Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = enhanced grey wolf optimizer and particle swarm optimization (EGWO-PSO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6296 KB  
Article
A New MPPT-Based Extended Grey Wolf Optimizer for Stand-Alone PV System: A Performance Evaluation versus Four Smart MPPT Techniques in Diverse Scenarios
by Mohammed Yousri Silaa, Oscar Barambones, Aissa Bencherif and Abdellah Rahmani
Inventions 2023, 8(6), 142; https://doi.org/10.3390/inventions8060142 - 7 Nov 2023
Cited by 26 | Viewed by 4712
Abstract
Photovoltaic (PV) systems play a crucial role in clean energy systems. Effective maximum power point tracking (MPPT) techniques are essential to optimize their performance. However, conventional MPPT methods exhibit limitations and challenges in real-world scenarios characterized by rapidly changing environmental factors and various [...] Read more.
Photovoltaic (PV) systems play a crucial role in clean energy systems. Effective maximum power point tracking (MPPT) techniques are essential to optimize their performance. However, conventional MPPT methods exhibit limitations and challenges in real-world scenarios characterized by rapidly changing environmental factors and various operating conditions. To address these challenges, this paper presents a performance evaluation of a novel extended grey wolf optimizer (EGWO). The EGWO has been meticulously designed in order to improve the efficiency of PV systems by rapidly tracking and maintaining the maximum power point (MPP). In this study, a comparison is made between the EGWO and other prominent MPPT techniques, including the grey wolf optimizer (GWO), equilibrium optimization algorithm (EOA), particle swarm optimization (PSO) and sin cos algorithm (SCA) techniques. To evaluate these MPPT methods, a model of a PV module integrated with a DC/DC boost converter is employed, and simulations are conducted using Simulink-MATLAB software under standard test conditions (STC) and various environmental conditions. In particular, the results demonstrate that the novel EGWO outperforms the GWO, EOA, PSO and SCA techniques and shows fast tracking speed, superior dynamic response, high robustness and minimal power fluctuations across both STC and variable conditions. Thus, a power fluctuation of 0.09 W could be achieved by using the proposed EGWO technique. Finally, according to these results, the proposed approach can offer an improvement in energy consumption. These findings underscore the potential benefits of employing the novel MPPT EGWO to enhance the efficiency and performance of MPPT in PV systems. Further exploration of this intelligent technique could lead to significant advancements in optimizing PV system performance, making it a promising option for real-world applications. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

35 pages, 7527 KB  
Article
Optimal Allocation of Battery Energy Storage Systems to Enhance System Performance and Reliability in Unbalanced Distribution Networks
by Dong Zhang, GM Shafiullah, Choton Kanti Das and Kok Wai Wong
Energies 2023, 16(20), 7127; https://doi.org/10.3390/en16207127 - 17 Oct 2023
Cited by 12 | Viewed by 4989
Abstract
The continuously increasing renewable distributed generation (DG) penetration rate significantly reduces environmental pollution and power generation cost and satisfies society’s rapid growth in electricity demand. Nevertheless, high penetration of renewable DGs, such as wind power and photovoltaics (PV), might deteriorate the system’s efficiency [...] Read more.
The continuously increasing renewable distributed generation (DG) penetration rate significantly reduces environmental pollution and power generation cost and satisfies society’s rapid growth in electricity demand. Nevertheless, high penetration of renewable DGs, such as wind power and photovoltaics (PV), might deteriorate the system’s efficiency and reliability due to its intermittent and stochastic natures. Introducing battery energy storage systems (BESSs) to the distribution system provides a practical method to compensate for the above deficiency since it can deliver and absorb power when needed. Hence, it is important to determine the optimal allocation of BESS to achieve maximum assistance in the grid. This study proposes an optimal BESS allocation methodology to improve reliability and economics in unbalanced distribution systems. The optimal BESS allocation problem is solved by simultaneously minimizing the cost of energy interruption, expected energy not supplied, power loss, line loading, voltage deviation, and BESS cost. The proposed technique is implemented and analyzed on a high renewable DG penetrated unbalanced IEEE-33 bus network using DIgSILENT PowerFactory software (version 2020 SP2A). An enhanced grey wolf optimization (EGWO) algorithm is developed to optimize BESS location and size according to the selected objective function. The simulation results show that the proposed optimal BESS optimization technique significantly improves the economics and reliability in unbalanced distribution systems and the EGWO outperforms the gray wolf optimization (GWO) and particle swarm optimization (PSO) algorithms. Full article
Show Figures

Figure 1

28 pages, 2353 KB  
Article
Re-Allocation of Distributed Generations Using Available Renewable Potential Based Multi-Criterion-Multi-Objective Hybrid Technique
by Chandrasekaran Venkatesan, Raju Kannadasan, Dhanasekar Ravikumar, Vijayaraja Loganathan, Mohammed H. Alsharif, Daeyong Choi, Junhee Hong and Zong Woo Geem
Sustainability 2021, 13(24), 13709; https://doi.org/10.3390/su132413709 - 12 Dec 2021
Cited by 14 | Viewed by 2984
Abstract
Integration of Distributed generations (DGs) and capacitor banks (CBs) in distribution systems (DS) have the potential to enhance the system’s overall capabilities. This work demonstrates the application of a hybrid optimization technique the applies an available renewable energy potential (AREP)-based, hybrid-enhanced grey wolf [...] Read more.
Integration of Distributed generations (DGs) and capacitor banks (CBs) in distribution systems (DS) have the potential to enhance the system’s overall capabilities. This work demonstrates the application of a hybrid optimization technique the applies an available renewable energy potential (AREP)-based, hybrid-enhanced grey wolf optimizer–particle swarm optimization (AREP-EGWO-PSO) algorithm for the optimum location and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves, and PSO is a swarm-based metaheuristic optimization algorithm. Hybridization of both algorithms finds the optimal solution to a problem through the movement of the particles. Using this hybrid method, multi-criterion solutions are obtained, such as technical, economic, and environmental, and these are enriched using multi-objective functions (MOF), namely minimizing active power losses, voltage deviation, the total cost of electrical energy, total emissions from generation sources and enhancing the voltage stability index (VSI). Five different operational cases were adapted to validate the efficacy of the proposed scheme and were performed on two standard distribution systems, namely, IEEE 33- and 69-bus radial distribution systems (RDSs). Notably, the proposed AREP-EGWO-PSO algorithm compared the AREP at the candidate locations and re-allocated the DGs with optimal re-sizing when the EGWO-PSO algorithm failed to meet the AREP constraints. Further, the simulated results were compared with existing optimization algorithms considered in recent studies. The obtained results and analysis show that the proposed AREP-EGWO-PSO re-allocates the DGs effectively and optimally, and that these objective functions offer better results, almost similar to EGWO-PSO results, but more significant than other existing optimization techniques. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

34 pages, 6751 KB  
Article
A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems
by Chandrasekaran Venkatesan, Raju Kannadasan, Mohammed H. Alsharif, Mun-Kyeom Kim and Jamel Nebhen
Sustainability 2021, 13(6), 3308; https://doi.org/10.3390/su13063308 - 17 Mar 2021
Cited by 90 | Viewed by 3942
Abstract
Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend [...] Read more.
Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend on selecting a suitable number of CBs/DGs and their volume along with the finest location. This work proposes applying a hybrid enhanced grey wolf optimizer and particle swarm optimization (EGWO-PSO) algorithm for optimal placement and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves. On the other hand, PSO is a swarm-based metaheuristic optimization algorithm that finds the optimal solution to a problem through the movement of the particles. The advantages of both techniques are utilized to acquire mutual benefits, i.e., the exploration ability of the EGWO and the exploitation ability of the PSO. The proposed hybrid method has a high convergence speed and is not trapped in local optimal. Using this hybrid method, technical, economic, and environmental advantages are enhanced using multiobjective functions (MOF) such as minimizing active power losses, voltage deviation index (VDI), the total cost of electrical energy, and total emissions from generation sources and enhancing the voltage stability index (VSI). Six different operational cases are considered and carried out on two standard distribution systems, namely, IEEE 33- and 69-bus RDSs, to demonstrate the proposed scheme’s effectiveness extensively. The simulated results are compared with existing optimization algorithms. From the obtained results, it is observed that the proposed EGWO-PSO gives distinguished enhancements in multiobjective optimization of different conflicting objective functions and high-level performance with global optimal values. Full article
Show Figures

Figure 1

Back to TopTop