Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
Abstract
1. Introduction
2. Results
2.1. Characterization of Coffea arabica Extracts
2.2. Inhibition of Pro-Coagulant Activity of Bothrops asper Venom
2.3. Inhibition of Amidolytic Activity
2.4. Inhibition of PLA2 Activity
2.5. Inhibition of Proteolytic Activity
2.6. Structural Modeling and Validation of the SVSP
2.7. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Inhibition of Procoagulant Activity of SVSPs
4.3. Inhibition of Amidolytic Activity of SVSPs
4.4. Inhibition of Proteolytic Activity of SVMPs
4.5. Inhibition of Esterase Activity of SVPLA2s
4.6. Molecular Modeling and Docking
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GCE | Green coffee extract |
RCE | Roasted coffee extract |
SVMP | Snake venom metalloproteinase |
SVSP | Snake venom serine proteinase |
PLA2 | Phospholipase A2 |
References
- Gutiérrez, J.; Calvete, J.; Habib, A.; Harrison, R.; Williams, D.; Warrell, D. Snakebite Envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Afroz, A.; Siddiquea, B.; Chowdhury, H.; Jackson, T.; Watt, A. Snakebite Envenoming: A Systematic Review and Meta-Analysis of Global Morbidity and Mortality. PLoS Negl. Trop. Dis. 2024, 18, e0012080. [Google Scholar] [CrossRef] [PubMed]
- Informe de Evento Accidente Ofídico Periodo Epidemiológico XIII de 2023. Available online: https://www.ins.gov.co/buscador-eventos/Informesdeevento/ACCIDENTE%20OFIDICO%20PE%20XIII%202023.pdf (accessed on 15 June 2025).
- Chippaux, J. Incidence and Mortality Due to Snakebite in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005662. [Google Scholar] [CrossRef]
- Erazo, V.; Posso, I.; Ruiz, I.; Castro, F.; Castaño, S.; Delgado, T.; Cañas, C. Viperidae Snake Envenomation from a Highly Complex Hospital in Southwestern Colombia. Heliyon 2024, 10, e26768. [Google Scholar] [CrossRef]
- Mora, D.; Salazar, D.; Pla, D.; Lomonte, B.; Guerrero, J.; Ayerbe, S.; Gibbs, H.; Calvete, J. Venom Variation in Bothrops asper Lineages from North-Western South America. J. Proteom. 2020, 229, 103945. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Isbister, G. Current Research into Snake Antivenoms, Their Mechanisms of Action, and Applications. Biochem. Soc. Trans. 2020, 48, 537–546. [Google Scholar] [CrossRef]
- Xie, C.; Albulescu, L.O.; Bittenbinder, M.A.; Somsen, G.W.; Vonk, F.J.; Casewell, N.R.; Kool, J. Neutralizing Effects of Small Molecule Inhibitors and Metal Chelators on Coagulopathic Viperinae Snake Venom Toxins. Biomedicines 2020, 8, 297. [Google Scholar] [CrossRef]
- Patay, É.; Bencsik, T.; Papp, N. Phytochemical Overview and Medicinal Importance of Coffea Species from the Past Until Now. Asian Pac. J. Trop. Med. 2016, 9, 1127–1135. [Google Scholar] [CrossRef]
- Chiang, H.; Lin, T.; Chiu, C.; Chang, C.; Hsu, K.; Fan, P.; Wen, K. Coffea arabica Extract and Its Constituents Prevent Photoaging by Suppressing MMPs Expression and MAP Kinase Pathway. Food Chem. Toxicol. 2011, 49, 309–318. [Google Scholar] [CrossRef]
- Matosinhos, R.; Bezerra, J.; Barros, C.; Ferreira, A.; Coelho, G.; De Paula, C.; Araújo, M.; De Oliveira, D.; Aguiar, R.; Sachs, D.; et al. Coffea arabica Extracts and Their Chemical Constituents in a Murine Model of Gouty Arthritis: How They Modulate Pain and Inflammation. J. Ethnopharmacol. 2022, 284, 114778. [Google Scholar] [CrossRef]
- Villota, H.; Santa, G.; Uribe, D.; Henao, I.; Arroyave, J.; Barrera, C.; Pedroza, J. Modulatory Effect of Chlorogenic Acid and Coffee Extracts on Wnt/β-Catenin Pathway in Colorectal Cancer Cells. Nutrients 2022, 14, 4880. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.; De Horta, I.; Rosa, L.; Lima, L.; Rosa, J.; Montenegro, J.; Santos, L.; Castro, R.; Freitas, O.; Teodoro, A. Effect of the Roasting Levels of Coffea arabica L. Extracts on Their Potential Antioxidant Capacity and Antiproliferative Activity in Human Prostate Cancer Cells. RSC Adv. 2020, 10, 30115–30126. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Cirillo, E.; Natella, F.; Scaccini, C. Absorption of phenolic acids in humans after coffee consumption. J. Agric. Food Chem. 2002, 25, 50, 5735–5741. [Google Scholar] [CrossRef] [PubMed]
- Mora, D.; Lomonte, B.; Pla, D.; Guerrero, J.; Ayerbe, S.; Gutiérrez, J.; Sasa, M.; Calvete, J. Half a Century of Research on Bothrops asper Venom Variation: Biological and Biomedical Implications. Toxicon 2023, 221, 106983. [Google Scholar] [CrossRef]
- Gallardo, J.; Santibáñez, A.; Oropeza, O.; Salazar, R.; Montiel, R.; Cabrera, S.; Gonzales, M.; Cruz, F.; Torrez, N. Chemical and Biological Characterization of Green and Processed Coffee Beans from Coffea arabica Varieties. Molecules 2023, 28, 4685. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Escalante, T.; Rucavado, A.; Herrera, C.; Fox, J. A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins 2016, 8, 304. [Google Scholar] [CrossRef]
- Tonello, F.; Rigoni, M. Cellular Mechanisms of Action of Snake Phospholipase A2 Toxins. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Gopalakrishnakone, P., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 49–65. [Google Scholar] [CrossRef]
- Alam, M.; Alam, M.; Alam, O.; Nargotra, A.; Taneja, S.; Koul, S. Molecular Modeling and Snake Venom Phospholipase A2 Inhibition by Phenolic Compounds: Structure–Activity Relationship. Eur. J. Med. Chem. 2016, 114, 209–219. [Google Scholar] [CrossRef]
- Moreira, M.; Pereira, R.; Dias, D.; Gontijo, V.; Vilela, F.; De Moraes, G.; Giusti, A.; dos Santos, M. Anti-inflammatory Effect of Aqueous Extracts of Roasted and Green Coffea arabica L. J. Funct. Foods 2013, 5, 466–474. [Google Scholar] [CrossRef]
- Pimpley, V.; Patil, S.; Srinivasan, K.; Desai, N.; Murthy, P. The Chemistry of Chlorogenic Acid from Green Coffee and Its Role in Attenuating Obesity and Diabetes. Prep. Biochem. Biotechnol. 2020, 50, 969–978. [Google Scholar] [CrossRef]
- Silva, D.P.D.; Ferreira, S.S.; Torres-Rêgo, M.; Furtado, A.A.; Yamashita, F.O.; Diniz, E.A.; Vieira, D.S.; Ururahy, M.A.; Silva-Júnior, A.D.; Luna, K.P.; et al. Antiophidic potential of chlorogenic acid and rosmarinic acid against Bothrops leucurus snake venom. Biomed. Pharmacother. 2022, 148, 112766. [Google Scholar] [CrossRef]
- Oliveira, I.; Yoshida, E.; Dini, M.; Paschoal, A.; Cogo, J.; Höfling, M.; Hyslop, S.; Oshima, Y. Evaluation of Protection by Caffeic Acid, Chlorogenic Acid, Quercetin, and Tannic Acid against the In Vitro Neurotoxicity and In Vivo Lethality of Crotalus durissus terrificus (South American Rattlesnake) Venom. Toxins 2021, 13, 801. [Google Scholar] [CrossRef]
- Cardoso, F.; Salvador, G.; Cavalcante, W.; Dal, M.; Fontes, M. BthTX-I, a Phospholipase A2-like Toxin, Is Inhibited by the Plant Cinnamic Acid Derivative: Chlorogenic Acid. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2024, 1872, 140988. [Google Scholar] [CrossRef]
- Castro-Amorim, J.; Novo de Oliveira, A.; Da Silva, S.L.; Soares, A.M.; Mukherjee, A.K.; Ramos, M.J.; Fernandes, P.A. Catalytically Active Snake Venom PLA2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J. Med. Chem. 2023, 66, 5364–5376. [Google Scholar] [CrossRef] [PubMed]
- Berg, O.G.; Gelb, M.H.; Tsai, M.-D.; Jain, M.K. Interfacial Enzymology: The Secreted Phospholipase A2-Paradigm. Chem. Rev. 2001, 101, 2613–2654. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S. The long road of research on snake venom serine proteinases. Toxicon 2023, 62, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Masood, R.; Ali, I.; Ullah, K.; Ali, H.; Akbar, H.; Betzel, C. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action. Int. J. Biol. Macromol. 2018, 15, 788811. [Google Scholar] [CrossRef]
- Kini, R.M.; Koh, C.Y. Metalloproteases Affecting Blood Coagulation, Fibrinolysis and Platelet Aggregation from Snake Venoms: Definition and Nomenclature of Interaction Sites. Toxins 2016, 8, 284. [Google Scholar] [CrossRef]
- Chase, T., Jr.; Shaw, T.E. Titration of trypsin, plasmin, and thrombin with p-nitrophenyl p′-guanidinobenzoate HCl. Methods Enzymol. 1970, 19, 2027. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S. Investigation of the anticoagulant and antithrombotic effects of chlorogenic acid. J. Biochem. Mol. Toxicol. 2017, 31, e21865. [Google Scholar] [CrossRef]
- Hedstrom, L. Serine Protease Mechanism and Specificity. Chem. Rev. 2002, 102, 4501–4524. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Huang, S.; Li, L.; Yuan, Z.; Xu, G. Screening of anti-thrombin active components from Ligusticum chuanxiong by affinity-ultrafiltration coupled with HPLC-Q-Orbitrap-MSn. Phytochemical 2023, 34, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, S.; Zhang, Q.; Chen, H.; Xia, Z.; Yang, F. Characterization of phenolic acids binding to thrombin using frontal affinity chromatography and molecular docking. Anal. Methods 2017, 9, 5174–5180. [Google Scholar] [CrossRef]
- Villota, H.; Moreno, M.; Santa, G.; Uribe, D.; Castañeda, I.; Preciado, L.M.; Pedroza, J. Biological Impact of Phenolic Compounds from Coffee on Colorectal Cancer. Pharmaceuticals 2021, 14, 761. [Google Scholar] [CrossRef] [PubMed]
- Theakston, R.; Reid, H. Development of simple standard assay procedures for the characterization of snake venom. Bull. WHO 1983, 61, 949–956. [Google Scholar]
- Jänsch, N.; Colin, F.; Schröder, M.; Meyer-Almes, F.-J. Using design of experiment to optimize enzyme activity assays. ChemTexts 2019, 5, 20. [Google Scholar] [CrossRef]
- Wang, W.; Shih, C.; Huang, T. A novel P-I class metalloproteinase with broad substrate-cleaving activity, agkislysin, from Agkistrodon acutus venom. Biochem. Biophys. Res. Commun. 2004, 324, 224–230. [Google Scholar] [CrossRef]
- Holzer, M.; Mackessy, S. An aqueous endpoint assay of snake venom phospholipase A2. Toxicon 1996, 34, 1149–1155. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, version 6; Semichem Inc.: Shawnee, KS, USA, 2016. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Trott, O.; Olson, A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Biophys. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Laskowski, R.; MacArthur, M.; Moss, D.; Thornton, J. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- Pettersen, E.; Goddard, T.; Huang, C.; Couch, G.; Greenblatt, D.; Meng, E.; Ferrin, T. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comp. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
Compound | Interactions | Theoretical Affinity (kcal/mol) | ||
---|---|---|---|---|
H-Bonds | Salt Bridges | Van der Waals | ||
Caffeic acid | Thr176, Trp178, Ser196, Trp197, Val210 (2 bonds), Tyr211 | His200 | Val195 | −5.4 |
Chlorogenic acid | Asn41, Glu83 (2 bonds), Thr176 (2 bonds), Ser181 (2 bonds), Ser196 (2 bonds), Trp197, Val210 (2 bonds) | - | Val195, Trp197 | −7.7 |
Caffeine | Thr176 | - | - | −5.1 |
Compound | Weak Interactions | Theoretical Affinity (kcal/mol) | ||
---|---|---|---|---|
H-Bonds | Salt Bridges | Van der Waals | ||
Caffeic acid | Thr23 (2 bonds) | His48 | Phe5, Ile9, Tyr22 | −5.8 |
Chlorogenic acid | Tyr52, Cys29 (2 bonds) | His48, Lys69 | Pro68, Tyr52 | −6.9 |
Caffeine | - | - | Phe5 (2 bonds) | −5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Páez, E.; Galvis-Pérez, Y.; Pereañez, J.A.; Preciado, L.M.; Henao-Castañeda, I.C. Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom. Pharmaceuticals 2025, 18, 1151. https://doi.org/10.3390/ph18081151
Páez E, Galvis-Pérez Y, Pereañez JA, Preciado LM, Henao-Castañeda IC. Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom. Pharmaceuticals. 2025; 18(8):1151. https://doi.org/10.3390/ph18081151
Chicago/Turabian StylePáez, Erika, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado, and Isabel Cristina Henao-Castañeda. 2025. "Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom" Pharmaceuticals 18, no. 8: 1151. https://doi.org/10.3390/ph18081151
APA StylePáez, E., Galvis-Pérez, Y., Pereañez, J. A., Preciado, L. M., & Henao-Castañeda, I. C. (2025). Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom. Pharmaceuticals, 18(8), 1151. https://doi.org/10.3390/ph18081151