Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = enzymatic coagulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1169 KiB  
Article
Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
by Erika Páez, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado and Isabel Cristina Henao-Castañeda
Pharmaceuticals 2025, 18(8), 1151; https://doi.org/10.3390/ph18081151 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as [...] Read more.
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as therapeutic agents to inhibit the local effects induced by B. asper venom. Methods: Three enzymatic assays were performed: inhibition of the procoagulant and amidolytic activities of snake venom serine proteinases (SVSPs); inhibition of the proteolytic activity of snake venom metalloproteinases (SVMPs); and inhibition of the catalytic activity of snake venom phospholipases A2 (PLA2s). Additionally, molecular docking studies were conducted to propose potential inhibitory mechanisms of the metabolites chlorogenic acid, caffeine, and caffeic acid. Results: Green and roasted coffee extracts partially inhibited the enzymatic activity of SVSPs and SVMPs. Notably, the green coffee extract, at a 1:20 ratio, effectively inhibited PLA2 activity. Among the individual metabolites tested, partial inhibition of SVSP and PLA2 activities was observed, whereas no significant inhibition of SVMP proteolytic activity was detected. Chlorogenic acid was the most effective metabolite, significantly prolonging plasma coagulation time and achieving up to 82% inhibition at a concentration of 62.5 μM. Molecular docking analysis revealed interactions between chlorogenic acid and key active site residues of SVSP and PLA2 enzymes from B. asper venom. Conclusions: The roasted coffee extract demonstrated the highest inhibitory effect on venom toxins, potentially due to the formation of bioactive compounds during the Maillard reaction. Molecular modeling suggests that the tested inhibitors may bind to and occupy the substrate-binding clefts of the target enzymes. These findings support further in vivo research to explore the use of plant-derived polyphenols as adjuvant therapies in the treatment of snakebite envenoming. Full article
10 pages, 217 KiB  
Article
Systemic Effects of Enzymatic Necrosectomy in Minor Burn Wounds Using NexoBrid®
by David Breidung, Moritz Billner, Felix Ortner, Philipp von Imhoff, Simonas Lapinskas, Konrad Karcz, Sarina Delavari and Denis Ehrl
J. Pers. Med. 2025, 15(8), 330; https://doi.org/10.3390/jpm15080330 - 25 Jul 2025
Viewed by 237
Abstract
Background/Objectives: Enzymatic debridement with NexoBrid® is an effective alternative to surgical debridement in burn care, but its potential systemic effects remain unclear. In the context of personalized burn care, understanding individual patient responses to topical agents is essential to optimize outcomes and [...] Read more.
Background/Objectives: Enzymatic debridement with NexoBrid® is an effective alternative to surgical debridement in burn care, but its potential systemic effects remain unclear. In the context of personalized burn care, understanding individual patient responses to topical agents is essential to optimize outcomes and minimize risks. This study aimed to characterize laboratory and clinical parameter changes following NexoBrid® application in patients with small burn injuries (≤10% TBSA). Methods: We retrospectively analyzed 75 burn patients treated with NexoBrid® to evaluate changes in systemic inflammatory markers, coagulation parameters, and clinical parameters before and after enzymatic debridement. Results: Statistically significant increases in body temperature (p = 0.018), decreases in hemoglobin (p < 0.001), and increases in C-reactive protein (CRP) levels (p < 0.001) were observed, suggesting mild systemic inflammatory changes. However, leukocyte counts did not change significantly (p = 0.927), and body temperature remained within the normothermic range, indicating that these changes were not clinically significant. A significant decrease in the prothrombin time ratio (% of normal; p = 0.002) was also observed, suggesting potential impacts on coagulation. Importantly, while body temperature was slightly higher in patients with a higher degree of BSA exposure within the ≤10% TBSA cohort (p = 0.036), the extent of NexoBrid® application did not correlate with other inflammatory markers. Conclusions: These findings suggest that measurable systemic changes can occur following NexoBrid® application in small burns, particularly affecting inflammatory and coagulation parameters. These observations contribute to the understanding of treatment-related responses and may help inform clinical decision-making. Full article
(This article belongs to the Special Issue Plastic Surgery: New Perspectives and Innovative Techniques)
16 pages, 2888 KiB  
Article
Vitamin K Epoxide Reductase Complex (VKORC1) Electrochemical Genosensors: Towards the Identification of 1639 G>A Genetic Polymorphism
by Tiago Barbosa, Stephanie L. Morais, Renato Carvalho, Júlia M. C. S. Magalhães, Valentina F. Domingues, Cristina Delerue-Matos, Hygor Ferreira-Fernandes, Giovanny R. Pinto, Marlene Santos and Maria Fátima Barroso
Chemosensors 2025, 13(7), 248; https://doi.org/10.3390/chemosensors13070248 - 10 Jul 2025
Viewed by 393
Abstract
Anticoagulants, including warfarin, are often administered to patients who are exhibiting early symptoms of thromboembolic episodes or who have already experienced such episodes. However, warfarin has a limited therapeutic index and might cause bleeding and other clinical problems. Warfarin inhibits the vitamin K [...] Read more.
Anticoagulants, including warfarin, are often administered to patients who are exhibiting early symptoms of thromboembolic episodes or who have already experienced such episodes. However, warfarin has a limited therapeutic index and might cause bleeding and other clinical problems. Warfarin inhibits the vitamin K epoxide reductase complex subunit 1 (VKORC1), an enzyme essential for activating vitamin K, in the coagulation cascade. Genetic factors, such as polymorphisms, can change the natural function of VKORC1, causing variations in the medication reaction among individuals. Hence, before prescribing warfarin, the patient’s genetic profile should also be considered. In this study, an electrochemical genosensor capable of detecting the VKORC1 1639 G>A polymorphism was designed and optimized. This analytical approach detects the electric current obtained during the hybridization reaction between two 52 base pair complementary oligonucleotide sequences. Investigating public bioinformatic platforms, two DNA sequences with the A and G single-nucleotide variants were selected and designed. The experimental protocol of the genosensor implied the formation of a bilayer composed of a thiolate DNA and an alkanethiol immobilized onto gold electrodes, as well as the formation of a DNA duplex using a sandwich-format hybridization reaction through a fluorescein labelled DNA signalling probe and the enzymatic amplification of the electrochemical signal, detected by chronoamperometry. A detection limit of 20 pM and a linear range of 0.05–1.00 nM was obtained. A clear differentiation between A/A, G/A and G/G genotypes in biological samples was successfully identified by his novel device. Full article
Show Figures

Figure 1

21 pages, 1894 KiB  
Article
1H HRMAS NMR Metabolomics for the Characterization and Monitoring of Ripening in Pressed-Curd Ewe’s Milk Cheeses Produced Through Enzymatic Coagulation
by David Castejón, José Segura, Karen P. Cruz-Díaz, María Dolores Romero-de-Ávila, María Encarnación Fernández-Valle, Víctor Remiro, Palmira Villa-Valverde and María Isabel Cambero
Foods 2025, 14(13), 2355; https://doi.org/10.3390/foods14132355 - 2 Jul 2025
Viewed by 368
Abstract
A comprehensive characterization of two pressed-curd cheeses produced from ewe’s milk using enzymatic coagulation—Manchego cheese (with Protected Designation of Origin, PDO) and Castellano cheese (with Protected Geographical Indication, PGI)—was performed throughout the manufacturing process (industrial or traditional) and ripening stages (2, 9, [...] Read more.
A comprehensive characterization of two pressed-curd cheeses produced from ewe’s milk using enzymatic coagulation—Manchego cheese (with Protected Designation of Origin, PDO) and Castellano cheese (with Protected Geographical Indication, PGI)—was performed throughout the manufacturing process (industrial or traditional) and ripening stages (2, 9, 30, 90, and 180 days). Proton high-resolution magic angle spinning nuclear magnetic resonance (1H HRMAS NMR) spectroscopy, combined with Principal Component Analysis (PCA) and cluster analysis, was applied to intact cheese samples. The combination of this spectroscopic technique with chemometric methods allows for the characterization of each type of sheep milk cheese according to its geographical origin and production method (artisanal or industrial), as well as the estimation of ripening time. The results demonstrate that HRMAS NMR spectroscopy enables the rapid and direct analysis of cheese samples, providing a comprehensive profile of their metabolites—a metabolic ‘fingerprint’. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

18 pages, 5210 KiB  
Article
In Silico Analysis of Phosphomannomutase-2 Dimer Interface Stability and Heterodimerization with Phosphomannomutase-1
by Bruno Hay Mele, Jessica Bovenzi, Giuseppina Andreotti, Maria Vittoria Cubellis and Maria Monticelli
Molecules 2025, 30(12), 2599; https://doi.org/10.3390/molecules30122599 - 15 Jun 2025
Viewed by 512
Abstract
Phosphomannomutase 2 (PMM2) catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate, a key step in the biosynthesis of GDP-mannose for N-glycosylation. Its deficiency is the most common cause of congenital disorders of glycosylation (CDGs), accounting for the subtype known as PMM2-CDG. PMM2-CDG is a [...] Read more.
Phosphomannomutase 2 (PMM2) catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate, a key step in the biosynthesis of GDP-mannose for N-glycosylation. Its deficiency is the most common cause of congenital disorders of glycosylation (CDGs), accounting for the subtype known as PMM2-CDG. PMM2-CDG is a rare autosomal recessive disease characterized by multisystemic dysfunction, including cerebellar atrophy, peripheral neuropathy, developmental delay, and coagulation abnormalities. The disease is associated with a spectrum of pathogenic missense mutations, particularly at residues involved in dimerization and catalytic function (i.e., p.Phe119Leu and p.Arg141His). The dimerization of PMM2 is considered essential for enzymatic activity, although it remains unclear whether this supports structural stability alone, or whether both subunits are catalytically active—a distinction that may affect how mutations in each monomer contribute to overall enzyme function and disease phenotype. PMM2 has a paralog, phosphomannomutase 1 (PMM1), which shares substantial structural similarity—including obligate dimerization—and displays mutase activity in vitro, but does not compensate for PMM2 deficiency in vivo. To investigate potential heterodimerization between PMM1 and PMM2 and the effect of interface mutations over PMM2 dimer stability, we first assessed the likelihood of their co-expression using data from GTEx and the Human Protein Atlas. Building on this expression evidence, we modeled all possible dimeric combinations between the two paralogs using AlphaFold3. Models of the PMM2 and PMM1 homodimers were used as internal controls and aligned closely with their respective reference biological assemblies (RMSD < 1 Å). In contrast, the PMM2/PMM1 heterodimer model, the primary result of interest, showed high overall confidence (pLDDT > 90), a low inter-chain predicted alignment error (PAE∼1 Å), and robust interface confidence scores (iPTM = 0.80). Then, we applied PISA, PRODIGY, and mmCSM-PPI to assess interface energetics and evaluate the impact of missense variants specifically at the dimerization interface. Structural modeling suggested that PMM2/PMM1 heterodimers were energetically viable, although slightly less stable than PMM2 homodimers. Interface mutations were predicted to reduce dimer stability, potentially contributing to the destabilizing effects of disease-associated variants. These findings offer a structural framework for understanding PMM2 dimerization, highlighting the role of interface stability, paralogs co-expression, and sensitivity to disease-associated mutations. Full article
Show Figures

Figure 1

23 pages, 1513 KiB  
Article
A New Serine Protease (AsKSP) with Fibrinolytic Potential Obtained from Aspergillus tamarii Kita UCP 1279: Biochemical, Cytotoxic and Hematological Evaluation
by José P. Martins Barbosa-Filho, Renata V. Silva Sobral, Viviane N. S. Alencar, Marllyn Marques Silva, Juanize M. Silva Batista, Galba Maria Campos-Takaki, Wendell W. C. Albuquerque, Romero M. P. Brandão-Costa, Ana Lúcia Figueiredo Porto, Ana C. L. Leite and Thiago Pajéu Nascimento
Catalysts 2025, 15(6), 561; https://doi.org/10.3390/catal15060561 - 5 Jun 2025
Viewed by 774
Abstract
This study aimed to characterize and evaluate the fibrinolytic, thrombolytic, hematological, and toxicological aspects of a serine protease (AsKSP) from Aspergillus tamarii Kita UCP 1279. The enzyme was purified using a two-phase aqueous system and assessed for optimal pH (7.0) and temperature (50 °C), [...] Read more.
This study aimed to characterize and evaluate the fibrinolytic, thrombolytic, hematological, and toxicological aspects of a serine protease (AsKSP) from Aspergillus tamarii Kita UCP 1279. The enzyme was purified using a two-phase aqueous system and assessed for optimal pH (7.0) and temperature (50 °C), stability, and effects of metal ions, inhibitors, and surfactants. AsKSP exhibited stability for up to 120 min at 50 °C and 36 h at pH 7.0. Enzymatic activity was enhanced by Na+ and Zn2+ and non-ionic surfactants (Tween-80) but inhibited by Cu2+, Fe3+, Triton X-100, and SDS, reducing activity by up to 62.35%. The highest amidolytic activity was observed for the substrate N-succinyl-Gly–Gly–Phe-p-nitroanilide. SDS-PAGE analysis indicated an approximate molecular mass of 90 kDa. The enzyme showed fibrinolytic activity, degrading 38.81% of fibrin clots in vitro after 90 min, without affecting fibrinogen. Cytotoxicity assays indicated no toxicity (cell viability > 80%). Coagulation assays showed slight prolongation of prothrombin time (PT) and activated partial thromboplastin time (aPTT), with no effect on thrombin time. No red blood cell lysis was observed, and albumin increased enzymatic activity by 31.70%. These findings demonstrate that Aspergillus tamarii Kita UCP 1279 produces a fibrinolytic protease with potential for thrombus treatment, providing a promising foundation for drug development. Full article
(This article belongs to the Section Catalysis for Pharmaceuticals)
Show Figures

Figure 1

17 pages, 5735 KiB  
Article
Combination of Rhamnetin and RXP03 Mitigates Venom-Induced Toxicity in Murine Models: Preclinical Insights into Dual-Target Antivenom Therapy
by Jianqi Zhao, Guangyao Liu, Xiao Shi and Chunhong Huang
Toxins 2025, 17(6), 280; https://doi.org/10.3390/toxins17060280 - 4 Jun 2025
Viewed by 624
Abstract
Snakebite is a significant global public health challenge, and the limited application of antivenom has driven the exploration of novel therapies. Combination therapy using small-molecule drugs targeting phospholipases A2 (PLA2) and metalloproteinases (SVMP) in venom shows great potential. Although Rhamnetin and RXP03 [...] Read more.
Snakebite is a significant global public health challenge, and the limited application of antivenom has driven the exploration of novel therapies. Combination therapy using small-molecule drugs targeting phospholipases A2 (PLA2) and metalloproteinases (SVMP) in venom shows great potential. Although Rhamnetin and RXP03 exhibit notable anti-phospholipase and anti-metalloproteinase activities, respectively, their antiophidic potential remains poorly explored. This study aims to evaluate the inhibitory effects of Rhamnetin and RXP03 on snake venom toxicity. Methodologically, we conducted in vitro enzymatic assays to quantify PLA2/SVMP inhibition, murine models of envenomation (subcutaneous/intramuscular venom injection) to assess local tissue damage and systemic toxicity, and histopathological/biochemical analyses. In vitro experiments demonstrated that Rhamnetin effectively inhibited PLA2 activity while RXP03 showed potent suppression of SVMP activity, with their combination significantly reducing venom-induced hemorrhagic activity. In murine models, the combined therapy markedly alleviated venom-triggered muscle toxicity and ameliorated oxidative stress. Furthermore, the combination enhanced motor performance and survival rate in mice, improved serum biochemical parameters, corrected coagulation disorders, and attenuated pathological damage in liver, kidney, heart, and lung tissues. This research demonstrates that dual-targeted therapy against metalloproteinases and phospholipases in snake venom can effectively prevent a series of injuries caused by snake venom. Collectively, the combined application of Rhamnetin and RXP03 exhibits significant inhibitory effects on a variety of venom-induced toxicities, providing pharmacological evidence for the development of antivenom therapies. However, the efficacy validation in this study was limited to murine models, and there is a discrepancy with clinical needs for delayed treatment in real-world envenomation scenarios. Despite these limitations, the findings provide robust preclinical evidence supporting the Rhamnetin–RXP03 combination therapy as a cost-effective, broad-spectrum antivenom strategy. Future studies are required to optimize dosing regimens and evaluate clinical translatability. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

10 pages, 590 KiB  
Article
Fingerprint Profile Analysis of Eupolyphaga steleophaga Polypeptide Based on UHPLC-MS and Its Application
by Xin Lai, Hongwei Song, Guangli Yan, Junling Ren and Xijun Wang
Pharmaceuticals 2025, 18(2), 166; https://doi.org/10.3390/ph18020166 - 26 Jan 2025
Viewed by 1251
Abstract
Background and Objectives: As a medicinal and food homologous substance, Eupolyphaga steleophaga is renowned for its potential health benefits, including anti-tumor effects, immune system support, and anti-inflammatory properties. Eupolyphaga steleophaga polypeptides have demonstrated significant biological activity, including the regulation of coagulation and lipid [...] Read more.
Background and Objectives: As a medicinal and food homologous substance, Eupolyphaga steleophaga is renowned for its potential health benefits, including anti-tumor effects, immune system support, and anti-inflammatory properties. Eupolyphaga steleophaga polypeptides have demonstrated significant biological activity, including the regulation of coagulation and lipid metabolism. However, the peptide composition of Eupolyphaga steleophaga requires further clarification to facilitate quality control improvements and a deeper investigation into its pharmacological effects. Therefore, this study aimed to simulate the digestive absorption process of Eupolyphaga steleophaga following oral administration and identify its enzymatic components to enhance quality control. Methods: The digestive absorption process was simulated using artificial gastric fluid and pepsin. A fingerprinting method based on ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS)(Acquire UPLC-Synapt G2-Si HDMS, Waters Corporation, Milford, MA, USA) was developed to identify 63 enzymatic components. The enzymolysis polypeptide fingerprint detection method was used to analyze 10 batches of Eupolyphaga steleophaga sourced from Harbin No. 4 Traditional Chinese Medicine Factory. Chromatographic collection was performed using an ACQUITY UPLC BHE C18 column. Gradient elution was carried out using a mixture of 0.1% formic acid with acetonitrile and 0.1% formic acid with water, with an average flow rate of 0.3 mL/min, a column temperature of 40 °C, and an injection volume of 2 μL. The mass spectrometry (MS) conditions were set as follows: the ion source was operated in positive electrospray ionization (ESI+) mode, with a capillary voltage of 2.8 kV and a sampling cone voltage of 40 V. The ion-source temperature was maintained at 110 °C, while the desolvation temperature was set to 400 °C. The cone gas flow rate was 50 L/h, and the desolvation gas flow rate was 800 L/h. The range for the collection of mass-to-charge ratios (m/z) was between 50 and 1200. Results: The UHPLC-MS method demonstrated high accuracy, repeatability, and stability, successfully identifying 63 enzymatic components of Eupolyphaga steleophaga. Furthermore, polypeptide markers for 63 selected components were identified in all 10 batches of Eupolyphaga steleophaga medicinal materials. This approach was validated by including numerical values such as retention times and peak areas, confirming its reliability for quality control enhancement. Conclusions: This novel UHPLC-MS approach serves as a powerful tool for advancing quality control strategies in veterinary medicine, particularly for animal-derived medicines. It lays a solid foundation for subsequent pharmacological studies of Eupolyphaga steleophaga polypeptides, offering a more reliable means to explore their biological activities and therapeutic potential. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

18 pages, 2435 KiB  
Article
Impact of High Glucose on Bone Collagenous Matrix Composition, Structure, and Organization: An Integrative Analysis Using an Ex Vivo Model
by Rita Araújo, Ricardo N. M. J. Páscoa, Raquel Bernardino and Pedro S. Gomes
Cells 2025, 14(2), 130; https://doi.org/10.3390/cells14020130 - 17 Jan 2025
Cited by 1 | Viewed by 1271
Abstract
Diabetes mellitus is a widespread metabolic disorder linked to numerous systemic complications, including adverse effects on skeletal health, such as increased bone fragility and fracture risk. Emerging evidence suggests that high glucose may disrupt the extracellular matrix (ECM) of bone, potentially altering its [...] Read more.
Diabetes mellitus is a widespread metabolic disorder linked to numerous systemic complications, including adverse effects on skeletal health, such as increased bone fragility and fracture risk. Emerging evidence suggests that high glucose may disrupt the extracellular matrix (ECM) of bone, potentially altering its composition and organization. Collagen, the primary organic component of the ECM, is critical for maintaining structural integrity and biomechanical properties. However, definitive evidence and a comprehensive understanding of the molecular mechanisms through which high glucose impacts the ECM and collagen remain elusive. This study employed an ex vivo embryonic chicken femur model to investigate the effects of high glucose on the collagenous matrix. A comprehensive approach integrating histological evaluation, histomorphometry, ATR-FTIR spectroscopy, and proteomics was adopted to unravel structural, biochemical, and molecular changes in the ECM. Histomorphometric analysis revealed disrupted collagen fibril architecture, characterized by altered fibril diameter, alignment, and spatial organization. ATR-FTIR spectroscopy highlighted biochemical modifications, including non-enzymatic glycation that impaired collagen crosslinking and reduced matrix integrity. Proteomic profiling unveiled significant alterations in ECM composition and function, including downregulation of key collagen crosslinking enzymes and upregulation of inflammatory and coagulation pathways. High glucose profoundly disrupts the collagenous matrix of bone, weakening its structural integrity and organization. These findings emphasize the critical impact of high glucose environments on extracellular matrix composition and bone quality, offering insights into the mechanisms behind diabetic bone fragility and guiding future research toward targeted therapeutic strategies. Full article
Show Figures

Figure 1

23 pages, 3793 KiB  
Article
Comparative Analysis of the Enzymatic, Coagulant, and Neuromuscular Activities of Two Variants of Crotalus durissus ruruima Venom and Antivenom Efficacy
by Poliana J. Demico, Isabele N. Oliveira, Vitória S. Proença-Hirata, Samuel R. Dias, Hugo A. Ghirotti, Elisangela O. Silva, Inês C. Giometti, Francis L. Pacagnelli, Kristian A. Torres-Bonilla, Stephen Hyslop, Nathália C. Galizio, Karen de Morais-Zani, Manuela B. Pucca, Anderson M. Rocha, Jéssica B. Maciel, Marco A. Sartim, Wuelton M. Monteiro and Rafael S. Floriano
Pharmaceuticals 2025, 18(1), 54; https://doi.org/10.3390/ph18010054 - 6 Jan 2025
Cited by 1 | Viewed by 3319
Abstract
Background: We compared the enzymatic, coagulant, and neuromuscular activities of two variants (yellow—CDRy and white—CDRw) of Crotalus durissus ruruima venom with a sample of C. d. terrificus (CDT) venom and examined their neutralization by antivenom against CDT venom. Methods: The venoms were screened [...] Read more.
Background: We compared the enzymatic, coagulant, and neuromuscular activities of two variants (yellow—CDRy and white—CDRw) of Crotalus durissus ruruima venom with a sample of C. d. terrificus (CDT) venom and examined their neutralization by antivenom against CDT venom. Methods: The venoms were screened for enzymatic and coagulant activities using standard assays, and electrophoretic profiles were compared by SDS-PAGE. Neutralization was assessed by preincubating venoms with crotalic antivenom and assaying the residual activity. Results: SDS-PAGE showed that the venoms had similar electrophoretic profiles, with the main bands being phospholipase A2 (PLA2), serine proteinases, L-amino acid oxidase (LAAO), and phosphodiesterase. CDRy venom had the highest proteolytic and LAAO activities, CDRw venom had greater PLA2 and esterolytic activities at the highest quantity tested, and CDT had greater PLA2 activity than CDRy. CDRw and CDT venoms had similar proteolytic and LAAO activities, and CDRy and CDT venoms had comparable esterolytic activity. None of the venoms altered the prothrombin time (PT), but all of them decreased the activated partial thromboplastin time (aPPT); this activity was neutralized by antivenom. The minimum coagulant dose potency was CDRw >> CDRy > CDT. All venoms had thrombin-like activity that was attenuated by antivenom. CDRy and CDRw venoms showed α-fibrinogenolytic activity. All venoms partially cleaved the β-chain. CDRy and CDT venoms caused neuromuscular facilitation (enhanced muscle contractions) followed by complete blockade, whereas CDRw venom caused only blockade. Antivenom neutralized the neuromuscular activity to varying degrees. Conclusions: These findings indicate that while CDR and CDT venoms share similarities, they also differ in some enzymatic and biological activities and in neutralization by antivenom. Some of these differences could influence the clinical manifestations of envenomation by C. d. ruruima and their neutralization by the currently used therapeutic antivenom. Full article
(This article belongs to the Special Issue Neuromuscular Disorders: Current Gene and Cell Therapeutic Approaches)
Show Figures

Figure 1

14 pages, 1109 KiB  
Article
Isolation of Actinobacteria from Date Palm Rhizosphere with Enzymatic, Antimicrobial, Antioxidant, and Protein Denaturation Inhibitory Activities
by Maria Smati, Amina Bramki, Fatima Zohra Makhlouf, Rihab Djebaili, Beatrice Farda, Fatima Zohra Abdelhadi, Nahla Abdelli, Mahmoud Kitouni and Marika Pellegrini
Biomolecules 2025, 15(1), 65; https://doi.org/10.3390/biom15010065 - 5 Jan 2025
Viewed by 1374
Abstract
Arid ecosystems constitute a promising source of actinobacteria producing new bioactive molecules. This study aimed to explore different biological activities of actinomycetes isolated from the rhizosphere of Phoenix dactylifera L. in the Ghardaia region, Algeria. A total of 18 actinobacteria were isolated and [...] Read more.
Arid ecosystems constitute a promising source of actinobacteria producing new bioactive molecules. This study aimed to explore different biological activities of actinomycetes isolated from the rhizosphere of Phoenix dactylifera L. in the Ghardaia region, Algeria. A total of 18 actinobacteria were isolated and studied for their enzymatic and antimicrobial activities. All isolates shared cellulase and catalase activity; most of them produced amylase (94%), esterase (84%), lecithinase and lipoproteins (78%), caseinase (94%), and gelatinase (72%). The isolates could coagulate (56%) or peptonize (28%) skim milk. Overall, 72% of the isolates exhibited significant antibacterial activity against at least one test bacteria, while 56% demonstrated antifungal activity against at least one test fungi. Based on enzyme production and antimicrobial activity, isolate SGI16 was selected for secondary metabolite extraction by ethyl acetate. The crude extract of SGI16 was analyzed using DPPH and BSA denaturation inhibition tests, revealing significant antioxidant power (IC50 = 7.24 ± 0.21 μg mL−1) and protein denaturation inhibitory capacity (IC50 = 492.41 ± 0.47 μg mL−1). Molecular identification based on 16S rDNA analysis showed that SGI16 belonged to the genus Streptomyces. The findings highlight that date palms’ rhizosphere actinobacteria are a valuable source of biomolecules of biotechnological interest. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

19 pages, 4816 KiB  
Article
Optimization of Enzymatic Hydrolysis and Fermentation Processing for Set-Type Oat Yogurt with Favorable Acidity and Coagulated Texture
by Wenjie Xu, Xinzhu Wu, Chen Xia, Zicong Guo, Zhengyuan Zhai, Yongqiang Cheng and Ju Qiu
Foods 2024, 13(24), 4180; https://doi.org/10.3390/foods13244180 - 23 Dec 2024
Cited by 2 | Viewed by 1502
Abstract
The key role of enzymatic hydrolysis and fermentation in the sensory quality of set yogurt made from whole oats was demonstrated. The optimal process was established by the orthogonal and response surface methodology based on the acidity, textural, and rheological properties. The results [...] Read more.
The key role of enzymatic hydrolysis and fermentation in the sensory quality of set yogurt made from whole oats was demonstrated. The optimal process was established by the orthogonal and response surface methodology based on the acidity, textural, and rheological properties. The results indicated that the enzymatic hydrolysis appropriately consisted of liquefaction with 12 U/mL α-amylase at 70 °C and pH 6.5 for 60 min, followed by saccharification with 400 U/mL α-1,4-glucan glucohydrolase at 60 °C and pH 4.5 for 60 min. The Streptococcus thermophilus ST15 and Lactobacillus bulgaricus 20249 strains were the most efficacious strains, with a 0.1% inoculation for the fermentation at 42 °C for 16 h. So, a soft semisolid oat yogurt formed with an 8% solid–liquid ratio, which exhibited an acidity of 73.17 °T, a cohesiveness ratio of 0.51, and a maximum apparent viscosity of 1902.67 Pa·s. The coagulated texture of the oat yogurt was closely associated with the exopolysaccharide (EPS) yield up to 304.99 mg/L. These findings supported the optimal processing of oat yogurt, especially its correlation with the high capacity of EPS production by strains. It is an innovative and feasible way to improve the properties of set-type oat yogurt, especially the utilization of the whole oat. Full article
Show Figures

Figure 1

11 pages, 713 KiB  
Article
Comparative Study of Coagulation Dynamics: Cardoon Flower Extract vs. Chymosin
by Sandra Gomes, Ivanilda Pina, Jaime Fernandes, João Dias, Fernando Reboredo, António P. L. Martins and Nuno Alvarenga
Dairy 2024, 5(4), 817-827; https://doi.org/10.3390/dairy5040059 - 12 Dec 2024
Viewed by 1505
Abstract
Milk coagulants play a crucial role in defining curd characteristics. The objective of this study was to compare the coagulation dynamics of two commonly used coagulants in cheesemaking: cardoon flower extract (Cynara cardunculus L.) and commercial chymosin, using sheep milk from four [...] Read more.
Milk coagulants play a crucial role in defining curd characteristics. The objective of this study was to compare the coagulation dynamics of two commonly used coagulants in cheesemaking: cardoon flower extract (Cynara cardunculus L.) and commercial chymosin, using sheep milk from four different origins in the Baixo Alentejo region of Portugal, as the substrate. Milk composition was determined using the MilkoScan 133B, while the milk-clotting time (MCT) was measured following ISO 23058/IDF 199:2006 guidelines with slight modifications and coagulation kinetics, and technological properties were evaluated using the Optigraph apparatus. The results demonstrate that the type of coagulant impacts the coagulation properties of sheep milk. Pearson’s correlation analysis indicated that milk samples with higher protein content exhibited longer coagulation times but resulted in firmer curds. On the other hand, the use of cardoon flower extract introduced greater variability compared to chymosin, with a delayed onset of coagulation, reduced curd firmness, and increased variability in enzymatic kinetics. These results suggest that cardoon extract, while traditional, introduces greater heterogeneity in curd formation compared to the more consistent action of chymosin. Full article
Show Figures

Figure 1

17 pages, 3605 KiB  
Article
Simultaneous Recovery of Vivianite and Humic Acids from Waste Activated Sludge via Ferric Trichloride Flocculation and Enzymatic Hydrolysis Co-Treatment
by Qingli Cheng, Bochao Niu and Yuhao Li
Processes 2024, 12(12), 2737; https://doi.org/10.3390/pr12122737 - 3 Dec 2024
Viewed by 1001
Abstract
Synchronously recovering phosphorus as vivianite and humic acids (HAs) from waste activated sludge (WAS) is of great significance for the carbon neutralization of wastewater. In this study, flocculation, enzyme degradation (lysozyme/protease/amylase/cellulase in a 1:1:1:1 ratio), and pH adjustment were used to reclaim vivianite [...] Read more.
Synchronously recovering phosphorus as vivianite and humic acids (HAs) from waste activated sludge (WAS) is of great significance for the carbon neutralization of wastewater. In this study, flocculation, enzyme degradation (lysozyme/protease/amylase/cellulase in a 1:1:1:1 ratio), and pH adjustment were used to reclaim vivianite and HAs. After FeCl3 coagulation–precipitation and enzymatic hydrolysis of the sludge for 11 h, the supernatant was enriched with Fe2+ and PO43−, with the molar ratio of Fe2+:PO43− of 2.21. To improve the purity of the vivianite, the crude protein was separated at pI 6.0. The purity of the crystals reached a peak of 97.44 ± 0.04% at pH 7.5. HAs extracted from the residuals had a high affinity for metal adsorption, and the adsorption process was both endothermic and efficient. Overall, this study demonstrates the feasibility and effectiveness of the joint reclaiming of vivianite and HAs, providing new insights into multiple resource recovery from WAS. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

15 pages, 1991 KiB  
Article
Culture and Immunomodulation of Equine Muscle-Derived Mesenchymal Stromal Cells: A Comparative Study of Innovative 2D versus 3D Models Using Equine Platelet Lysate
by J. Duysens, H. Graide, A. Niesten, A. Mouithys-Mickalad, G. Deby-Dupont, T. Franck, J. Ceusters and D. Serteyn
Cells 2024, 13(15), 1290; https://doi.org/10.3390/cells13151290 - 31 Jul 2024
Cited by 1 | Viewed by 1383
Abstract
Muscle-derived mesenchymal stromal cells (mdMSCs) hold great promise in regenerative medicine due to their immunomodulatory properties, multipotent differentiation capacity and ease of collection. However, traditional in vitro expansion methods use fetal bovine serum (FBS) and have numerous limitations including ethical concerns, batch-to-batch variability, [...] Read more.
Muscle-derived mesenchymal stromal cells (mdMSCs) hold great promise in regenerative medicine due to their immunomodulatory properties, multipotent differentiation capacity and ease of collection. However, traditional in vitro expansion methods use fetal bovine serum (FBS) and have numerous limitations including ethical concerns, batch-to-batch variability, immunogenicity, xenogenic contamination and regulatory compliance issues. This study investigates the use of 10% equine platelet lysate (ePL) obtained by plasmapheresis as a substitute for FBS in the culture of mdMSCs in innovative 2D and 3D models. Using muscle microbiopsies as the primary cell source in both models showed promising results. Initial investigations indicated that small variations in heparin concentration in 2D cultures strongly influenced medium coagulation with an optimal proliferation observed at final heparin concentrations of 1.44 IU/mL. The two novel models investigated showed that expansion of mdMSCs is achievable. At the end of expansion, the 3D model revealed a higher total number of cells harvested (64.60 ± 5.32 million) compared to the 2D culture (57.20 ± 7.66 million). Trilineage differentiation assays confirmed the multipotency (osteoblasts, chondroblasts and adipocytes) of the mdMSCs generated in both models with no significant difference observed. Immunophenotyping confirmed the expression of the mesenchymal stem cell (MSC) markers CD-90 and CD-44, with low expression of CD-45 and MHCII markers for mdMSCs derived from the two models. The generated mdMSCs also had great immunomodulatory properties. Specific immunological extraction followed by enzymatic detection (SIEFED) analysis demonstrated that mdMSCs from both models inhibited myeloperoxidase (MPO) activity in a strong dose-dependent manner. Moreover, they were also able to reduce reactive oxygen species (ROS) activity, with mdMSCs from the 3D model showing significantly higher dose-dependent inhibition compared to the 2D model. These results highlighted for the first time the feasibility and efficacy of using 10% ePL for mdMSC expansion in novel 2D and 3D approaches and also that mdMSCs have strong immunomodulatory properties that can be exploited to advance the field of regenerative medicine and cell therapy instead of using FBS with all its drawbacks. Full article
(This article belongs to the Collection Stem Cells in Tissue Engineering and Regeneration)
Show Figures

Figure 1

Back to TopTop