1H HRMAS NMR Metabolomics for the Characterization and Monitoring of Ripening in Pressed-Curd Ewe’s Milk Cheeses Produced Through Enzymatic Coagulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. 1H HRMAS NMR Analyses
2.3. Data Treatment and Statistics
3. Results and Discussion
3.1. Evolution of Metabolites During the Ripening of Pressed-Curd Cheeses Made from Ewe’s Milk Using Enzymatic Coagulation: I-CLM, T-CLM, I-CL, and T-CL
3.1.1. Carbohydrates
3.1.2. Fatty Acids
3.1.3. Organic Acids
3.1.4. Amino Acids
3.2. Potential of 1H HRMAS NMR for the Characterization and Monitoring of the Ripening Process of Pressed-Curd Cheeses Made from Ewe’s Milk Using Enzymatic Coagulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AU | Arbitrary units |
CL | Castilla y León |
CLA | Conjugated linoleic acid |
CLM | Castilla–La Mancha |
COSY | Homonuclear Correlation SpectroscopY |
CPMG | Carr–Purcell–Meiboom–Gill |
EMC | Ewe’s milk cheese |
HRMAS | High-resolution magic angle spinning |
I | Industrial |
LAB | Lactic acid bacteria |
NMR | Nuclear magnetic resonance |
NOESY | Nuclear Overhauser Enhancement SpectroscopY |
NSLAB | Non-starter lactic acid bacteria |
PC | Principal component |
PCA | Principal Component Analysis |
PDO | Protected Designation of Origin |
PGI | Protected Geographical Indication |
RT | Ripening time |
T | Traditional |
References
- Medina, M.; Nuñez, M. Cheeses from Ewe and Goat Milk. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 1069–1091. [Google Scholar]
- Official Journal of the European Communities. COMMISSION REGULATION (EC) No 1107/96 of 12 June 1996 on the Registration of Geographical Indications and Designations of Origin under the Procedure Laid down in Article 17 of Council Regulation (EEC) No 2081/92. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31996R1107 (accessed on 1 June 2025).
- Official Journal of the European Union. COMMISSION IMPLEMENTING REGULATION (EU) 2020/247 of 18 February 2020 Entering a Name in the Register of Protected Designations of Origin and Protected Geographical Indications [‘Queso Castellano’ (PGI)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32020R0247 (accessed on 1 June 2025).
- Taborda, G.; Gómez-Ruiz, J.A.; Martínez-Castro, I.; Amigo, L.; Ramos, M.; Molina, E. Taste and favor of artisan and industrial Manchego cheese as influenced by the water-soluble extract compounds. Eur. Food Res. Technol. 2008, 227, 323–330. [Google Scholar] [CrossRef]
- Segura, J.; Fernández-Valle, M.E.; Cruz-Díaz, K.P.; Romero-de-Ávila, M.D.; Castejón, D.; Remiro, V.; Cambero, M.I. Magnetic Resonance Imaging (MRI) of Spanish Sheep Cheese: A Study on the Relationships between Ripening Times, Geographical Origins, Textural Parameters, and MRI Parameters. Foods 2024, 13, 3225. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, E.; Gaya, P.; Medina, M.; Núñez, M. Evolution of the volatile components of raw ewes’ milk Castellano cheese: Seasonal variation. Int. Dairy J. 2004, 14, 39–46. [Google Scholar] [CrossRef]
- Gaya, P.; Fernández-García, E.; Medina, M.; Núñez, M. Seasonal variation in microbiological, chemical, textural and sensory characteristics during ripening of raw ewes’ milk Castellano cheese. Milchwissenschaft 2003, 58, 376–379. [Google Scholar]
- Castejón, D.; Segura, J.; Cruz-Díaz, K.P.; Remiro, V.; Fernández-Valle, M.E.; Romero de Ávila, M.D.; Villa, P.; Cambero, M.I. A Metabolomics Study by 1H HRMAS NMR: From Sheep Milk to a Pressed-Curd Cheese: A Proof of Concept. Analytica 2024, 5, 170–186. [Google Scholar] [CrossRef]
- McSweeney, P.L.H. Biochemistry of cheese ripening: Introduction and overview. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 379–387. [Google Scholar]
- Scano, P.; Cusano, E.; Caboni, P.; Consonni, R. NMR metabolite profiles of dairy: A review. Int. Dairy J. 2019, 90, 56–67. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Q.; Wang, M.; Zhou, J.; Yang, M. Quantitative 1H NMR methodology for purity assay with high accuracy. Accredit. Qual. Assur. 2023, 28, 253–260. [Google Scholar] [CrossRef]
- Marcone, M.F.; Waye, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 2013, 51, 719–747. [Google Scholar] [CrossRef]
- Beckonert, O.; Coen, M.; Keun, H.C.; Wang, Y.; Ebbels, T.M.D.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 2010, 5, 1019–1032. [Google Scholar] [CrossRef]
- Mazzei, P.; Piccolo, A. HRMAS NMR spectroscopy applications in agriculture. Chem. Biol. Technol. Agric. 2017, 4, 11. [Google Scholar] [CrossRef]
- Mazzei, P.; Piccolo, A. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem. 2012, 132, 1620–1627. [Google Scholar] [CrossRef]
- Piras, C.; Marincola, F.C.; Savorani, F.; Engelsen, S.B.; Cosentino, S.; Viale, S.; Pisano, M.B. A NMR metabolomics study of the ripening process of the Fiore Sardo cheese produced with autochthonous adjunct cultures. Food Chem. 2013, 141, 2137–2147. [Google Scholar] [CrossRef]
- Ritota, M.; Contò, M.; Failla, S.; Beni, C.; Macchioni, A.; Valentini, M. PGI Chianina meat traceability by means of multivariate HRMAS-NMR data analysis. Anal. Methods 2025, 17, 291–299. [Google Scholar] [CrossRef]
- Mazzei, P.; Piccolo, A.; Valentini, M. Intact Food Analysis by Means of HRMAS-NMR Spectroscopy. In Modern Magnetic Resonance, 1st ed.; Webb, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1503–1518. [Google Scholar]
- Okoye, C.O.; Jiang, H.; Nazar, M.; Tan, X.; Jiang, J. Redefining modern food analysis: Significance of omics analytical techniques integration, chemometrics and bioinformatics. TrAC Trend. Anal. Chem. 2024, 175, 117706. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, L.; Jiao, Y.; Qiao, X.; Han, R.; Li, X.; Wang, C.; Zhang, X.; Kouame, K.J.E.P. Insights into flavor quality and metabolites profiles of fresh cheese with different probiotics by SPME-GC-MS and untargeted metabolomics. Food Res. Int. 2024, 197, 115154. [Google Scholar] [CrossRef]
- Pellacani, S.; Citti, C.; Strani, L.; Benedetti, B.; Becchi, P.P.; Pizzamiglio, V.; Durante, C. Comparative analysis of features extraction protocols for LC-HRMS untargeted metabolomics in mountain cheese ‘identitation’. Microchem. J. 2024, 207, 111863. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Kuballa, T.; Lachenmeier, D.W. Chemometric methods in NMR spectroscopic analysis of food products. J. Anal. Chem. 2013, 68, 755–766. [Google Scholar] [CrossRef]
- Jensen, H.M.; Bertram, H.C. The magic angle view to food: Magic-angle spinning (MAS) NMR spectroscopy in food science. Metabolomics 2019, 15, 44. [Google Scholar] [CrossRef]
- Castejón, D.; García-Segura, J.M.; Escudero, R.; Herrera, A.; Cambero, M.I. Metabolomics of meat exudate: Its potential to evaluate beef meat conservation and aging. Anal. Chim. Acta 2015, 901, 1–11. [Google Scholar] [CrossRef] [PubMed]
- García-García, A.B.; Herrera, A.; Fernández-Valle, M.E.; Cambero, M.I.; Castejón, D. Evaluation of E-beam irradiation and storage time in pork exudates using NMR metabolomics. Food Res. Int. 2019, 120, 553–559. [Google Scholar] [CrossRef]
- Segura, J.; Remiro, V.; Romero-de-Ávila, M.D.; Villa, P.; Castejón, D.; Santos, C.; Cambero, M.I. Game meat and high-resolution magic angle spinning nuclear magnetic resonance spectroscopy: A traditional foodstuff versus a novel analysis technology. Anim. Front. 2023, 13, 56–61. [Google Scholar] [CrossRef]
- Galli, B.D. Sustainability implications and relevance of using omics sciences to investigate cheeses with protected designation of origin. J. Sci. Food Agric. 2024, 104, 6388–6396. [Google Scholar] [CrossRef]
- Castejón, D.; Villa, P.; Calvo, M.M.; Santa-Maria, G.; Herraiz, M.; Herrera, A. H-1-HRMAS NMR study of smoked Atlantic salmon (Salmo salar). Magn. Reson. Chem. 2010, 48, 693–703. [Google Scholar] [CrossRef]
- Scano, P.; Anedda, R.; Melis, M.P.; Dessi, M.A.; Lai, A.; Roggio, T. 1H- and 13C-NMR Characterization of the Molecular Components of the Lipid Fraction of Pecorino Sardo Cheese. J. Am. Oil. Chem. Soc. 2011, 88, 1305–1316. [Google Scholar] [CrossRef]
- Goodpaster, A.M.; Romick-Rosendale, L.E.; Kennedy, M.A. Statistical significance analysis of nuclear magnetic resonance-based metabonomics data. Anal. Biochem. 2010, 401, 134–143. [Google Scholar] [CrossRef]
- Corzo, N.; Villamiel, M.; Arias, M.; Jimenez-Perez, S.; Morales, F.J. The Maillard reaction during the ripening of Manchego cheese. Food Chem. 2000, 71, 255–258. [Google Scholar] [CrossRef]
- Garde, S.; Gaya, P.; Arias, R.; Núñez, M. Enhanced PFGE protocol to study the genomic diversity of Clostridium spp. isolated from Manchego cheeses with late blowing defect. Food Control 2012, 28, 392–399. [Google Scholar] [CrossRef]
- Hou, J.; McSweeney, P.L.H.; Beresford, T.P.; Guinee, T.P. Effect of curd washing on the properties of reduced-calcium and standard-calcium Cheddar cheese. J. Dairy Sci. 2014, 97, 5983–5999. [Google Scholar] [CrossRef]
- Lee, M.R.; Johnson, M.E.; Govindasamy-Lucey, S.; Jaeggi, J.J.; Lucey, J.A. Effect of different curd-washing methods on the insoluble Ca content and rheological properties of Colby cheese during ripening. J. Dairy Sci. 2011, 94, 2692–2700. [Google Scholar] [CrossRef]
- Buffa, M.; Guamis, B.; Saldo, J.; Trujillo, A.J. Changes in organic acids during ripening of cheeses made from raw, pasteurized or high-pressure-treated goats’ milk. LWT-Food Sci. Technol. 2004, 37, 247–253. [Google Scholar] [CrossRef]
- Jang, Y.; Elnar, A.G.; Hur, S.J.; Kim, G.B. Factors influencing conjugated linoleic acid content of dairy products: Challenges and strategies. Crit. Rev. Food Sci. Nutr. 2024, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Govari, M.; Vareltzis, P. Conjugated linoleic acid in cheese: A review of the factors affecting its presence. J. Food Sci. 2025, 90, e70021. [Google Scholar] [CrossRef] [PubMed]
- Abarquero, D.; Bodelon, R.; Manso, C.; Rivero, P.; Fresno, J.M.; Tornadijo, M.E. Effect of autochthonous starter and non-starter cultures on the physicochemical, microbiological and sensorial characteristics of Castellano cheese. Int. J. Dairy Technol. 2023, 77, 234–245. [Google Scholar] [CrossRef]
- Bergamini, C.V.; Wolf, I.V.; Perotti, M.C.; Zalazar, C.A. Characterisation of biochemical changes during ripening in Argentinean sheep cheeses. Small Rumin. Res. 2010, 94, 79–89. [Google Scholar] [CrossRef]
- Lombardi, A.M.; Bevilacqua, A.E.; Califano, A.N. Variation in organic-acids content during ripening of Reggianito cheese in air-tight sealed bags. Food Chem. 1994, 51, 221–226. [Google Scholar] [CrossRef]
- Califano, A.N.; Bevilacqua, A.E. Multivariate Analysis of the Organic Acids Content of Gouda type Cheese during Ripening. J. Food Compos. Anal. 2000, 13, 949–960. [Google Scholar] [CrossRef]
- Califano, A.N.; Bevilacqua, A.E. Freezing low moisture Mozzarella cheese: Changes in organic acid content. Food Chem. 1999, 64, 193–198. [Google Scholar] [CrossRef]
- Lues, J.F.R.; Bekker, A.C.M. Mathematical expressions for organic acids in early ripening of a cheddar cheese. J. Food Compos. Anal 2002, 15, 11–17. [Google Scholar] [CrossRef]
- Wolf, I.V.; Perotti, M.C.; Bernal, S.M.; Zalazar, C.A. Study of the chemical composition, proteolysis, lipolysis and volatile compounds profile of commercial Reggianito Argentino cheese: Characterization of Reggianito Argentino cheese. Food Res. Int. 2010, 43, 1204–1211. [Google Scholar] [CrossRef]
- Ballesteros, C.; Poveda, J.; González-Viñas, M.A.; Arellano, L. Microbiological, biochemical and sensory characteristics of artisanal and industrial Manchego cheeses. Food Control 2006, 17, 249–255. [Google Scholar] [CrossRef]
- Gore, E.; Mardon, J.; Guerinon, D.; Lebecque, A. Exploratory study of acid-forming potential of commercial cheeses: Impact of cheese type. Int. J. Food Sci. Nutr. 2016, 67, 412–421. [Google Scholar] [CrossRef]
- Silva, L.F.; Sunakozawa, T.N.; Monteiro, D.A.; Casella, T.; Conti, A.C.; Todorov, S.D.; Barretto Penna, A.L. Potential of cheese associated lactic acid bacteria to metabolize citrate and produce organic acids and acetoin. Metabolites 2023, 13, 1134. [Google Scholar] [CrossRef]
- Poveda, J.M.; Chicon, R.; Cabezas, L. Biogenic amine content and proteolysis in Manchego cheese manufactured with Lactobacillus paracasei subsp paracasei as adjunct and other autochthonous strains as starters. Int. Dairy J. 2015, 47, 94–101. [Google Scholar] [CrossRef]
- Poveda, J.M.; Garcia, A.; Martin-Alvarez, P.J.; Cabezas, L. Application of partial least squares (PLS) regression to predict the ripening time of Manchego cheese. Food Chem. 2004, 84, 29–33. [Google Scholar] [CrossRef]
- Hayaloglu, A.A.; Deegan, K.C.; McSweeney, P.L.H. Effect of milk pasteurization and curd scalding temperature on proteolysis in Malatya, a Halloumi-type cheese. Dairy Sci. Technol. 2010, 90, 99–109. [Google Scholar] [CrossRef]
- Izco, J.M.; Torre, P.; Barcina, Y. Ripening of Ossau-Iraty cheese: Determination of free amino acids by RP-HPLC and of total free amino acids by the TNBS method. Food Control 2000, 11, 7–11. [Google Scholar] [CrossRef]
- Hernández, I.; Barron, L.J.R.; Virto, M.; Pérez-Elortondo, F.J.; Flanagan, C.; Rozas, U.; Nájera, A.I.; Albisu, M.; Vicente, M.S.; de Renobales, M. Lipolysis, proteolysis and sensory properties of ewe’s raw milk cheese (Idiazabal) made with lipase addition. Food Chem. 2009, 116, 158–166. [Google Scholar] [CrossRef]
- Sousa, M.J.; Ardo, Y.; McSweeney, P.L.H. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 2001, 11, 327–345. [Google Scholar] [CrossRef]
- Halouska, S.; Fenton, R.J.; Barletta, R.G.; Powers, R. Predicting the in vivo mechanism of action for drug leads using NMR metabolomics. ACS Chem. Biol. 2012, 7, 166–171. [Google Scholar] [CrossRef]
- Muhammad Ali, P.; Faraj, R. Data Normalization and Standardization: A Technical Report. Mach. Learn. Tech. Rep. 2014, 1, 1–6. [Google Scholar] [CrossRef]
Fatty Acids * | Samples | Ripening Time (Days) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 9 | 30 | 90 | 180 | ||||||||||||||||||||||
Butyric acid | I-CL | 5.780 | ± | 0.0250 | a | α | 5.690 | ± | 0.0405 | b | α | 5.550 | ± | 0.0301 | c | α | 5.490 | ± | 0.0620 | cd | α | 5.400 | ± | 0.0444 | d | α |
T-CL | 0.781 | ± | 0.0111 | c | β | 0.801 | ± | 0.0112 | c | β | 0.922 | ± | 0.0103 | b | β | 1.320 | ± | 0.0170 | a | β | 1.390 | ± | 0.0166 | a | β | |
I-CLM | 8.200 | ± | 0.0539 | ab | α | 8.769 | ± | 0.1330 | a | α | 8.796 | ± | 0.0386 | a | α | 7.478 | ± | 0.0915 | b | 7.573 | ± | 0.0959 | b | β | ||
T-CLM | 6.968 | ± | 0.0102 | b | β | 6.948 | ± | 0.0014 | b | β | 6.698 | ± | 0.0018 | b | β | 7.354 | ± | 0.0345 | ab | 7.816 | ± | 0.0033 | a | α | ||
Caproleic acid | I-CL | 0.009 | ± | 0.0015 | β | 0.009 | ± | 0.0014 | β | 0.009 | ± | 0.0002 | β | 0.008 | ± | 0.0015 | β | 0.008 | ± | 0.0013 | β | |||||
T-CL | 0.010 | ± | 0.0016 | α | 0.011 | ± | 0.0012 | α | 0.011 | ± | 0.0017 | α | 0.011 | ± | 0.0004 | α | 0.012 | ± | 0.0004 | α | ||||||
I-CLM | 0.016 | ± | 0.0036 | a | α | 0.015 | ± | 0.0012 | a | α | 0.014 | ± | 0.0007 | ab | 0.014 | ± | 0.0014 | ab | 0.013 | ± | 0.0019 | b | ||||
T-CLM | 0.011 | ± | 0.0016 | b | β | 0.012 | ± | 0.0026 | ab | β | 0.013 | ± | 0.0092 | a | 0.014 | ± | 0.0063 | a | 0.014 | ± | 0.0011 | a | ||||
Linoleic acid | I-CL | 0.121 | ± | 0.0028 | α | 0.128 | ± | 0.0030 | α | 0.130 | ± | 0.0019 | α | 0.131 | ± | 0.0039 | α | 0.139 | ± | 0.0017 | α | |||||
T-CL | 0.027 | ± | 0.0034 | b | β | 0.038 | ± | 0.0021 | b | β | 0.049 | ± | 0.0020 | ab | β | 0.063 | ± | 0.0008 | a | β | 0.066 | ± | 0.0043 | a | β | |
I-CLM | 0.092 | ± | 0.0049 | 0.104 | ± | 0.0099 | 0.110 | ± | 0.0041 | 0.117 | ± | 0.0033 | 0.127 | ± | 0.0125 | |||||||||||
T-CLM | 0.089 | ± | 0.0020 | 0.090 | ± | 0.0029 | 0.091 | ± | 0.0057 | 0.105 | ± | 0.0020 | 0.114 | ± | 0.0028 | |||||||||||
Linolenic acid | I-CL | 0.258 | ± | 0.0024 | β | 0.261 | ± | 0.0023 | β | 0.277 | ± | 0.0017 | β | 0.286 | ± | 0.0052 | β | 0.290 | ± | 0.0012 | β | |||||
T-CL | 0.291 | ± | 0.0042 | α | 0.295 | ± | 0.0013 | α | 0.298 | ± | 0.0010 | α | 0.301 | ± | 0.0018 | α | 0.309 | ± | 0.0028 | α | ||||||
I-CLM | 0.295 | ± | 0.0126 | α | 0.276 | ± | 0.0254 | α | 0.272 | ± | 0.0076 | 0.274 | ± | 0.0172 | 0.289 | ± | 0.0174 | |||||||||
T-CLM | 0.255 | ± | 0.0052 | β | 0.247 | ± | 0.0228 | β | 0.277 | ± | 0.0042 | 0.268 | ± | 0.0051 | 0.280 | ± | 0.0028 | |||||||||
CLA | I-CL | 0.009 | ± | 0.0005 | b | β | 0.009 | ± | 0.0004 | b | β | 0.009 | ± | 0.0006 | b | β | 0.008 | ± | 0.0006 | a | β | 0.009 | ± | 0.0007 | a | β |
T-CL | 0.013 | ± | 0.0004 | b | α | 0.010 | ± | 0.0002 | b | α | 0.012 | ± | 0.0006 | ab | α | 0.013 | ± | 0.0003 | a | α | 0.014 | ± | 0.0002 | a | α | |
I-CLM | 0.013 | ± | 0.0033 | b | 0.014 | ± | 0.0016 | b | 0.014 | ± | 0.0022 | ab | 0.015 | ± | 0.0021 | a | 0.015 | ± | 0.0006 | a | ||||||
T-CLM | 0.013 | ± | 0.0078 | b | 0.015 | ± | 0.0051 | ab | 0.015 | ± | 0.0044 | ab | 0.016 | ± | 0.0014 | a | 0.016 | ± | 0.0044 | a |
Amino Acids * | Samples | Ripening Time (Days) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 9 | 30 | 90 | 180 | ||||||||||||||||||||||
Histidine (His) | I-CL | 0.205 | ± | 0.060 | b | 0.199 | ± | 0.045 | b | 0.285 | ± | 0.037 | b | β | 0.612 | ± | 0.090 | a | β | 0.747 | ± | 0.012 | a | β | ||
T-CL | 0.215 | ± | 0.022 | b | 0.196 | ± | 0.124 | b | 1.539 | ± | 0.092 | a | α | 1.355 | ± | 0.029 | a | α | 1.505 | ± | 0.022 | a | α | |||
I-CLM | 0.320 | ± | 0.080 | c | α | 0.370 | ± | 0.120 | c | 0.450 | ± | 0.050 | b | 0.630 | ± | 0.190 | a | β | 0.700 | ± | 0.070 | a | β | |||
T-CLM | 0.260 | ± | 0.010 | c | β | 0.360 | ± | 0.100 | bc | 0.410 | ± | 0.010 | b | 0.940 | ± | 0.010 | a | α | 1.550 | ± | 0.010 | a | α | |||
Phenylalanine (Phe) | I-CL | 0.258 | ± | 0.033 | c | 0.280 | ± | 0.011 | c | 0.542 | ± | 0.023 | b | β | 1.950 | ± | 0.096 | a | β | 2.254 | ± | 0.039 | a | β | ||
T-CL | 0.193 | ± | 0.009 | c | 0.344 | ± | 0.194 | c | 2.353 | ± | 0.114 | b | α | 3.292 | ± | 0.018 | a | α | 3.586 | ± | 0.022 | a | α | |||
I-CLM | 1.250 | ± | 0.120 | c | α | 1.810 | ± | 0.780 | bc | 2.950 | ± | 0.500 | b | β | 4.430 | ± | 0.830 | a | 5.790 | ± | 1.850 | a | ||||
T-CLM | 0.860 | ± | 0.030 | d | β | 1.590 | ± | 0.060 | c | 4.120 | ± | 0.100 | b | α | 4.970 | ± | 0.120 | b | 6.170 | ± | 0.010 | a | ||||
Tryptophan (Trp) | I-CL | 0.603 | ± | 0.040 | c | 0.700 | ± | 0.033 | bc | 0.852 | ± | 0.041 | b | β | 1.450 | ± | 0.001 | a | 1.564 | ± | 0.148 | a | ||||
T-CL | 0.418 | ± | 0.007 | c | 0.788 | ± | 0.187 | b | 1.657 | ± | 0.175 | a | α | 1.889 | ± | 0.307 | a | 1.946 | ± | 0.050 | a | |||||
I-CLM | 0.430 | ± | 0.140 | c | 0.690 | ± | 0.110 | b | α | 1.000 | ± | 0.270 | a | 1.180 | ± | 0.260 | a | 1.710 | ± | 0.540 | a | |||||
T-CLM | 0.300 | ± | 0.040 | d | 0.470 | ± | 0.010 | c | β | 0.860 | ± | 0.010 | b | 1.250 | ± | 0.120 | a | 1.130 | ± | 0.030 | a | |||||
Tyrosine (Tyr) | I-CL | 0.323 | ± | 0.048 | c | 0.395 | ± | 0.016 | c | 0.511 | ± | 0.022 | b | β | 1.039 | ± | 0.078 | a | β | 1.257 | ± | 0.031 | a | β | ||
T-CL | 0.243 | ± | 0.033 | d | 0.484 | ± | 0.070 | c | 1.551 | ± | 0.137 | b | α | 2.225 | ± | 0.030 | a | α | 2.551 | ± | 0.041 | a | α | |||
I-CLM | 2.150 | ± | 0.220 | d | 4.500 | ± | 0.090 | c | α | 4.650 | ± | 0.070 | c | β | 5.700 | ± | 0.080 | b | β | 6.230 | ± | 0.080 | a | β | ||
T-CLM | 2.010 | ± | 0.050 | e | 3.670 | ± | 0.030 | d | β | 5.870 | ± | 0.060 | c | α | 6.810 | ± | 0.010 | b | α | 9.000 | ± | 0.010 | a | α | ||
Threonine (Thr) | I-CL | 2.630 | ± | 0.372 | b | 2.808 | ± | 0.202 | b | 2.902 | ± | 0.086 | b | β | 4.060 | ± | 0.264 | a | β | 4.643 | ± | 0.440 | a | β | ||
T-CL | 2.590 | ± | 0.066 | d | 3.781 | ± | 0.455 | c | 3.908 | ± | 0.162 | c | α | 6.280 | ± | 0.258 | b | α | 7.967 | ± | 0.141 | a | α | |||
I-CLM | 1.660 | ± | 0.690 | c | 2.730 | ± | 0.880 | bc | β | 3.280 | ± | 0.350 | b | β | 3.790 | ± | 0.410 | b | β | 6.100 | ± | 0.520 | a | α | ||
T-CLM | 2.280 | ± | 0.060 | d | 3.220 | ± | 0.080 | c | α | 4.270 | ± | 0.220 | b | α | 5.130 | ± | 0.080 | a | α | 5.630 | ± | 0.060 | a | β | ||
Proline (Pro) | I-CL | 1.160 | ± | 0.306 | b | 1.197 | ± | 0.116 | b | 1.116 | ± | 0.131 | b | 1.660 | ± | 0.486 | a | β | 1.876 | ± | 0.220 | a | β | |||
T-CL | 0.853 | ± | 0.073 | c | 1.466 | ± | 0.368 | b | 1.947 | ± | 0.228 | b | 3.103 | ± | 0.332 | a | α | 3.518 | ± | 0.245 | a | α | ||||
I-CLM | 0.600 | ± | 0.060 | d | 1.400 | ± | 0.180 | c | α | 2.000 | ± | 0.250 | b | α | 2.440 | ± | 0.070 | b | α | 4.120 | ± | 0.370 | a | α | ||
T-CLM | 0.470 | ± | 0.120 | c | 1.070 | ± | 0.180 | b | β | 1.570 | ± | 0.330 | b | β | 2.180 | ± | 0.150 | a | β | 2.660 | ± | 0.110 | a | β | ||
Leucine (Leu) | I-CL | 2.720 | ± | 0.512 | b | 2.860 | ± | 1.331 | b | 3.008 | ± | 0.535 | a | 3.569 | ± | 1.172 | a | 3.696 | ± | 0.030 | a | |||||
T-CL | 2.674 | ± | 1.258 | b | 2.861 | ± | 0.218 | b | 3.647 | ± | 0.325 | a | 4.102 | ± | 1.200 | a | 4.296 | ± | 0.167 | a | ||||||
I-CLM | 7.060 | ± | 0.834 | c | α | 9.190 | ± | 1.890 | b | α | 10.900 | ± | 0.633 | ab | α | 12.300 | ± | 1.540 | a | α | 15.300 | ± | 2.660 | a | α | |
T-CLM | 5.340 | ± | 0.254 | d | β | 6.020 | ± | 0.029 | c | β | 6.180 | ± | 0.029 | c | β | 8.260 | ± | 0.143 | b | β | 9.530 | ± | 0.051 | a | β | |
Isoleucine (Ile) | I-CL | 9.413 | ± | 1.197 | b | 9.732 | ± | 0.794 | ab | 10.562 | ± | 0.168 | a | 11.130 | ± | 1.921 | a | 11.481 | ± | 0.145 | a | |||||
T-CL | 7.810 | ± | 2.728 | b | 9.032 | ± | 1.679 | b | 12.685 | ± | 0.076 | a | 13.160 | ± | 1.728 | a | 13.430 | ± | 0.306 | a | ||||||
I-CLM | 2.650 | ± | 0.249 | c | 2.800 | ± | 0.147 | c | 3.380 | ± | 0.134 | b | α | 3.620 | ± | 0.104 | b | α | 4.810 | ± | 0.286 | a | α | |||
T-CLM | 2.420 | ± | 0.064 | d | 2.660 | ± | 0.005 | c | 3.090 | ± | 0.064 | b | β | 3.290 | ± | 0.004 | b | β | 4.380 | ± | 0.164 | a | β | |||
Aspartic Acid (Asp) | I-CL | 2.460 | ± | 0.038 | b | 2.607 | ± | 0.047 | b | 2.976 | ± | 0.052 | b | β | 4.230 | ± | 0.114 | a | β | 4.640 | ± | 0.031 | a | β | ||
T-CL | 1.980 | ± | 0.048 | d | 2.748 | ± | 0.047 | c | 5.541 | ± | 0.024 | b | α | 6.460 | ± | 0.012 | a | α | 6.785 | ± | 0.023 | a | α | |||
I-CLM | 1.542 | ± | 0.610 | c | 2.310 | ± | 0.490 | c | α | 2.888 | ± | 0.460 | bc | 3.307 | ± | 0.100 | b | 5.304 | ± | 1.020 | a | |||||
T-CLM | 1.585 | ± | 0.170 | c | 1.965 | ± | 0.210 | c | β | 3.043 | ± | 0.080 | b | 3.569 | ± | 0.080 | b | 5.183 | ± | 0.180 | a | |||||
Glutamine (Gln) | I-CL | 5.530 | ± | 0.026 | b | α | 5.708 | ± | 0.072 | b | α | 5.934 | ± | 0.044 | b | β | 7.020 | ± | 0.160 | a | β | 7.347 | ± | 0.020 | a | β |
T-CL | 3.620 | ± | 0.090 | c | β | 4.646 | ± | 0.002 | c | β | 7.936 | ± | 0.008 | b | α | 8.780 | ± | 0.033 | a | α | 9.187 | ± | 0.058 | a | α | |
I-CLM | 4.110 | ± | 0.280 | c | 4.340 | ± | 0.630 | bc | β | 5.780 | ± | 0.920 | b | β | 6.170 | ± | 0.170 | b | β | 8.920 | ± | 0.110 | a | β | ||
T-CLM | 3.670 | ± | 0.810 | c | 5.730 | ± | 0.680 | b | α | 6.910 | ± | 0.750 | b | α | 7.270 | ± | 0.550 | b | α | 10.100 | ± | 1.440 | a | α | ||
Glutamic Acid (Glu) | I-CL | 1.477 | ± | 0.023 | c | 1.567 | ± | 0.057 | bc | 1.646 | ± | 0.067 | b | β | 2.279 | ± | 0.136 | a | 2.495 | ± | 0.045 | a | β | |||
T-CL | 1.267 | ± | 0.119 | c | 1.487 | ± | 0.012 | c | 2.513 | ± | 0.006 | b | α | 2.837 | ± | 0.033 | a | 3.032 | ± | 0.048 | a | α | ||||
I-CLM | 1.240 | ± | 0.017 | c | 1.410 | ± | 0.086 | c | 1.740 | ± | 0.110 | b | 1.840 | ± | 0.023 | b | 2.580 | ± | 0.056 | a | β | |||||
T-CLM | 1.350 | ± | 0.109 | c | 1.520 | ± | 0.169 | bc | 1.840 | ± | 0.134 | b | 2.050 | ± | 0.173 | b | 3.040 | ± | 0.363 | a | α | |||||
Methionine (Met) | I-CL | 3.667 | ± | 0.116 | b | β | 3.902 | ± | 0.035 | b | β | 3.868 | ± | 0.052 | b | β | 4.661 | ± | 0.067 | a | β | 4.554 | ± | 0.204 | a | β |
T-CL | 5.314 | ± | 0.256 | b | α | 4.546 | ± | 0.195 | b | α | 9.326 | ± | 0.021 | a | α | 9.939 | ± | 0.021 | a | α | 9.978 | ± | 0.098 | a | α | |
I-CLM | 1.380 | ± | 0.670 | b | 1.940 | ± | 0.410 | b | 2.080 | ± | 0.400 | b | 2.250 | ± | 0.100 | ab | 3.020 | ± | 0.440 | a | β | |||||
T-CLM | 1.400 | ± | 0.070 | c | 1.800 | ± | 0.320 | c | 2.790 | ± | 0.600 | b | 2.610 | ± | 0.020 | b | 4.190 | ± | 0.330 | a | α | |||||
Valine (Val) | I-CL | 2.228 | ± | 0.103 | b | 2.339 | ± | 0.192 | b | 2.516 | ± | 0.099 | b | 3.194 | ± | 0.216 | a | 3.352 | ± | 0.065 | a | |||||
T-CL | 1.986 | ± | 0.464 | c | 2.206 | ± | 0.266 | c | 3.039 | ± | 0.650 | b | 3.512 | ± | 0.034 | a | 3.702 | ± | 0.256 | a | ||||||
I-CLM | 3.680 | ± | 0.610 | c | β | 6.400 | ± | 0.218 | b | α | 6.420 | ± | 0.900 | b | β | 7.550 | ± | 0.470 | a | β | 8.920 | ± | 0.970 | a | β | |
T-CLM | 4.540 | ± | 0.160 | c | α | 4.530 | ± | 0.120 | c | β | 9.000 | ± | 0.030 | b | α | 9.400 | ± | 0.240 | b | α | 11.500 | ± | 0.150 | a | α |
Cluster 1 | Cluster 2 | Cluster 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | Characteristic | Group Category (%) | t-Student | p-Value | Characteristic | Group Category (%) | t-Student | p-Value | Characteristic | Group Category (%) | t-Student | p-Value |
Geography | CL | 100 | 6.79 | 0.0001 | CLM | 100 | 11.28 | 0.0000 | CL | 100 | 5.22 | 0.0000 |
CLM | 0 | −6.97 | 0.0000 | CL | 0 | −11.28 | 0.0000 | CLM | 0 | −5.22 | 0.0000 | |
Type | I-CL | 66.7 | 5.93 | 0.0001 | T-CLM | 50 | 6.1 | 0.0000 | T-CL | 75 | 5.18 | 0.0000 |
I-CLM | 50 | 6.1 | 0.0000 | |||||||||
Ripening time (days) | 180 | 0 | −3.43 | 0.0001 | 180 | 50 | 3.22 | 0.001 | ||||
2 | 0 | −2.48 | 0.007 | |||||||||
9 | 0 | −2.48 | 0.007 | |||||||||
Metabolite | Mean | SD | t-Student | p-Value | Mean | SD | t-Student | p-Value | Mean | SD | t-Student | p-Value |
Aspartic acid | 0.0003 | 0.0001 | −3.4549 | 0.0003 | 0.0003 | 0.0001 | −2.4731 | 0.0067 | 0.0006 | 0.0001 | 7.0495 | 0.0000 |
Glutamic acid | 0.0358 | 0.0010 | 6.5192 | 0.0000 | 0.0019 | 0.0006 | −9.9411 | 0.0000 | 0.0357 | 0.0003 | 4.9577 | 0.0000 |
Asparagine | 0.0004 | 0.0001 | −2.4876 | 0.0064 | 0.0004 | 0.0001 | −2.9566 | 0.0016 | 0.0006 | 0.0000 | 6.5457 | 0.0000 |
Phenylalanine | 0.0002 | 0.0001 | −3.9648 | 0.0000 | 0.0007 | 0.0001 | 7.1066 | 0.0000 | ||||
Glutamine | 0.0006 | 0.0002 | −8.2071 | 0.0000 | 0.0027 | 0.0002 | 8.2419 | 0.0000 | ||||
Histidine | 0.0000 | 0.0000 | −5.1925 | 0.0000 | 0.0001 | 0.0000 | 6.6514 | 0.0000 | ||||
Isoleucine | 0.0029 | 0.0003 | −4.1080 | 0.0000 | 0.0039 | 0.0003 | 4.3854 | 0.0000 | ||||
Leucine | 0.0037 | 0.0008 | −6.0491 | 0.0000 | 0.0090 | 0.0032 | 6.6859 | 0.0000 | ||||
Methionine | 0.0002 | 0.0001 | −8.0185 | 0.0000 | 0.0008 | 0.0001 | 7.6561 | 0.0000 | ||||
Proline | 0.0001 | 0.0000 | −4.1270 | 0.0000 | 0.0003 | 0.0001 | 4.1025 | 0.0000 | ||||
Tyrosine | 0.0000 | 0.0000 | −3.3130 | 0.0005 | 0.0001 | 0.0000 | −3.9128 | 0.0000 | 0.0002 | 0.0000 | 8.6866 | 0.0000 |
Threonine | 0.0003 | 0.0001 | −4.1312 | 0.0000 | 0.0005 | 0.0002 | 4.6800 | 0.0000 | ||||
Tryptophan | 0.0001 | 0.0000 | −3.6459 | 0.0001 | 0.0002 | 0.0000 | 6.6877 | 0.0000 | ||||
Valine | 0.0006 | 0.0001 | −3.6326 | 0.0001 | 0.0007 | 0.0002 | −2.5991 | 0.0047 | 0.0013 | 0.0002 | 7.4105 | 0.0000 |
Acetic acid | 0.0015 | 0.0003 | −7.0440 | 0.0000 | 0.0059 | 0.0017 | 8.2407 | 0.0000 | ||||
Citric acid | 0.0006 | 0.0001 | 3.0169 | 0.0013 | 0.0004 | 0.0001 | −7.5405 | 0.0000 | 0.0008 | 0.0001 | 5.9694 | 0.0000 |
Lactic acid | 0.0042 | 0.0008 | −3.1572 | 0.0008 | 0.0045 | 0.0008 | −2.4370 | 0.0074 | 0.0065 | 0.0014 | 6.6632 | 0.0000 |
Ethanol | 0.0078 | 0.0004 | −3.2882 | 0.0005 | 0.0082 | 0.0005 | 3.0032 | 0.0013 | ||||
Choline | 0.0002 | 0.0001 | −3.1532 | 0.0008 | 0.0004 | 0.0001 | 4.9108 | 0.0000 | ||||
Cholesterol | 0.0013 | 0.0001 | 5.5490 | 0.0000 | 0.0006 | 0.0001 | −9.4532 | 0.0000 | 0.0013 | 0.0001 | 5.4593 | 0.0000 |
Butyric acid | 0.0093 | 0.0014 | −6.2615 | 0.0000 | 0.0524 | 0.0138 | 8.9918 | 0.0000 | 0.0126 | 0.0007 | −4.0664 | 0.0000 |
Caproleic acid | 0.0001 | 0.0000 | −2.7537 | 0.0029 | 0.0001 | 0.0000 | 5.1125 | 0.0000 | 0.0001 | 0.0000 | −3.2360 | 0.0006 |
CLA | 0.0001 | 0.0000 | −5.4451 | 0.0000 | 0.0001 | 0.0000 | 7.7723 | 0.0000 | 0.0001 | 0.0000 | −3.4772 | 0.0003 |
Linoleic acid | 0.0010 | 0.0001 | −6.2813 | 0.0000 | 0.0015 | 0.0001 | 7.2087 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castejón, D.; Segura, J.; Cruz-Díaz, K.P.; Romero-de-Ávila, M.D.; Fernández-Valle, M.E.; Remiro, V.; Villa-Valverde, P.; Cambero, M.I. 1H HRMAS NMR Metabolomics for the Characterization and Monitoring of Ripening in Pressed-Curd Ewe’s Milk Cheeses Produced Through Enzymatic Coagulation. Foods 2025, 14, 2355. https://doi.org/10.3390/foods14132355
Castejón D, Segura J, Cruz-Díaz KP, Romero-de-Ávila MD, Fernández-Valle ME, Remiro V, Villa-Valverde P, Cambero MI. 1H HRMAS NMR Metabolomics for the Characterization and Monitoring of Ripening in Pressed-Curd Ewe’s Milk Cheeses Produced Through Enzymatic Coagulation. Foods. 2025; 14(13):2355. https://doi.org/10.3390/foods14132355
Chicago/Turabian StyleCastejón, David, José Segura, Karen P. Cruz-Díaz, María Dolores Romero-de-Ávila, María Encarnación Fernández-Valle, Víctor Remiro, Palmira Villa-Valverde, and María Isabel Cambero. 2025. "1H HRMAS NMR Metabolomics for the Characterization and Monitoring of Ripening in Pressed-Curd Ewe’s Milk Cheeses Produced Through Enzymatic Coagulation" Foods 14, no. 13: 2355. https://doi.org/10.3390/foods14132355
APA StyleCastejón, D., Segura, J., Cruz-Díaz, K. P., Romero-de-Ávila, M. D., Fernández-Valle, M. E., Remiro, V., Villa-Valverde, P., & Cambero, M. I. (2025). 1H HRMAS NMR Metabolomics for the Characterization and Monitoring of Ripening in Pressed-Curd Ewe’s Milk Cheeses Produced Through Enzymatic Coagulation. Foods, 14(13), 2355. https://doi.org/10.3390/foods14132355