R.; Sriwastva, M.K.; Bose, S.; Sagar, R.; Srivastava, A.K.; Mathur, R.; Jain, S.; Subbiah, V. Lithium acts to modulate abnormalities at behavioral, cellular, and molecular levels in sleep deprivation-induced mania-like behavior. Bipolar Disord. 2020, 22, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, C.; Huang, J.; Yuan, C.; Hong, W.; Chen, J.; Yu, S.; Xu, L.; Gao, K.; Fang, Y. MiRNA-206 and BDNF genes interacted in bipolar I disorder. J. Affect. Disord. 2014, 162, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, C.; Merkouri Papadima, E.; Melis, C.; Congiu, D.; Loizedda, A.; Orrù, N.; Calza, S.; Orrù, S.; Carcassi, C.; Severino, G. Whole genome expression analyses of miRNAs and mRNAs suggest the involvement of miR-320a and miR-155-3p and their targeted genes in lithium response in bipolar disorder. Int. J. Mol. Sci. 2019, 20, 6040. [Google Scholar] [CrossRef] [PubMed]
- Reinbold, C.S.; Forstner, A.J.; Hecker, J.; Fullerton, J.M.; Hoffmann, P.; Hou, L.; Heilbronner, U.; Degenhardt, F.; Adli, M.; Akiyama, K. Analysis of the influence of microRNAs in lithium response in bipolar disorder. Front. Psychiatry 2018, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Cattane, N.; Courtin, C.; Mombelli, E.; Maj, C.; Mora, C.; Etain, B.; Bellivier, F.; Marie-Claire, C.; Cattaneo, A. Transcriptomics and miRNomics data integration in lymphoblastoid cells highlights the key role of immune-related functions in lithium treatment response in Bipolar disorder. BMC Psychiatry 2022, 22, 665. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Vale, N. Understanding lamotrigine’s role in the CNS and possible future evolution. Int. J. Mol. Sci. 2023, 24, 6050. [Google Scholar] [CrossRef] [PubMed]
- Żełabowski, K.; Wojtysiak, K.; Ratka, Z.; Biedka, K.; Chłopaś-Konowałek, A. Lamotrigine Therapy: Relation Between Treatment of Bipolar Affective Disorder and Incidence of Stevens–Johnson Syndrome—A Narrative Review of the Existing Literature. J. Clin. Med. 2025, 14, 4103. [Google Scholar] [CrossRef] [PubMed]
- Kidnapillai, S.; Wade, B.; Bortolasci, C.C.; Panizzutti, B.; Spolding, B.; Connor, T.; Crowley, T.; Jamain, S.; Gray, L.; Leboyer, M. Drugs used to treat bipolar disorder act via microRNAs to regulate expression of genes involved in neurite outgrowth. J. Psychopharmacol. 2020, 34, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Fessler, E.B.; Chuang, D.-M. Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: Roles of chromatin remodelling and Bcl-2 induction. Int. J. Neuropsychopharmacol. 2013, 16, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Ignácio, Z.M.; Réus, G.Z.; Abelaira, H.M.; Maciel, A.L.; de Moura, A.B.; Matos, D.; Demo, J.P.; da Silva, J.B.; Gava, F.F.; Valvassori, S.S. Quetiapine treatment reverses depressive-like behavior and reduces DNA methyltransferase activity induced by maternal deprivation. Behav. Brain Res. 2017, 320, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, H.; Gan, J.; Wang, X.; Yu, G.; Li, T.; Liang, X.; Yu, B.; Xiao, L. Quetiapine modulates histone methylation status in oligodendroglia and rescues adolescent behavioral alterations of socially isolated mice. Front. Psychiatry 2020, 10, 984. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, H.; Bundo, M.; Asai, T.; Sunaga, F.; Ueda, J.; Ishigooka, J.; Kasai, K.; Kato, T.; Iwamoto, K. Effects of quetiapine on DNA methylation in neuroblastoma cells. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2015, 56, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Houtepen, L.C.; Van Bergen, A.H.; Vinkers, C.H.; Boks, M.P. DNA methylation signatures of mood stabilizers and antipsychotics in bipolar disorder. Epigenomics 2016, 8, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Rong, H.; Liu, T.B.; Yang, K.J.; Yang, H.C.; Wu, D.H.; Liao, C.P.; Hong, F.; Yang, H.Z.; Wan, F.; Ye, X.Y. MicroRNA-134 plasma levels before and after treatment for bipolar mania. J. Psychiatr. Res. 2011, 45, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.H.; Zainal, N.Z.; Kanagasundram, S.; Zain, S.M.; Mohamed, Z. Preliminary examination of microRNA expression profiling in bipolar disorder I patients during antipsychotic treatment. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Zhou, C.H.; Yu, H.; Wu, W.J.; Wang, Y.W.; Liu, L.; Hu, G.T.; Li, B.J.; Peng, Z.W.; Wang, H.N. Gut microbial signatures and differences in bipolar disorder and schizophrenia of emerging adulthood. CNS Neurosci. Ther. 2023, 29, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Kong, L.; Huang, H.; Pan, Y.; Zhang, D.; Jiang, J.; Shen, Y.; Xi, C.; Lai, J.; Ng, C.H. Gut microbiota–A potential contributor in the pathogenesis of bipolar disorder. Front. Neurosci. 2022, 16, 830748. [Google Scholar] [CrossRef] [PubMed]
- Gondalia, S.; Parkinson, L.; Stough, C.; Scholey, A. Gut microbiota and bipolar disorder: A review of mechanisms and potential targets for adjunctive therapy. Psychopharmacology 2019, 236, 1433–1443. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.J.; Bassis, C.M.; Hein, R.; Assari, S.; Flowers, S.A.; Kelly, M.B.; Young, V.B.; Ellingrod, V.E.; McInnis, M.G. The gut microbiome composition associates with bipolar disorder and illness severity. J. Psychiatr. Res. 2017, 87, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Bengesser, S.; Mörkl, S.; Painold, A.; Dalkner, N.; Birner, A.; Fellendorf, F.; Platzer, M.; Queissner, R.; Hamm, C.; Maget, A. Epigenetics of the molecular clock and bacterial diversity in bipolar disorder. Psychoneuroendocrinology 2019, 101, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.-Q.; Li, M.-J.; Liu, Y.; Zhou, Q.; Sun, W.-Q.; Chen, J.-Y.; Wang, D.; Li, F.; Chen, Z.-J.; Song, Y.-H. Regulation of hippocampal miRNA expression by intestinal flora in anxiety-like mice. Eur. J. Pharmacol. 2024, 984, 177016. [Google Scholar] [CrossRef] [PubMed]
- Behrouzi, A.; Ashrafian, F.; Mazaheri, H.; Lari, A.; Nouri, M.; Rad, F.R.; Tavassol, Z.H.; Siadat, S.D. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb. Pathog. 2020, 144, 104200. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Xiao, H.; Li, Y.; Dong, J.; Luo, D.; Li, H.; Feng, G.; Wang, H.; Fan, S. Total abdominal irradiation exposure impairs cognitive function involving miR-34a-5p/BDNF axis. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2017, 1863, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Shang, Y.; Dai, C.; Zhang, Q.; Hu, S.; Xie, J. Gut microbiota and its relation to inflammation in patients with bipolar depression: A cross-sectional study. Ann. Gen. Psychiatry 2023, 22, 21. [Google Scholar] [CrossRef] [PubMed]
- Painold, A.; Mörkl, S.; Kashofer, K.; Halwachs, B.; Dalkner, N.; Bengesser, S.; Birner, A.; Fellendorf, F.; Platzer, M.; Queissner, R. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord. 2019, 21, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Coello, K.; Hansen, T.H.; Sørensen, N.; Munkholm, K.; Kessing, L.V.; Pedersen, O.; Vinberg, M. Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain Behav. Immun. 2019, 75, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xiao, S.; Chen, G.; Zhong, S.; Zhong, H.; Sun, S.; Chen, P.; Tang, X.; Yang, H.; Jia, Y. Disruption of the gut microbiota-inflammation-brain axis in unmedicated bipolar disorder II depression. Transl. Psychiatry 2024, 14, 495. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Nohesara, S.; Mostafavi Abdolmaleky, H.; Pirani, A.; Pettinato, G.; Thiagalingam, S. The Obesity–Epigenetics–Microbiome Axis: Strategies for Therapeutic Intervention. Nutrients 2025, 17, 1564. [Google Scholar] [CrossRef] [PubMed]
- Ķimse, L.; Reinis, A.; Miķelsone-Jansone, L.; Gintere, S.; Krūmiņa, A. A narrative review of psychobiotics: Probiotics that influence the gut–brain axis. Medicina 2024, 60, 601. [Google Scholar] [CrossRef] [PubMed]
- Cheon, M.-J.; Lim, S.-M.; Lee, N.-K.; Paik, H.-D. Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from Korean fermented foods. Int. J. Mol. Sci. 2020, 21, 1227. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Humarán, L.G.; Salinas, E.; Ortiz, G.G.; Ramirez-Jirano, L.J.; Morales, J.A.; Bitzer-Quintero, O.K. From probiotics to psychobiotics: Live beneficial bacteria which act on the brain-gut axis. Nutrients 2019, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, J.; Ling, Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit. Rev. Food Sci. Nutr. 2022, 62, 7929–7959. [Google Scholar] [CrossRef] [PubMed]
- Obi-Azuike, C.; Ebiai, R.; Gibson, T.; Hernandez, A.; Khan, A.; Anugwom, G.; Urhi, A.; Prasad, S.; Souabni, S.A.; Oladunjoye, F. A systematic review on gut-brain axis aberrations in bipolar disorder and methods of balancing the gut microbiota. Brain Behav. 2023, 13, e3037. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, F.; Adamos, M.; Katsafanas, E.; Khushalani, S.; Origoni, A.; Savage, C.; Schweinfurth, L.; Stallings, C.; Sweeney, K.; Goga, J. Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: A randomized controlled trial. Bipolar Disord. 2018, 20, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Z.; Zhu, F.-Y.; Feng, E.-X.; Wu, F.; Fang, X.; Tu, H.-J.; Wei, J.; Wan, A.-L.; Chen, T.-T. Adjunct therapy with probiotics for depressive episodes of bipolar disorder type Ⅰ: A randomized placebo-controlled trial. J. Funct. Foods 2023, 105, 105553. [Google Scholar] [CrossRef]
- Reininghaus, E.Z.; Wetzlmair, L.-C.; Fellendorf, F.T.; Platzer, M.; Queissner, R.; Birner, A.; Pilz, R.; Hamm, C.; Maget, A.; Rieger, A. Probiotic treatment in individuals with euthymic bipolar disorder: A pilot-study on clinical changes and compliance. Neuropsychobiology 2020, 79, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Qiu, Y.; Li, S.; Teng, Z.; Xiang, H.; Chen, J.; Wu, X.; Cao, T.; Zhang, S.; Chen, Q. Effect of probiotic supplements on oxidative stress biomarkers in first-episode bipolar disorder patients: A randomized, placebo-controlled trial. Front. Pharmacol. 2022, 13, 829815. [Google Scholar] [CrossRef] [PubMed]
- Shahrbabaki, M.E.; Sabouri, S.; Sabahi, A.; Barfeh, D.; Divsalar, P.; Esmailzadeh, M.; Ahmadi, A. The efficacy of probiotics for treatment of bipolar disorder-type 1: A randomized, double-blind, placebo controlled trial. Iran. J. Psychiatry 2020, 15, 10. [Google Scholar] [CrossRef]
- Reininghaus, E.Z.; Wetzlmair, L.-C.; Fellendorf, F.T.; Platzer, M.; Queissner, R.; Birner, A.; Pilz, R.; Hamm, C.; Maget, A.; Koidl, C. The impact of probiotic supplements on cognitive parameters in euthymic individuals with bipolar disorder: A pilot study. Neuropsychobiology 2020, 79, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Borkent, J.; Ioannou, M.; Neijzen, D.; Haarman, B.C.; Sommer, I.E. Probiotic Formulation for Patients With Bipolar or Schizophrenia Spectrum Disorder: A Double-Blind, Randomized Placebo-Controlled Trial. Schizophr. Bull. 2024, sbae188. [Google Scholar] [CrossRef] [PubMed]
- Watt, R.; Parkin, K.; Martino, D. The potential effects of short-chain fatty acids on the epigenetic regulation of innate immune memory. Challenges 2020, 11, 25. [Google Scholar] [CrossRef]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y. The role of short chain fatty acids in inflammation and body health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef] [PubMed]
- Xie, A.; Ensink, E.; Li, P.; Gordevičius, J.; Marshall, L.L.; George, S.; Pospisilik, J.A.; Aho, V.T.; Houser, M.C.; Pereira, P.A. Bacterial butyrate in Parkinson’s disease is linked to epigenetic changes and depressive symptoms. Mov. Disord. 2022, 37, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.B.; Melas, P.A.; Wegener, G.; Mathé, A.A.; Lavebratt, C. Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. Int. J. Neuropsychopharmacol. 2015, 18, pyu032. [Google Scholar] [CrossRef] [PubMed]
- Resende, W.R.; Valvassori, S.S.; Reus, G.Z.; Varela, R.B.; Arent, C.O.; Ribeiro, K.F.; Bavaresco, D.V.; Andersen, M.L.; Zugno, A.I.; Quevedo, J. Effects of sodium butyrate in animal models of mania and depression: Implications as a new mood stabilizer. Behav. Pharmacol. 2013, 24, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Steckert, A.V.; Valvassori, S.S.; Varela, R.B.; Mina, F.; Resende, W.R.; Bavaresco, D.V.; Ornell, F.; Dal-Pizzol, F.; Quevedo, J. Effects of sodium butyrate on oxidative stress and behavioral changes induced by administration of D-AMPH. Neurochem. Int. 2013, 62, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Moretti, M.; Valvassori, S.S.; Varela, R.B.; Ferreira, C.L.; Rochi, N.; Benedet, J.; Scaini, G.; Kapczinski, F.; Streck, E.L.; Zugno, A.I. Behavioral and neurochemical effects of sodium butyrate in an animal model of mania. Behav. Pharmacol. 2011, 22, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Valvassori, S.S.; Dal-Pont, G.C.; Steckert, A.V.; Varela, R.B.; Lopes-Borges, J.; Mariot, E.; Resende, W.R.; Arent, C.O.; Carvalho, A.F.; Quevedo, J. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain. Psychiatry Res. 2016, 235, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Varela, R.B.; Valvassori, S.S.; Lopes-Borges, J.; Mariot, E.; Dal-Pont, G.C.; Amboni, R.T.; Bianchini, G.; Quevedo, J. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J. Psychiatr. Res. 2015, 61, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Riedinger, M.; Mesbah, R.; Koenders, M.; Henderickx, J.; Smits, W.; El Filali, E.; Geleijnse, J.; Van der Wee, N.; de Leeuw, M.; Giltay, E. A healthy dietary pattern is associated with microbiota diversity in recently diagnosed bipolar patients: The Bipolar Netherlands Cohort (BINCO) study. J. Affect. Disord. 2024, 355, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Brenda, J.Y.; Oz, R.S.; Sethi, S. Ketogenic diet as a metabolic therapy for bipolar disorder: Clinical developments. J. Affect. Disord. Rep. 2023, 11, 100457. [Google Scholar]
- Campbell, I.; Campbell, H. Mechanisms of insulin resistance, mitochondrial dysfunction and the action of the ketogenic diet in bipolar disorder. Focus on the PI3K/AKT/HIF1-a pathway. Med. Hypotheses 2020, 145, 110299. [Google Scholar] [CrossRef] [PubMed]
- Bough, K.J.; Rho, J.M. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 2007, 48, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Freyberg, Z.; Andreazza, A.C.; McClung, C.A.; Phillips, M.L. Linking mitochondrial dysfunction, neurotransmitter, neural network abnormalities and mania: Elucidating neurobiological mechanisms of the therapeutic effect of the ketogenic diet in Bipolar Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2025, 10, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Polito, R.; La Torre, M.E.; Moscatelli, F.; Cibelli, G.; Valenzano, A.; Panaro, M.A.; Monda, M.; Messina, A.; Monda, V.; Pisanelli, D. The ketogenic diet and neuroinflammation: The action of beta-hydroxybutyrate in a microglial cell line. Int. J. Mol. Sci. 2023, 24, 3102. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Wakeham, D.; Ketter, T.; Hooshmand, F.; Bjornstad, J.; Richards, B.; Westman, E.; Krauss, R.M.; Saslow, L. Ketogenic diet intervention on metabolic and psychiatric health in bipolar and schizophrenia: A pilot trial. Psychiatry Res. 2024, 335, 115866. [Google Scholar] [CrossRef] [PubMed]
- Nohesara, S.; Abdolmaleky, H.M.; Zhou, J.-R.; Thiagalingam, S. Microbiota-induced epigenetic alterations in depressive disorders are targets for nutritional and probiotic therapies. Genes 2023, 14, 2217. [Google Scholar] [CrossRef] [PubMed]
- Zikou, E.; Koliaki, C.; Makrilakis, K. The role of fecal microbiota transplantation (FMT) in the management of metabolic diseases in humans: A narrative review. Biomedicines 2024, 12, 1871. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, G.; Guarnaccia, A.; Fancello, G.; Agrillo, C.; Iannarelli, F.; Sanguinetti, M.; Masucci, L. Fecal microbiota transplantation and other gut microbiota manipulation strategies. Microorganisms 2022, 10, 2424. [Google Scholar] [CrossRef] [PubMed]
- Anand, N.; Gorantla, V.R.; Chidambaram, S.B. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders. Cells 2022, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Biazzo, M.; Deidda, G. Fecal microbiota transplantation as new therapeutic avenue for human diseases. J. Clin. Med. 2022, 11, 4119. [Google Scholar] [CrossRef] [PubMed]
- Bukowski-Thall, G.; Fellendorf, F.T.; Gorkiewicz, S.; Ip, K.C.K.; Schmidt, L.; Durdevic, M.; Habisch, H.; Mörkl, S.; Wagner-Skacel, J.; Bengesser, S.A. Fecal microbiota transplantation from individual with bipolar disorder and healthy control elicits distinct behaviors and metabolite profiles in mice. bioRxiv 2023. bioRxiv:2023.2011. 2016.566698. [Google Scholar]
- Hinton, R. A case report looking at the effects of faecal microbiota transplantation in a patient with bipolar disorder. Aust. N. Z. J. Psychiatry 2020, 54, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Flowers, S.A.; Evans, S.J.; Ward, K.M.; McInnis, M.G.; Ellingrod, V.L. Interaction between atypical antipsychotics and the gut microbiome in a bipolar disease cohort. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.A.; O’Croinin, B.R.; Dennett, L.; Winship, I.R.; Greenshaw, A. Pharmaco-psychiatry and gut microbiome: A systematic review of effects of psychotropic drugs for bipolar disorder. Microbiology 2025, 171, 001568. [Google Scholar] [CrossRef] [PubMed]
- Kamath, S.; Hunter, A.; Collins, K.; Wignall, A.; Joyce, P. The atypical antipsychotics lurasidone and olanzapine exert contrasting effects on the gut microbiome and metabolic function of rats. Br. J. Pharmacol. 2024, 181, 4531–4545. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lai, J.; Lu, H.; Ng, C.; Huang, T.; Zhang, H.; Ding, K.; Wang, Z.; Jiang, J.; Hu, J. Gut microbiota in bipolar depression and its relationship to brain function: An advanced exploration. Front. Psychiatry 2019, 10, 784. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.; Kamath, S.; Meola, T.R.; Wignall, A.; Joyce, P. The Oral Bioavailability of Lurasidone is Impacted by Changes to the Gut Microbiome: Implications for Antipsychotic Therapy. bioRxiv 2024. bioRxiv:2024.2007. 2017.604016. [Google Scholar]
- Pochiero, I.; Calisti, F.; Comandini, A.; Del Vecchio, A.; Costamagna, I.; Rosignoli, M.T.; Cattaneo, A.; Nunna, S.; Peduto, I.; Heiman, F. Impact of lurasidone and other antipsychotics on body weight: Real-world, retrospective, comparative study of 15,323 adults with schizophrenia. Int. J. Gen. Med. 2021, 14, 4081–4094. [Google Scholar] [CrossRef] [PubMed]
- Bahr, S.; Tyler, B.; Wooldridge, N.; Butcher, B.; Burns, T.; Teesch, L.; Oltman, C.; Azcarate-Peril, M.; Kirby, J.; Calarge, C. Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Transl. Psychiatry 2015, 5, e652. [Google Scholar] [CrossRef] [PubMed]
Country of Studies/Number of Participants | Sample | Outcomes | Ref. |
---|---|---|---|
USA/115 | Post-mortem brains (dorsolateral frontal cortex) | Hypomethylation of MB-COMT promoter and increased gene expression in BD, particularly in the left brain vs. controls | [35] |
USA/35 patients with schizophrenia, 35 BD vs. 35 matched controls | Post-mortem brains (dorsolateral frontal cortex) | Hypermethylation of HTR2A promoter at and around the −1438A/G, but hypomethylation of its promoter at and around T102C polymorphic sites in BD vs. controls, which altered HTR2A expression | [36] |
Canada/34 BD and 35 matched controls | Post-mortem brain, sperm, and blood samples | DNA hypomethylation at an extended HCG9 region (related to major histocompatibility complex and immune function) in BD subjects vs. controls | [37] |
Italy/61 BD I and 50 BD II | Peripheral blood mononuclear cells | Greater amounts of BDNF promoter methylation in BD II vs. BD I, which, in general, decrease BDNF expression | [38] |
Canada/16 controls, 14 BD with response to lithium, 16 unaffected relatives of BD subjects | Transformed lymphoblasts from subjects with BD | Reduced DNAm in BD patients vs. controls, which, in general, is linked to increased gene expression | [39] |
USA and Iran/35 postmortem brains from BD and 35 from controls | Post-mortem brain samples | DTNBP1 promoter DNA hypermethylation decreasing gene expression in psychotic BD patients; DTNBP1 hypoactivity is linked to psychosis | [40] |
USA/ 12 BD and 10 controls | Post-mortem prefrontal cortex | Lower KCNQ3 exon 11 DNAm and gene expression in BD vs. controls | [41] |
UK/168 controls and 459 BD | Blood samples | DNA hypomethylation of FAM63B (a gene strongly linked to SCZ) in BD vs. controls | [42] |
UK/ 40 BD subjects and 38 healthy controls | Blood samples | Complete methylation of four CpG islands (CGIs) across CACNA1C, a top gene linked to BD; hypermethylation of five CpG sites at CGI 3 island in intron 3 in BD vs. controls | [43] |
Italy/99 BD 42 and controls | Peripheral blood mononuclear cells | Promoter DNA hypermethylation and reduced PDYN expression in BD IBD II vs. controls | [44] |
USA/28 BD and 13 controls | Skeletal muscle samples | Higher global methylation of 5-mC and 5-fC in BD vs. controls | [45] |
China/99 BD (N) and 92 controls | Blood samples | Hypermethylation of the AluY A1 and A2 CpG sites and hypo-methylation of A3 CpG site in BD | [46] |
USA/166 BD and 162 controls | DNA samples from the Mayo Clinic Bipolar Disorder Biobank | Hypermethylation of CpG site created by Val = G allele of the Val66Met variance of BDNF, which decreases gene expression in BD associated with earlier disease onset | [47] |
Japan/34 BD and 35 controls | Post-mortem brains (prefrontal cortex) | Hypermethylation of NTRK2 (encoding a BDNF receptor) and GRIN1 (encoding a subunit of the NMDA receptor) in neuronal cells of subjects with BD | [48] |
USA/84 BD with and 79 without a history of suicide attempt vs. 76 controls | Blood samples | Six differentially methylated CpG sites and seven differentially methylated regions (DMRs) in BD with vs. without suicide attempt | [49] |
USA/128 BD and 141 controls | Blood samples | Hypermethylation cg19215110 and cg23953820 sites but hypomethylation of cg14279856 and cg03270204 sites of DDR1 (encoding a tyrosine kinase receptor involved in neuronal migration) in BD | [50] |
Country of Study/Number of Participants | Sample Source | Outcomes | Ref. |
---|---|---|---|
Italy/15 BD and 9 controls | Peripheral blood samples | Elevated expression of miR-150-5p, miR-25-3p, miR-451a, and miR-144-3p involved in metabolic processes but reduced expression of miR-363-3p, miR-4454 + miR-7975, miR-873-3p, miR-548al, miR-598-3p, miR-4443, miR-551a, and miR-6721-5p involved in neurogenesis and neurodevelopment in BD | [64] |
Turkey/19 manic, 39 euthymic, and 51 controls | Blood samples | Up-regulation of miR-125b-5p, miR-106b-5p, miR-9-5p, miR-107, miR-29a-3p, miR-106a-5p, and miR-125a-3p in manic BD vs. controls and their association with manic episodes | [65] |
Turkey/69 BD including 15 depressed, 27 manic, 27 euthymic and 41 controls | Plasma-derived exosomal miRNA | Reduced levels of miR-484, miR-652-3p, miR-142-3p, and an increased level of miR-185-5p in BD vs. controls, which are involved in the regulation of PI3K/Akt signaling, fatty acid biosynthesis/metabolism, extracellular matrix and adhesion pathways | [66] |
Taiwan/79 BD IBD II and 95 controls | Blood samples | Up-regulation of miR-7-5p, miR-23b-3p, miR-142-3p, miR-221-5p, and miR-370-3p in BD IBD II vs. controls and their potential role as useful tools for the diagnosis of BD IBD II. | [67] |
China/27 BD and 32 unipolar depressive disorder | Blood samples | Higher levels of miR-19b-3p in BD vs. unipolar depressive disorder that is involved in the pathway of inflammatory dysregulation associated with experiencing early childhood trauma | [68] |
Germany/960 BD and 960 controls | Blood samples | Association between miR-499a dysregulation and BD progression and probable BD susceptibility | [69] |
Lithuania/26 BD and 74 controls | Blood samples | Overexpression of let-7e-5p and miR-125a-5p in BD subjects vs. controls and their potential role as peripheral biomarkers for BD | [70] |
Iran/240 controls and 260 BD | Blood samples | Increased expression of miR-23b-3p and reduced expression of miR-19b-3p in BD vs. controls and their potential role as biomarkers for BD | [71] |
United Kingdom/112 independent samples (51 female, 61 male) | Human fetal brain tissue | Correlation between the elevated prenatal expression of miR-1908-5p and susceptibility to BD | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nohesara, S.; Mostafavi Abdolmaleky, H.; Pirani, A.; Thiagalingam, S. Epigenetics and Gut Microbiota in the Pathogenesis and Treatment of Bipolar Disorder (BD). Cells 2025, 14, 1104. https://doi.org/10.3390/cells14141104
Nohesara S, Mostafavi Abdolmaleky H, Pirani A, Thiagalingam S. Epigenetics and Gut Microbiota in the Pathogenesis and Treatment of Bipolar Disorder (BD). Cells. 2025; 14(14):1104. https://doi.org/10.3390/cells14141104
Chicago/Turabian StyleNohesara, Shabnam, Hamid Mostafavi Abdolmaleky, Ahmad Pirani, and Sam Thiagalingam. 2025. "Epigenetics and Gut Microbiota in the Pathogenesis and Treatment of Bipolar Disorder (BD)" Cells 14, no. 14: 1104. https://doi.org/10.3390/cells14141104
APA StyleNohesara, S., Mostafavi Abdolmaleky, H., Pirani, A., & Thiagalingam, S. (2025). Epigenetics and Gut Microbiota in the Pathogenesis and Treatment of Bipolar Disorder (BD). Cells, 14(14), 1104. https://doi.org/10.3390/cells14141104