In Silico Analysis of Phosphomannomutase-2 Dimer Interface Stability and Heterodimerization with Phosphomannomutase-1
Abstract
1. Introduction
2. Results
2.1. Tissue-Specific Expression of PMM Paralogs
2.2. Structure Evaluation
2.3. Interface Analysis and Energetic Comparison
2.4. Impact of Interface Mutations on PMM2 Dimer Stability
3. Discussion
4. Materials and Methods
4.1. Tissue Expression Analysis
4.2. Structural Modeling of Dimeric Complexes
4.3. Dimer Interface Analysis
4.4. Variant Curation and Annotation
4.5. Effect of Interface Variants on Dimer Stability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDGs | Congenital Disorders of Glycosylation |
Glc-1,6-P2 | Glucose-1,6-bisphosphate |
GTEx | The Genotype-Tissue Expression (GTEx) Portal |
HPA | Human Protein Atlas |
iPTM | interface Predicted Template Modeling |
Man-1-P | Mannose-1-phosphate |
Man-6-P | Mannose-6-phosphate |
PAE | Predicted Aligned Error |
PISA | PDBePISA (Proteins, Interfaces, Structures and Assemblies) |
PMM1 | Phosphomannomutase-1 |
PMM2 | Phosphomannnomutase-2 |
PRODIGY | PROtein binDIng enerGY |
RMSD | Root-Mean-Square Deviation |
TPM | Transcripts Per Million (gene and transcript expression GTEx |
Portal’s unit of measure) |
Appendix A
wt | Position | mut | Classification | Allele Frequency | Homozygote Count |
---|---|---|---|---|---|
Q | 88 | H | Uncertain | 3.75 × 10−6 | 0 |
E | 93 | D | Uncertain | 3.11 × 10−6 | 0 |
N | 101 | K | Pathogenic | 1.24 × 10−6 | 0 |
L | 104 | V | Pathogenic | 1.86 × 10−6 | 0 |
A | 108 | V | Pathogenic | 4.84 × 10−5 | 0 |
L | 112 | V | Uncertain | 4.97 × 10−6 | 0 |
P | 113 | T | Pathogenic | 6.21 × 10−7 | 0 |
P | 113 | S | Uncertain | 0 | 0 |
P | 113 | L | Pathogenic | 1.80 × 10−5 | 0 |
G | 117 | R | Pathogenic | 0 | 0 |
G | 117 | C | Conflicting | 0 | 0 |
T | 118 | A | Uncertain | 1.29 × 10−6 | 0 |
T | 118 | S | Conflicting | 1.93 × 10−6 | 0 |
F | 119 | L | Pathogenic | 3.52 × 10−5 | 0 |
F | 119 | S | Pathogenic | 6.40 × 10−7 | 0 |
I | 120 | N | Uncertain | 6.39 × 10−7 | 0 |
I | 120 | T | Pathogenic | 4.41 × 10−5 | 0 |
I | 120 | M | Pathogenic | 5.11 × 10−6 | 0 |
F | 122 | L | Uncertain | 4.46 × 10−6 | 0 |
S | 135 | R | Uncertain | 8.87 × 10−6 | 0 |
A | 108 | E | N.A. | 1.24 × 10−6 | 0 |
A | 108 | S | N.A. | 6.20 × 10−7 | 0 |
E | 93 | K | N.A. | 6.22 × 10−7 | 0 |
F | 122 | V | N.A. | 1.28 × 10−6 | 0 |
G | 117 | S | N.A. | 1.29 × 10−6 | 0 |
I | 120 | L | N.A. | 6.40 × 10−7 | 0 |
K | 111 | N | N.A. | 1.24 × 10−6 | 0 |
K | 114 | E | N.A. | 1.86 × 10−6 | 0 |
K | 114 | R | N.A. | 6.21 × 10−7 | 0 |
K | 115 | T | N.A. | 6.22 × 10−7 | 0 |
N | 101 | D | N.A. | 6.20 × 10−7 | 0 |
N | 101 | S | N.A. | 6.20 × 10−7 | 0 |
P | 113 | R | N.A. | 6.21 × 10−7 | 0 |
R | 116 | K | N.A. | 1.24 × 10−6 | 0 |
R | 116 | M | N.A. | 6.22 × 10−7 | 0 |
R | 116 | T | N.A. | 6.22 × 10−7 | 0 |
S | 105 | G | N.A. | 6.20 × 10−7 | 0 |
S | 105 | N | N.A. | 3.10 × 10−6 | 0 |
S | 105 | R | N.A. | 1.24 × 10−6 | 0 |
S | 135 | N | N.A. | 1.90 × 10−6 | 0 |
S | 135 | T | N.A. | 6.34 × 10−7 | 0 |
Mutation A | PMM2 Homodimer (kcal/mol) | PMM1/PMM2 Heterodimer (kcal/mol) |
---|---|---|
A Q88H | 0.3 | 0.01 |
A E93D | −2.24 | 0.49 |
A E93K | 0.3 | −1.43 |
A N101D | −0.52 | −0.09 |
A N101K | −2.13 | −1.16 |
A N101S | −1.12 | −0.87 |
A L104V | −2.78 | −1.55 |
A S105G | −1.35 | −0.74 |
A S105N | −0.69 | −0.39 |
A S105R | 0.22 | 0.82 |
A A108E | −0.16 | 0.47 |
A A108S | −0.06 | 0.61 |
A A108V | −0.48 | −0.21 |
A K111N | −0.11 | −0.19 |
A L112V | −1.08 | −0.4 |
A P113L | 0.12 | 0.04 |
A P113R | −0.08 | −0.25 |
A P113S | 0.1 | −0.04 |
A P113T | 0.16 | −0.06 |
A K114E | −2.79 | −1.17 |
A K114R | −0.83 | −0.76 |
A K115T | −4.03 | −2.29 |
A R116K | −2.84 | −1.61 |
A R116M | −2.77 | −1.65 |
A R116T | −3.18 | −1.75 |
A G117C | −2.95 | −1.46 |
A G117R | −4.87 | −1.6 |
A G117S | −2.76 | −1.12 |
A T118A | −1.14 | −0.59 |
A T118S | −0.93 | −0.6 |
A F119L | −3.04 | −1.94 |
A F119S | −3.75 | −1.9 |
A I120L | −2.47 | −1.2 |
A I120M | −2.77 | −1.56 |
A I120N | −4.18 | −1.83 |
A I120T | −3.41 | −1.75 |
A F122L | −2.7 | −1.48 |
A F122V | −3.08 | −1.57 |
A S135N | 0.3 | 0.63 |
A S135R | −0.07 | 0.02 |
A S135T | −0.06 | −0.05 |
Mutation A | Mutation B | (kcal/mol) |
---|---|---|
A P113L | B F157S | −0.43 |
A R141H | B A108V | −0.11 |
A I120T | B G228C | −1.7 |
A F119L | B R141H | −1.81 |
A I120T | B V231M | −2.02 |
A P113L | B R141H | 0.09 |
A A108V | B R123Q | −0.47 |
A P113L | B T237M | −0.55 |
A L104V | B D12H | −1.29 |
References
- Andreotti, G.; Pedone, E.; Giordano, A.; Cubellis, M.V. Biochemical phenotype of a common disease-causing mutation and a possible therapeutic approach for the phosphomannomutase 2-associated disorder of glycosylation. Mol. Genet. Genom. Med. 2013, 1, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Freeze, H. Phosphomannomutase 1,2 (PMM1,2). In Handbook of Glycosyltransferases and Related Genes; Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T., Eds.; Springer: Tokyo, Japan, 2014; pp. 1591–1598. [Google Scholar] [CrossRef]
- Schollen, E.; Pardon, E.; Heykants, L.; Renard, J.; Doggett, N.A.; Callen, D.F.; Cassiman, J.J.; Matthijs, G. Comparative Analysis of the Phosphomannomutase Genes PMM1, PMM2 and PMM2psi: The Sequence Variation in the Processed Pseudogene is a Reflection of the Mutations Found in the Functional Gene. Hum. Mol. Genet. 1998, 7, 157–164. [Google Scholar] [CrossRef]
- Lam, C.; Krasnewich, D.M. PMM2-CDG. In GeneReviews® [Internet]; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Jaeken, J.; Lefeber, D.; Matthijs, G. Clinical utility gene card for: Phosphomannomutase 2 deficiency. Eur. J. Hum. Genet. 2014, 22, 1054. [Google Scholar] [CrossRef] [PubMed]
- Pajusalu, S.; Vals, M.A.; Serrano, M.; Witters, P.; Cechova, A.; Honzik, T.; Edmondson, A.C.; Ficicioglu, C.; Barone, R.; De Lonlay, P.; et al. Genotype/Phenotype Relationship: Lessons from 137 Patients with PMM2-CDG. Hum. Mutat. 2024, 2024, 8813121. [Google Scholar] [CrossRef]
- Gámez, A.; Serrano, M.; Gallego, D.; Vilas, A.; Pérez, B. New and potential strategies for the treatment of PMM2-CDG. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129686. [Google Scholar] [CrossRef] [PubMed]
- Yuste-Checa, P.; Gámez, A.; Brasil, S.; Desviat, L.R.; Ugarte, M.; Pérez-Cerdá, C.; Pérez, B. The Effects of PMM2-CDG-Causing Mutations on the Folding, Activity, and Stability of the PMM2 Protein. Hum. Mutat. 2015, 36, 851–860. [Google Scholar] [CrossRef]
- Vaes, L.; Rymen, D.; Cassiman, D.; Ligezka, A.; Vanhoutvin, N.; Quelhas, D.; Morava, E.; Witters, P. Genotype-Phenotype Correlations in PMM2-CDG. Genes 2021, 12, 1658. [Google Scholar] [CrossRef]
- Kjaergaard, S.; Skovby, F.; Schwartz, M. Absence of homozygosity for predominant mutations in PMM2 in Danish patients with carbohydrate-deficient glycoprotein syndrome type 1. Eur. J. Hum. Genet. 1998, 6, 331–336. [Google Scholar] [CrossRef]
- Quental, R.; Moleirinho, A.; Azevedo, L.; Amorim, A. Evolutionary History and Functional Diversification of Phosphomannomutase Genes. J. Mol. Evol. 2010, 71, 119–127. [Google Scholar] [CrossRef]
- Andreotti, G.; Cabeza de Vaca, I.; Poziello, A.; Monti, M.C.; Guallar, V.; Cubellis, M.V. Conformational Response to Ligand Binding in Phosphomannomutase2: Insights into Inborn Glycosylation Disorder. J. Biol. Chem. 2014, 289, 34900–34910. [Google Scholar] [CrossRef]
- Ji, T.; Zhang, C.; Zheng, L.; Dunaway-Mariano, D.; Allen, K.N. Structural Basis of the Molecular Switch between Phosphatase and Mutase Functions of Human Phosphomannomutase 1 under Ischemic Conditions. Biochemistry 2018, 57, 3480–3492. [Google Scholar] [CrossRef] [PubMed]
- Veiga-da Cunha, M.; Vleugels, W.; Maliekal, P.; Matthijs, G.; Van Schaftingen, E. Mammalian Phosphomannomutase PMM1 Is the Brain IMP-sensitive Glucose-1,6-bisphosphatase. J. Biol. Chem. 2008, 283, 33988–33993. [Google Scholar] [CrossRef]
- Cromphout, K.; Keldermans, L.; Snellinx, A.; Collet, J.F.; Grünewald, S.; De Geest, N.; Sciot, R.; Vanschaftingen, E.; Jaeken, J.; Matthijs, G.; et al. Tissue distribution of the murine phosphomannomutases Pmm1 and Pmm2 during brain development. Eur. J. Neurosci. 2005, 22, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Huttlin, E.L.; Bruckner, R.J.; Navarrete-Perea, J.; Cannon, J.R.; Baltier, K.; Gebreab, F.; Gygi, M.P.; Thornock, A.; Zarraga, G.; Tam, S.; et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 2021, 184, 3022–3040. [Google Scholar] [CrossRef]
- Silvaggi, N.R.; Zhang, C.; Lu, Z.; Dai, J.; Dunaway-Mariano, D.; Allen, K.N. The X-ray Crystal Structures of Human α-Phosphomannomutase 1 Reveal the Structural Basis of Congenital Disorder of Glycosylation Type 1a. J. Biol. Chem. 2006, 281, 14918–14926. [Google Scholar] [CrossRef]
- Worth, C.L.; Preissner, R.; Blundell, T.L. SDM—A server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 2011, 39, W215–W222. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.; Ferraz, R.; Azevedo, L.; Quelhas, D.; Carneiro, J.; Jaeken, J.; Sousa, S.F. A comprehensive update of genotype–phenotype correlations in PMM2-CDG: Insights from molecular and structural analyses. Orphanet J. Rare Dis. 2025, 20, 207. [Google Scholar] [CrossRef]
- Citro, V.; Cimmaruta, C.; Monticelli, M.; Riccio, G.; Hay Mele, B.; Cubellis, M.V.; Andreotti, G. The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers. Int. J. Mol. Sci. 2018, 19, 2218. [Google Scholar] [CrossRef]
- Citro, V.; Cimmaruta, C.; Liguori, L.; Viscido, G.; Cubellis, M.V.; Andreotti, G. A mutant of phosphomannomutase1 retains full enzymatic activity, but is not activated by IMP: Possible implications for the disease PMM2-CDG. PLoS ONE 2017, 12, e0189629. [Google Scholar] [CrossRef]
- Monticelli, M.; Paris, D.; Monti, M.C.; Morretta, E.; Pakanova, Z.; Nemcovic, M.; Kodrikova, R.; Cubellis, M.V.; Andreotti, G. Beneficial effects of Glc-1,6-P2 modulation on mutant phosphomannomutase-2. Biochim. Biophys. Acta Mol. Cell Res. 2025, 119948. [Google Scholar] [CrossRef]
- Monticelli, M.; Wright, D.M.; Cubellis, M.V.; Andreotti, G. ReBaTSA: A simplified CeTSA protocol for studying recombinant mutant proteins in bacterial extracts. Biochim. Biophys. Acta Gen. Subj. 2024, 1868, 130526. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, M.; Liguori, L.; Allocca, M.; Andreotti, G.; Cubellis, M.V. Beta-Glucose-1,6-Bisphosphate Stabilizes Pathological Phosphomannomutase2 Mutants In Vitro and Represents a Lead Compound to Develop Pharmacological Chaperones for the Most Common Disorder of Glycosylation, PMM2-CDG. Int. J. Mol. Sci. 2019, 20, 4164. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, M.; Hay Mele, B.; Wright, D.M.; Guerriero, S.; Andreotti, G.; Cubellis, M.V. Exploring ligand interactions with human phosphomannomutases using recombinant bacterial thermal shift assay and biochemical validation. Biochimie 2024, 222, 123–131. [Google Scholar] [CrossRef]
- Wee, J.; Wei, G. Evaluation of AlphaFold 3’s protein–protein complexes for predicting binding free energy changes upon mutation. J. Chem. Inf. Model. 2024, 16, 6676–6683. [Google Scholar] [CrossRef]
- Carithers, L.J.; Moore, H.M. The genotype-tissue expression (GTEx) project. Biopreserv. Biobank. 2015, 13, 307. [Google Scholar] [CrossRef]
- GTEx Consortium. GTEx Bulk Tissue Gene Expression Data. 2025. Available online: https://www.gtexportal.org/home/ (accessed on 16 April 2025).
- GTEx Consortium. GTEx Sample Metadata. 2025. Available online: https://gtexportal.org/home/downloads/adult-gtex/metadata (accessed on 16 April 2025).
- Human Protein Atlas Project. Tissue Expression Data–Normal Tissues IHC. 2025. Available online: https://www.proteinatlas.org/ (accessed on 16 April 2025).
- Thul, P.J.; Lindskog, C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018, 27, 233–244. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Barrett, T.; Dowle, M.; Srinivasan, A.; Gorecki, J.; Chirico, M.; Hocking, T.; Schwendinger, B.; Krylov, I. R Package, Version 1.17.0; data.table: Extension of ‘data.frame’. 2025. Available online: https://cran.r-project.org/web/packages/data.table/index.html (accessed on 6 November 2024).
- Slowikowski, K. R Package, Version 0.9.6; ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. 2024. Available online: https://cran.r-project.org/web/packages/ggrepel/index.html (accessed on 6 November 2024).
- Pedersen, T.L. R Package, Version 0.4.2; ggforce: Accelerating ‘ggplot2’. 2024. Available online: https://cran.r-project.org/web/packages/ggforce/index.html (accessed on 6 November 2024).
- Consortium, U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [PubMed]
- Krokidis, M.G.; Koumadorakis, D.E.; Lazaros, K.; Ivantsik, O.; Exarchos, T.P.; Vrahatis, A.G.; Kotsiantis, S.; Vlamos, P. AlphaFold3: An Overview of Applications and Performance Insights. Int. J. Mol. Sci. 2025, 26, 3671. [Google Scholar] [CrossRef]
- Google-DeepMind. AlphaFold Protein Structure Database. 2025. Available online: https://alphafoldserver.com/welcome (accessed on 16 April 2025).
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- EMBL-EBI. PDBePISA (Proteins, Interfaces, Structures and Assemblies). 2025. Available online: https://www.ebi.ac.uk/pdbe/pisa/ (accessed on 16 April 2025).
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef] [PubMed]
- PDBj. mmCIF to PDB Converter. 2025. Available online: https://mmcif.pdbj.org/converter/ (accessed on 16 April 2025).
- Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016, 32, 3676–3678. [Google Scholar] [CrossRef] [PubMed]
- BioSig Laboratory, University of Queensland. mmCSM-PPI: Predicting Effects of Mutations on Protein–Protein Interactions. 2025. Available online: https://biosig.lab.uq.edu.au/mmcsm_ppi/ (accessed on 6 November 2024).
- Pedersen, T.L. R Package, Version 1.3.1; tidygraph: A Tidy API for Graph Manipulation. 2024. Available online: https://cran.r-project.org/web/packages/tidygraph/index.html (accessed on 6 November 2024).
- Pedersen, T.L. R Package, Version 2.2.1; ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. 2024. Available online: https://cran.r-project.org/web/packages/ggraph/index.html (accessed on 6 November 2024).
- Ben Chorin, A.; Masrati, G.; Kessel, A.; Narunsky, A.; Sprinzak, J.; Lahav, S.; Ashkenazy, H.; Ben-Tal, N. ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. Protein Sci. 2020, 29, 258–267. [Google Scholar] [CrossRef] [PubMed]
- ConSurf Database. ConSurf: Evolutionary Conservation in Proteins. 2025. Available online: https://consurf.tau.ac.il/consurf_index.php (accessed on 16 April 2025).
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2017, 46, D1062–D1067. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. ClinVar Search Results for PMM2 Gene. 2025. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 6 November 2024).
- gnomAD Consortium. PMM2 Gene Data (ENSG00000140650)–gnomAD v4. 2025. Available online: https://gnomad.broadinstitute.org/ (accessed on 6 November 2024).
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Stephenson, J.D.; Totoo, P.; Burke, D.; Jänes, J.; Beltrao, P.; Martin, M. ProtVar: Mapping and contextualizing human missense variation. Nucleic Acids Res. 2024, 52, W140–W147. [Google Scholar] [CrossRef]
- EMBL-EBI ProtVar. ProtVar: PMM2 Protein Variant Data (O15305). 2025. Available online: https://www.ebi.ac.uk/ProtVar/ (accessed on 6 November 2024).
- Pires, D.E.; Ascher, D.B. mCSM-AB: A web server for predicting antibody–antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res. 2016, 44, W469–W473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hay Mele, B.; Bovenzi, J.; Andreotti, G.; Cubellis, M.V.; Monticelli, M. In Silico Analysis of Phosphomannomutase-2 Dimer Interface Stability and Heterodimerization with Phosphomannomutase-1. Molecules 2025, 30, 2599. https://doi.org/10.3390/molecules30122599
Hay Mele B, Bovenzi J, Andreotti G, Cubellis MV, Monticelli M. In Silico Analysis of Phosphomannomutase-2 Dimer Interface Stability and Heterodimerization with Phosphomannomutase-1. Molecules. 2025; 30(12):2599. https://doi.org/10.3390/molecules30122599
Chicago/Turabian StyleHay Mele, Bruno, Jessica Bovenzi, Giuseppina Andreotti, Maria Vittoria Cubellis, and Maria Monticelli. 2025. "In Silico Analysis of Phosphomannomutase-2 Dimer Interface Stability and Heterodimerization with Phosphomannomutase-1" Molecules 30, no. 12: 2599. https://doi.org/10.3390/molecules30122599
APA StyleHay Mele, B., Bovenzi, J., Andreotti, G., Cubellis, M. V., & Monticelli, M. (2025). In Silico Analysis of Phosphomannomutase-2 Dimer Interface Stability and Heterodimerization with Phosphomannomutase-1. Molecules, 30(12), 2599. https://doi.org/10.3390/molecules30122599