Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = epidermal extracellular matrix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6486 KB  
Article
Regenerative Skin Remodeling by a Dual Hyaluronic Acid Hybrid Complex in Multimodal Preclinical Models
by Hyojin Roh, Ngoc Ha Nguyen, Jinyoung Jung, Jewan Kaiser Hwang, Young In Lee, Inhee Jung and Ju Hee Lee
Int. J. Mol. Sci. 2026, 27(2), 1027; https://doi.org/10.3390/ijms27021027 - 20 Jan 2026
Abstract
Skin aging arises from extracellular matrix degradation, inflammation, and pigmentation dysregulation, yet most existing rejuvenation strategies target only a subset of these processes. This study investigated the multimodal rejuvenation potential of a dual hyaluronic acid compound (DHC), composed of low- and high-molecular-weight HA [...] Read more.
Skin aging arises from extracellular matrix degradation, inflammation, and pigmentation dysregulation, yet most existing rejuvenation strategies target only a subset of these processes. This study investigated the multimodal rejuvenation potential of a dual hyaluronic acid compound (DHC), composed of low- and high-molecular-weight HA integrated within a minimally cross-linked hybrid complex. In vitro assays using dermal fibroblasts, melanoma cells, and macrophages demonstrated that DHC enhanced fibroblast viability, collagen I/III and elastin production, antioxidant enzyme activity, and wound-healing capacity while reducing senescence markers. DHC markedly suppressed melanogenesis by downregulating the gene expression of MITF, TYR, and TRP1, and exerted strong anti-inflammatory activity by decreasing nitric oxide (NO) production and key cytokines, including TNF-α, IL-1β, IL-6, and CCL1. In a UVB-induced photoaging rat model, DHC reduced wrinkle depth, epidermal thickening, and melanin accumulation while improving elasticity, collagen density, hydration, and barrier integrity. Across these outcomes, DHC demonstrated biological effects that were comparable to, and in selected endpoints greater than, those of commonly used biostimulators and HA fillers in preclinical models. Collectively, these laboratory findings suggest that DHC exhibits broad preclinical bioactivity through combined biostimulatory, antioxidant, anti-inflammatory, and pigmentation-modulating effects. Further mechanistic and clinical studies are required to determine its translational relevance. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

19 pages, 32706 KB  
Article
Cordyceps militaris Enhances Wound Repair Through Regulation of HIF-1α, TGF-β1, and SIRT1/Nrf2/HO-1 Signaling in Diabetic Skin
by Tzu-Kai Lin, Chia-Lun Tsai, Bruce Chi-Kang Tsai, Chia-Hua Kuo, Tsung-Jung Ho, Dennis Jine-Yuan Hsieh, Wei-Wen Kuo, Chih-Yang Huang and Pei-Ying Lee
Life 2026, 16(1), 117; https://doi.org/10.3390/life16010117 - 13 Jan 2026
Viewed by 272
Abstract
Chronic diabetic wounds are characterized by persistent inflammation, impaired angiogenesis, oxidative stress, and defective tissue remodeling, leading to delayed healing. Cordyceps militaris, a medicinal fungus with known anti-inflammatory and antioxidant properties, has shown therapeutic potential in metabolic disorders; however, its role in [...] Read more.
Chronic diabetic wounds are characterized by persistent inflammation, impaired angiogenesis, oxidative stress, and defective tissue remodeling, leading to delayed healing. Cordyceps militaris, a medicinal fungus with known anti-inflammatory and antioxidant properties, has shown therapeutic potential in metabolic disorders; however, its role in diabetic wound repair remains unclear. In this study, we evaluated the wound-healing effects of an aqueous extract of C. militaris using in vitro keratinocyte models and a streptozotocin-induced diabetic mouse model. C. militaris treatment significantly accelerated wound closure, improved epidermal regeneration, and enhanced skin barrier integrity. Mechanistically, C. militaris restored HIF-1α and TGF-β1 expression, promoted cell proliferation and fibroblast activation, and increased the expression of matrix metalloproteinases MMP-1 and MMP-2, indicating enhanced extracellular matrix remodeling. In parallel, excessive inflammatory responses were attenuated, as evidenced by reduced IL-6 and TNF-α levels, along with activation of SIRT1/Nrf2/HO-1 antioxidant signaling pathways. Collectively, these findings demonstrate that C. militaris promotes a balanced wound-healing microenvironment and represents a promising natural therapeutic candidate for the treatment of diabetic wounds. Full article
(This article belongs to the Special Issue The Role of Natural Products in Disease Treatment)
Show Figures

Figure 1

15 pages, 1912 KB  
Article
Dermofunctional Vehicle Downregulates LL-37 and MMPs and Upregulates IGFBP-3
by Hudson Polonini, Fabiana Regina da Silva Olímpio and Carlos Rocha Oliveira
Curr. Issues Mol. Biol. 2026, 48(1), 54; https://doi.org/10.3390/cimb48010054 - 31 Dec 2025
Viewed by 265
Abstract
Background: Functional dermatological bases can contribute more than just delivery—they may actively modulate cutaneous homeostasis. Cleoderm™ is a dermofunctional base containing a patented Cleome gynandra extract, palmitoyl tripeptide-8, bisabolol, hyaluronic acid, and functional oils, rationally designed to provide anti-inflammatory, antioxidant, and barrier-supportive properties. [...] Read more.
Background: Functional dermatological bases can contribute more than just delivery—they may actively modulate cutaneous homeostasis. Cleoderm™ is a dermofunctional base containing a patented Cleome gynandra extract, palmitoyl tripeptide-8, bisabolol, hyaluronic acid, and functional oils, rationally designed to provide anti-inflammatory, antioxidant, and barrier-supportive properties. Objective: To determine whether Cleoderm™ exhibits intrinsic immunomodulatory and matrix-protective effects in a physiologically relevant skin co-culture and to clarify the biomarkers most impacted, with translational relevance to acne and rosacea. Methods: Human keratinocytes and fibroblasts were maintained in a transwell co-culture. Non-cytotoxic concentrations of Cleoderm™ (1.0% and 10.0%, v/v) were tested with or without LPS stimulation (1 μg/mL). Viability was assessed by MTT and Trypan Blue. Cytokines (IL-6, TNF-α, IL-10, TGF-β) and MMPs (MMP-1, -3, -13) were quantified by ELISA and RT-qPCR. LL-37, IGFBP-3, and TGF-β protein levels were evaluated by Western blot. Results: Cleoderm™ showed no cytotoxicity up to 10% (v/v). It significantly reduced pro-inflammatory mediators (IL-6, TNF-α) and matrix-degrading enzymes (MMP-1, MMP-3, MMP-13) while increasing anti-inflammatory/reparative cytokines (IL-10, TGF-β). A dual, biomarker-level modulation was observed: (i) LL-37 was reduced, with a particularly pronounced decrease in secreted levels; and (ii) IGFBP-3 was markedly upregulated, indicating potential attenuation of the IGF-1 axis relevant to sebaceous lipogenesis. Collectively, these effects indicate immunoregulatory and matrix-protective activity consistent with improved cutaneous homeostasis. Conclusion: In a dermo-epidermally relevant in vitro model, Cleoderm™ functions as an active dermofunctional base, not merely a vehicle simultaneously tempering inflammatory signaling, preserving extracellular matrix integrity, and modulating mechanistic nodes (LL-37 and IGFBP-3) linked to rosacea and acne. These findings is consistent with the use of Cleoderm™ as a biologically supportive base for personalized compounding and justify controlled clinical evaluation. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 2149 KB  
Article
Anti-Aging Efficacy of Low-Molecular-Weight Polydeoxyribonucleotide Derived from Paeonia lactiflora
by Sun-Uk Bak, Min Sook Jung, Da Jung Kim, Hee Un Jin, Seung Youn Lee and Chae Eun An
Int. J. Mol. Sci. 2026, 27(1), 220; https://doi.org/10.3390/ijms27010220 - 24 Dec 2025
Cited by 1 | Viewed by 643
Abstract
Polydeoxyribonucleotide (PDRN), a DNA fragment mixture, exerts biological effects via adenosine A2A receptor and salvage pathway activation. Here, Paeonia lactiflora-derived PDRN (Peony PDRN) is proposed as a plant-based alternative to salmon-derived PDRN. While P. lactiflora is known for its medicinal properties, the [...] Read more.
Polydeoxyribonucleotide (PDRN), a DNA fragment mixture, exerts biological effects via adenosine A2A receptor and salvage pathway activation. Here, Paeonia lactiflora-derived PDRN (Peony PDRN) is proposed as a plant-based alternative to salmon-derived PDRN. While P. lactiflora is known for its medicinal properties, the biological functions of Peony PDRN have not been characterized. To validate and optimize its efficacy, we systematically compared the biological activities of three molecular weight groups of Peony PDRN (high, medium, and low) using in vitro assays and clinical studies. The low-molecular-weight fraction (Low-Peony PDRN) markedly enhanced skin cell proliferation and migration, upregulated extracellular matrix-related genes (COL1A1, COL5A1, ELN, and FBN1), and promoted keratinocyte differentiation and epidermal barrier formation by increasing COL7A1, IVL, FLG, and OCLN expression. It also reduced reactive oxygen species levels and suppressed key inflammatory mediators. Clinically, topical application of Low-Peony PDRN for 2 weeks markedly reduced transepidermal water loss in a sodium lauryl sulfate-induced skin damage model, enhancing barrier recovery (n = 10). Periorbital skin elasticity improved after 4 weeks of treatment (Approval No. Intertek IRB-202505-HR(1)-0001, 20 June 2025). These results indicate that Low-Peony PDRN is a promising plant-derived biomaterial of pharmacological and cosmetic significance, with potential to address skin aging. Full article
Show Figures

Figure 1

29 pages, 25356 KB  
Article
Improving the Culture of Human Skin Explants for Use in Preclinical Testing of Wound Healing Treatments
by Xiao Guo, Martina Hüging, Ursula Mirastschijski, Ulrike Blume-Peytavi, Annika Vogt, Christoph Schaudinn and Fiorenza Rancan
Pharmaceutics 2025, 17(12), 1611; https://doi.org/10.3390/pharmaceutics17121611 - 15 Dec 2025
Viewed by 563
Abstract
Background: Cultured human skin explants provide preclinical models to investigate drug delivery and the efficacy of topical treatments for wound healing. However, different culture conditions may affect cell viability, proliferation, and even wound healing. Since animal-derived supplements can influence the investigation of human [...] Read more.
Background: Cultured human skin explants provide preclinical models to investigate drug delivery and the efficacy of topical treatments for wound healing. However, different culture conditions may affect cell viability, proliferation, and even wound healing. Since animal-derived supplements can influence the investigation of human physiological responses, this study evaluated the effects of non-animal supplements on the ex vivo wound healing process to improve the use of this model for preclinical drug efficacy tests. Methods: In in vitro scratch assays using HaCaT cells and fibroblasts, for media supplemented with normal human serum (NHS), oxygen carriers (OCs) had a positive impact on cell migration, supporting the further evaluation in ex vivo skin culture models. Human skin explants with standardized superficial wounds were cultured in four supplemented media: (i) Dulbecco’s Modified Eagle Medium High Glucose (DMEM) with fetal calf serum (FCS), (ii) DMEM with NHS and OC, (iii) CnT-PrimeTM with NHS and OC, and (iv) EpiLife™ with NHS and an OC. Results: During the 12-day culture, we observed re-epithelialization in all groups with the exception of EpiLife + NHS + OC (with no Ca++ supplement). For these samples, starting from day 6, we noticed a loosening of the dermal–epidermal junction and disruption of the upper epidermal layer. Furthermore, an immunohistochemical analysis of extracellular matrix components and remodeling factors, including type I and III collagen, transforming growth factor-β2, and matrix metalloproteinase-9, provided insights into tissue repair dynamics. Conclusions: NHS plus OC is comparable to FCS supplementation and represents a more physiological and ethical alternative. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

17 pages, 3462 KB  
Article
β-Nicotinamide Mononucleotide Enhances Skin Barrier Function and Attenuates UV-B-Induced Photoaging in Mice
by Sung Jin Kim, Sullim Lee, Yea Jung Choi, Minseo Kang, Junghwan Lee, Gwi Seo Hwang, Seok-Seon Roh, Mu Hyun Jin, Sangki Park, Minji Park, Ho Song Cho and Ki Sung Kang
Antioxidants 2025, 14(12), 1424; https://doi.org/10.3390/antiox14121424 - 27 Nov 2025
Viewed by 2490
Abstract
Ultraviolet B (UV-B) radiation significantly contributes to skin photoaging, which is characterized by epidermal thickening, collagen degradation, wrinkle formation, barrier dysfunction, and oxidative stress. Nicotinamide mononucleotide (NMN), a key precursor of nicotinamide adenine dinucleotide, regulates cellular energy metabolism and antioxidant defense and demonstrates [...] Read more.
Ultraviolet B (UV-B) radiation significantly contributes to skin photoaging, which is characterized by epidermal thickening, collagen degradation, wrinkle formation, barrier dysfunction, and oxidative stress. Nicotinamide mononucleotide (NMN), a key precursor of nicotinamide adenine dinucleotide, regulates cellular energy metabolism and antioxidant defense and demonstrates anti-aging effects in animal models. Here, we investigated the protective effects of oral NMN supplementation against UV-B-induced photoaging in SKH-1 hairless mice. Over a 10-week experimental period, oral NMN administration significantly alleviated epidermal hypertrophy, reduced wrinkle formation and skin surface roughness, improved hydration and elasticity, and restored transepidermal water loss to near-normal levels. Histological analyses revealed marked preservation of collagen fiber density and attenuation of dermal matrix degradation. Furthermore, NMN supplementation inhibited the phosphorylation of MAPK signaling components (ERK, JNK, and p38), suppressed pro-inflammatory cytokine (TNF-α and IL-6) and matrix-degrading enzyme (MMP-1) expression, and restored hyaluronan synthase (HAS-1 and HAS-2) expression. Additionally, NMN enhanced the systemic antioxidant defense, as indicated by the restored superoxide dismutase activity. Thus, NMN has multi-layered protective effects against UV-B–induced skin aging by modulating oxidative stress, inflammatory signaling, extracellular matrix remodeling, and hyaluronic acid metabolism. Full article
(This article belongs to the Special Issue Antioxidants and Multifunction Photoprotection—2nd Edition)
Show Figures

Figure 1

19 pages, 7348 KB  
Article
A Novel Approach to Pattern Dermal Papilla Spheroids in Dermal–Epidermal Composites Using Non-Adherent Microwell Arrays
by E. Cate Wisdom, Donald C. Aduba, Owen Lewis, Sandhya Xavier, Ernest O. N. Phillips, Kristin H. Gilchrist, Ira M. Herman, Vincent B. Ho, Thomas N. Darling and George J. Klarmann
Bioengineering 2025, 12(12), 1281; https://doi.org/10.3390/bioengineering12121281 - 21 Nov 2025
Viewed by 931
Abstract
Bioengineered dermal–epidermal composites (DECs) have demonstrated promise initiating skin regeneration and hair follicle neogenesis after injury. DECs in our work comprise a collagen matrix embedded with human dermal papilla cells (HDPCs) overlaid with human keratinocytes. HDPCs, as three-dimensional spheroids, enhance hair follicle formation, [...] Read more.
Bioengineered dermal–epidermal composites (DECs) have demonstrated promise initiating skin regeneration and hair follicle neogenesis after injury. DECs in our work comprise a collagen matrix embedded with human dermal papilla cells (HDPCs) overlaid with human keratinocytes. HDPCs, as three-dimensional spheroids, enhance hair follicle formation, working in tandem with keratinocytes. Herein, 3D printed stamped PDMS microwell arrays were used as a strategy for spatially patterning dermal papilla spheroids in the dermal components of the DEC. DECs were transferred to cell culture media for 5 days followed by air–liquid interface culture for 2 days. Spheroid diameter, cell viability, and qPCR gene expression analyses were conducted. DECs were surgically grafted on immunocompromised mice, and healing was followed for 10 weeks. HDPCs cultured in the microwell arrays formed patterned viable spheroids and successfully transferred to the collagen dermal matrix. RNA analysis using qPCR showed upregulation of key HDPC markers (VCAN and BMP6) in DC microwell patterned HDPC spheroids compared to monolayers. This work represents a novel 3D printing strategy optimizing designing patterned HDPC spheroids in the extracellular matrix to regenerate functional human skin instead of scar tissue after injury. Full article
(This article belongs to the Special Issue Advances and Innovations in Wound Repair and Regeneration)
Show Figures

Graphical abstract

24 pages, 8509 KB  
Article
Ganoderma lucidum Glycoprotein Microemulsion: Improved Transdermal Delivery and Protective Efficacy in UV-Induced Cell and Animal Models
by Ye Jin, Xushuang Jia, Dongmei Fan, Xuyan Zhou, Xiao Tan, Da Liu, Ning Cui and Jiawei Wen
Molecules 2025, 30(22), 4489; https://doi.org/10.3390/molecules30224489 - 20 Nov 2025
Viewed by 894
Abstract
Background: Photoaging, induced by chronic ultraviolet (UV) exposure, is a multifactorial skin disorder characterized by oxidative stress, inflammation, and extracellular matrix degradation. Ganoderma lucidum glycoprotein (Gl-Gp) exhibits potent antioxidant activity, but its topical application is limited by poor transdermal permeability. This study aimed [...] Read more.
Background: Photoaging, induced by chronic ultraviolet (UV) exposure, is a multifactorial skin disorder characterized by oxidative stress, inflammation, and extracellular matrix degradation. Ganoderma lucidum glycoprotein (Gl-Gp) exhibits potent antioxidant activity, but its topical application is limited by poor transdermal permeability. This study aimed to develop a microemulsion-based system to enhance Gl-Gp delivery and evaluate its anti-photoaging efficacy. Methods: Gl-Gp was extracted and purified from G. lucidum fruiting bodies and structurally characterized for O-glycosidic linkages and O-GlcNAc modifications. Fourier-transform infrared (FT-IR) spectroscopy further confirmed the polysaccharide–protein complex structure of Gl-Gp. A water-in-oil Gl-Gp microemulsion was prepared and assessed in vitro for antioxidant and cytoprotective effects in HaCaT cells, including reactive oxygen species (ROS) reduction, mitochondrial membrane potential stabilization, and apoptosis inhibition. Transdermal penetration was compared with aqueous Gl-Gp. In vivo efficacy was evaluated in a UV-induced rat model by measuring skin morphology, histology, oxidative stress markers, matrix metalloproteinases, and proinflammatory cytokines. Results: The microemulsion enhanced Gl-Gp stability and transdermal delivery. In vitro, it reduced ROS, preserved mitochondrial function, and decreased apoptosis in HaCaT cells. In rats, topical application attenuated erythema and epidermal hyperplasia, promoted dermal restoration, increased SOD and GSH-Px activities, and decreased MDA, hydroxyproline, MMPs, and inflammatory mediators. Conclusions: The Gl-Gp microemulsion exerts antioxidant, anti-inflammatory, and anti-collagen-degrading effects, representing a promising strategy for transdermal delivery and topical prevention of photoaging. Full article
Show Figures

Figure 1

25 pages, 9948 KB  
Article
A Marine-Derived Sterol, Ergosterol, Mitigates UVB-Induced Skin Photodamage via Dual Inhibition of NF-κB and MAPK Signaling
by Junming Zhang, Jiangming Zhong, Yi Li, Qi Zhou, Zhiyun Du, Li Lin, Peng Shu, Ling Jiang and Wei Zhou
Mar. Drugs 2025, 23(11), 445; https://doi.org/10.3390/md23110445 - 19 Nov 2025
Cited by 1 | Viewed by 1111
Abstract
Background: Ultraviolet B (UVB) radiation induces oxidative stress, inflammation, and collagen degradation in skin, leading to photodamage. Ergosterol (ERG)—a sterol widely distributed in fungi and algae, including numerous marine species—possesses antioxidant and anti-inflammatory activities, but its photoprotective mechanisms remain unclear. Methods: Using integrated [...] Read more.
Background: Ultraviolet B (UVB) radiation induces oxidative stress, inflammation, and collagen degradation in skin, leading to photodamage. Ergosterol (ERG)—a sterol widely distributed in fungi and algae, including numerous marine species—possesses antioxidant and anti-inflammatory activities, but its photoprotective mechanisms remain unclear. Methods: Using integrated in vitro (UVB-irradiated human keratinocytes) and in vivo (topical ERG in a murine UVB model) approaches, combined with transcriptomic and network pharmacology analyses, we evaluated ERG’s effects on oxidative stress, inflammation, and extracellular matrix integrity. Results: ERG treatment preserved keratinocyte viability, reduced reactive oxygen species, and suppressed pro-inflammatory mediators after UVB exposure. In mice, topical ERG significantly attenuated epidermal hyperplasia, maintained tight-junction integrity, and inhibited collagen matrix degradation. Mechanistically, ERG exerted dual inhibition of the nuclear factor kappa B (NF-κB) pathway, which mediates inflammation, and the mitogen-activated protein kinase (MAPK) pathway, which regulates collagen degradation. Conclusions: These findings identify ERG as a marine-derived sterol with potent photoprotective activity that simultaneously targets oxidative stress, inflammation, and extracellular matrix damage, highlighting its promise as a natural compound for dermatological applications and aligning with ongoing efforts to explore marine-derived agents against skin oxidative stress and inflammation. Full article
Show Figures

Figure 1

22 pages, 3810 KB  
Article
Spheroid-Based 3D Models to Decode Cell Function and Matrix Effectors in Breast Cancer
by Sylvia Mangani, Christos Koutsakis, Nikolaos E. Koletsis, Zoi Piperigkou, Marco Franchi, Martin Götte and Nikos K. Karamanos
Cancers 2025, 17(21), 3512; https://doi.org/10.3390/cancers17213512 - 31 Oct 2025
Viewed by 1638
Abstract
Background/Objectives: Conventional two-dimensional (2D) cell cultures offer valuable insights into cancer cell biology; however, they lack in replicating the complex interactions present in solid tumors. Therefore, research has shifted towards the development of three-dimensional (3D) cell models that recapitulate the dynamic cell–cell [...] Read more.
Background/Objectives: Conventional two-dimensional (2D) cell cultures offer valuable insights into cancer cell biology; however, they lack in replicating the complex interactions present in solid tumors. Therefore, research has shifted towards the development of three-dimensional (3D) cell models that recapitulate the dynamic cell–cell and cell–matrix interactions within the complex tumor microenvironment (TME), better resembling tumor growth and initial stages of dissemination. Extracellular matrix, a key component within the TME, regulates cell morphology and signaling, influencing key functional properties. Breast cancer remains the most frequently diagnosed cancer type in women and a leading cause of cancer-related mortality. Methods: The aim of the present study was the development of breast cancer cell-derived spheroids, utilizing two breast cancer cell lines with differential estrogen receptor (ER) expression profile, and their characterization in terms of morphology, functional properties, and expression of epithelial-to-mesenchymal transition (EMT) markers and matrix signatures implicated in breast cancer progression. To this end, the ERα-positive MCF-7, and ERβ-positive MDA-MB-231 breast cancer cell lines were utilized. Results: Our findings revealed notable phenotypic transitions between 2D and 3D cultures, which were further supported by differential EMT markers expression. Moreover, spheroids exhibited distinct expression profiles of key receptors [ERs, epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor (IGF1R)] and matrix molecules (syndecans, and matrix metalloproteinases), accompanied by altered functional cell properties. Bioinformatic tools further emphasized the interplay between the studied matrix regulators and their prognostic relevance in breast cancer. Conclusions: Overall, this study introduces a simple yet informative 3D breast cancer model that captures key TME features to better predict cell behavior in vitro. Full article
(This article belongs to the Special Issue Extracellular Matrix Proteins in Cancer)
Show Figures

Figure 1

19 pages, 2953 KB  
Article
Independent Mutations in the LRP2 Gene Mediating Telescope Eyes and Celestial Eyes in Goldfish
by Rongni Li, Bo Zhang, Yansheng Sun and Jingyi Li
Int. J. Mol. Sci. 2025, 26(21), 10625; https://doi.org/10.3390/ijms262110625 - 31 Oct 2025
Viewed by 581
Abstract
After intensive artificial selection, the development of celestial eyes in goldfish involves the eyeballs protuberating and turning upwards. Thus, the celestial eye goldfish is an excellent model for both evolutionary and human ocular disease studies. Here, two mapping populations of goldfish with segregating [...] Read more.
After intensive artificial selection, the development of celestial eyes in goldfish involves the eyeballs protuberating and turning upwards. Thus, the celestial eye goldfish is an excellent model for both evolutionary and human ocular disease studies. Here, two mapping populations of goldfish with segregating eye phenotypes in the offspring were constructed. Through whole-genome sequencing and RNA-seq for eyeball samples, a premature stop codon in Exon 38 of the LRP2 gene was identified as the top candidate mutation for the celestial eye in goldfish. Fatty acid metabolism and epidermal cells, especially keratocyte-related functions, were inhibited in the eyeballs of celestial eye goldfish, while inflammatory reactions and extracellular matrix secretions were stimulated. These results suggest the dysfunction of the cornea in the celestial eye goldfish, and the same for the retina, which could be the results of the truncated LRP2 protein. In addition, the same gene, LRP2, is in charge of similar phenotypes (celestial eye and telescope eye) in goldfish, but these phenotypes have no shared mutations. In conclusion, the candidate mutation for the celestial eye in goldfish was identified by this study for the first time, and parallel evolutions of similar phenotypes at the molecular level under artificial selection were observed. These findings provide insights into the developmental and evolutionary processes of morphological changes in the eyes of goldfish. Full article
Show Figures

Figure 1

12 pages, 1170 KB  
Article
Demographic, Morphological, and Histopathological Characteristics of Melanoma and Nevi: Insights from Statistical Analysis and Machine Learning Models
by Blagjica Lazarova, Gordana Petrushevska, Zdenka Stojanovska and Stephen C. Mullins
Diagnostics 2025, 15(19), 2499; https://doi.org/10.3390/diagnostics15192499 - 1 Oct 2025
Viewed by 692
Abstract
Background: Early and accurate differentiation between melanomas and benign nevi is essential for making proper clinical decisions. This study aimed to identify clinical, morphological, and histopathological variables most strongly associated with melanoma, using both statistical and machine learning approaches. Methods: This study [...] Read more.
Background: Early and accurate differentiation between melanomas and benign nevi is essential for making proper clinical decisions. This study aimed to identify clinical, morphological, and histopathological variables most strongly associated with melanoma, using both statistical and machine learning approaches. Methods: This study evaluated 184 melanocytic lesions using clinical, morphological, and histopathological parameters. Univariable analyses were performed in XLStat statistical software, version 2014.5.03, while multivariable machine learning models were developed in Jamovi (version 2.4). Five supervised algorithms (random forest, partial least squares, elastic net regression, conditional inference trees, and k-nearest neighbors) were compared using repeated cross-validation, with performance evaluated by accuracy, Kappa, sensitivity, specificity, F1 score, and calibration. Results: Univariable analysis identified significant differences between melanomas and nevi in age, horizontal diameter, gender, lesion location, and selected histopathological features (cytological and extracellular matrix changes, epidermal interactions). However, several associations weakened in multivariable analysis due to collinearity and overlapping effects. Using glmnet, the most influential independent predictors were cytological changes, horizontal diameter, epidermal interactions, and extracellular matrix features, alongside age, gender, and lesion location. The model achieved high discrimination (AUC = 0.97, 95% CI: 0.93–0.99) and accuracy (training: 95.3%; test: 92.6%), confirming robustness. Conclusions: Structured demographic, morphological, and histopathological data—particularly age, lesion size, cytological and extracellular matrix changes, and epidermal interactions—can effectively support classification of melanocytic lesions. Machine learning approaches (the glmnet model in our study) provide a reliable framework to evaluate such predictors and offer practical diagnostic support in dermatopathology. Full article
(This article belongs to the Special Issue Artificial Intelligence in Dermatology)
Show Figures

Figure 1

16 pages, 823 KB  
Review
Diverse Biological Processes Contribute to Transforming Growth Factor β-Mediated Cancer Drug Resistance
by James P. Heiserman and Rosemary J. Akhurst
Cells 2025, 14(19), 1518; https://doi.org/10.3390/cells14191518 - 28 Sep 2025
Cited by 1 | Viewed by 1868
Abstract
Therapy resistance is a major obstacle to cancer treatment, and transforming growth factor-beta (TGF-β) signaling has emerged as a major instigator across many cancer types and therapeutic regimens. Solid tumors overexpress TGF-β ligands, and canonical and non-canonical TGF-β signaling pathways drive molecular changes [...] Read more.
Therapy resistance is a major obstacle to cancer treatment, and transforming growth factor-beta (TGF-β) signaling has emerged as a major instigator across many cancer types and therapeutic regimens. Solid tumors overexpress TGF-β ligands, and canonical and non-canonical TGF-β signaling pathways drive molecular changes in most cell types within the tumor to hijack therapeutic responses. Cancer therapies further stimulate TGF-β release to potentiate this problem. Molecular mechanisms of TGF-β action supporting resistance include upregulation of drug efflux pumps, enhanced DNA Damage Repair, elaboration of stiffened extracellular matrix, and decreased neoantigen presentation. TGF-β also activates pro-survival pathways, such as epidermal growth factor receptor, B-cell lymphoma-2 expression, and AKT-mTOR signaling. TGF-β-induced epithelial-to-mesenchymal transformation leads to tumor heterogeneity and acquisition of stem-like states. In the tumor microenvironment, TGF-β induces extracellular matrix production, contractility, and secretion of immunosuppressive cytokines by cancer-associated fibroblasts that contribute to drug resistance. TGF-β also blunts cytotoxic T and NK cell activities and stimulates recruitment and differentiation of immunosuppressive cells, including T-regulatory cells, M2 macrophages, and myeloid-derived suppressor cells. The importance of TGF-β signaling in development of drug resistance cannot be understated and should be further explored mechanistically to identify novel molecular approaches and combinatorial drug dosing strategies to prevent drug-resistance. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

20 pages, 5620 KB  
Article
Multispectral Pulsed Photobiomodulation Enhances Re-Epithelialization via Keratinocyte Activation in Full-Thickness Skin Wounds
by Joo Hyun Kim, Delgerzul Baatar, Myung Jin Ban, Ji Won Son, Jihye Choi, Chan Hee Gil, Min-Kyu Kim, Sung Sik Hur, Jung Eun Kim and Yongsung Hwang
Cells 2025, 14(18), 1415; https://doi.org/10.3390/cells14181415 - 10 Sep 2025
Cited by 1 | Viewed by 1983
Abstract
Chronic wound healing is a complex and tightly regulated process requiring coordinated epithelial and stromal regeneration. Photobiomodulation (PBM) using low-level red light-emitting diode (LED) therapy has emerged as a non-invasive approach to enhancing skin repair. In this study, we evaluated the therapeutic efficacy [...] Read more.
Chronic wound healing is a complex and tightly regulated process requiring coordinated epithelial and stromal regeneration. Photobiomodulation (PBM) using low-level red light-emitting diode (LED) therapy has emerged as a non-invasive approach to enhancing skin repair. In this study, we evaluated the therapeutic efficacy of a pulsed, multi-wavelength LED system on full-thickness excisional wound healing in a normal murine model. Daily LED treatment significantly accelerated wound closure, promoted re-epithelialization, and improved dermal architecture. Histological and immunohistochemical analyses revealed enhanced epidermal stratification, reduced inflammation, and improved collagen organization. Molecular profiling demonstrated increased expression of proliferation marker Ki67, keratins CK14 and CK17, and extracellular matrix-related genes including MMPs, Col1a1, and Col3a1. In vitro assays using HaCaT keratinocytes showed accelerated scratch wound closure and cytoskeletal remodeling following PBM exposure. These findings suggest that pulsed PBM promotes coordinated epithelial regeneration and matrix remodeling, highlighting its potential as a tunable and effective therapeutic modality for accelerating cutaneous wound healing under physiological conditions. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Wound Repair)
Show Figures

Figure 1

16 pages, 2861 KB  
Article
Comparative Transcriptome Analysis Reveals Epithelial Growth Factor Receptor (EGFR) Pathway and Secreted C-Type Lectins as Essential Drivers of Leg Regeneration in Periplaneta americana
by Xiaoxuan Liu, Nan Sun, Xiaojuan Wu, Jiajia Wu, Shuqi Xian, Dayong Wang and Yechun Pei
Insects 2025, 16(9), 934; https://doi.org/10.3390/insects16090934 - 5 Sep 2025
Viewed by 988
Abstract
The American cockroach (Periplaneta americana) serves as an exemplary model for regeneration research due to its exceptional regenerative capabilities, particularly in appendage regeneration. In this study, regenerated coxa tissue underwent histological analysis through H & E straining. Microscopic examination revealed the [...] Read more.
The American cockroach (Periplaneta americana) serves as an exemplary model for regeneration research due to its exceptional regenerative capabilities, particularly in appendage regeneration. In this study, regenerated coxa tissue underwent histological analysis through H & E straining. Microscopic examination revealed the progression of regeneration. To elucidate the underlying mechanisms, a comparative transcriptomic analysis was conducted between regenerating legs and non-amputated control legs. This analysis identified 2343 differentially expressed genes (DEGs) between 0 days post-amputation (0 dpa) and 7 dpa, 2963 DEGs between 14 dpa and 0 dpa, and 3135 DEGs between 14 dpa and 7 dpa. Significantly, several DEGs are associated with growth- or regeneration-related processes, including extracellular matrix (different collagen, Pro-resilin isoforms, integrin beta (itgb) and matrix metalloproteinase (mmp)), immune-related genes (Toll-like receptor 13 (tlr13), defensin (def), drosomycin-like defensin (dld), Polyphenoloxidases2 (ppo2), cytochrome P450 (p450), peptidoglycan recognition protein (pgrp) and secreted C-type lectin (sClec)), insulin-like growth factor (IGF) and Epidermal Growth Factor Receptor (EGFR). Functional validation through RNA interference (RNAi) further suggested that EGFR and a specific C-type lectin (Regenectin) regulate leg regeneration in Periplaneta americana. These findings enhance our understanding of the molecular mechanisms governing regeneration in this species. Full article
(This article belongs to the Special Issue Insect Transcriptomics)
Show Figures

Figure 1

Back to TopTop