Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (152)

Search Parameters:
Keywords = energy-momentum complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10557 KB  
Article
Numerical and Experimental Estimation of Heat Source Strengths in Multi-Chip Modules on Printed Circuit Boards
by Cheng-Hung Huang and Hao-Wei Su
Mathematics 2026, 14(2), 327; https://doi.org/10.3390/math14020327 - 18 Jan 2026
Viewed by 75
Abstract
In this study, a three-dimensional Inverse Conjugate Heat Transfer Problem (ICHTP) is numerically and experimentally investigated to estimate the heat-source strength of multiple chips mounted on a printed circuit board (PCB) using the Conjugate Gradient Method (CGM) and infrared thermography. The interfaces between [...] Read more.
In this study, a three-dimensional Inverse Conjugate Heat Transfer Problem (ICHTP) is numerically and experimentally investigated to estimate the heat-source strength of multiple chips mounted on a printed circuit board (PCB) using the Conjugate Gradient Method (CGM) and infrared thermography. The interfaces between the PCB and the surrounding air domain are assumed to exhibit perfect thermal contact, establishing a fully coupled conjugate heat transfer framework for the inverse analysis. Unlike the conventional Inverse Heat Conduction Problem (IHCP), which typically only accounts for conduction within solid domains, the present ICHTP formulation requires the simultaneous solution of the governing continuity, momentum, and energy equations in the air domain, along with the heat conduction equation in the chips and PCB. This coupling introduces substantial computational complexity due to the nonlinear interaction between convective and conductive heat transfer mechanisms, as well as the sensitivity of the inverse solution to measurement uncertainties. The numerical simulations are conducted first with error-free measurement data and an inlet velocity of uin = 4 m/s; the recovered heat-sources exhibit excellent agreement with the true values. The computed average errors for the estimated temperatures ERR1 and estimated heat sources ERR2 are as low as 0.0031% and 1.87%, respectively. The accuracy of the estimated heat sources is then experimentally validated under various prescribed inlet air velocities. During experimental verification at an inlet velocity of 4 m/s, the corresponding ERR1 and ERR2 values are obtained as 0.91% and 3.34%, while at 6 m/s, the values are 0.86% and 2.81%, respectively. Compared with the numerical results, the accuracy of the experimental estimations decreases noticeably. This discrepancy arises because the numerical simulations are free from measurement noise, whereas experimental data inherently include uncertainties due to thermal picture resolutions, environmental fluctuations, and other uncontrollable factors. These results highlight the inherent challenges associated with inverse problems and underscore the critical importance of obtaining precise and reliable temperature measurements to ensure accurate heat source estimation. Full article
Show Figures

Figure 1

26 pages, 8533 KB  
Article
An Experimental Study on the Influence of Rigid Submerged Vegetation on Flow Characteristics in a Strongly Curved Channel
by Yu Yang, Dongrui Han, Xiongwei Zheng, Fen Zhou, Feifei Zheng and Ying-Tien Lin
Water 2026, 18(2), 256; https://doi.org/10.3390/w18020256 - 18 Jan 2026
Viewed by 86
Abstract
Flow dynamics in strongly curved channels with submerged vegetation play a crucial role in riverine ecological processes and morphodynamics, yet the combined effects of sharp curvature and rigid submerged vegetation remain inadequately understood. This study presents a comprehensive experimental investigation into the influence [...] Read more.
Flow dynamics in strongly curved channels with submerged vegetation play a crucial role in riverine ecological processes and morphodynamics, yet the combined effects of sharp curvature and rigid submerged vegetation remain inadequately understood. This study presents a comprehensive experimental investigation into the influence of rigid submerged vegetation on the flow characteristics within a 180° strongly curved channel. Laboratory experiments were conducted in a U-shaped flume with varying vegetation configurations (fully vegetated, convex bank only, and concave bank only) and two vegetation heights (5 cm and 10 cm). The density of vegetation ϕ was 2.235%. All experimental configurations exhibited fully turbulent flow conditions (Re > 60,000) and subcritical flow regimes (Fr < 1), ensuring gravitational dominance and absence of jet flow phenomena. An acoustic Doppler velocimeter (ADV) was employed to capture high-frequency, three-dimensional velocity data across five characteristic cross-sections (0°, 45°, 90°, 135°, 180°). Detailed analyses were performed on the longitudinal and transverse velocity distributions, cross-stream circulation, turbulent kinetic energy (TKE), power spectral density, turbulent bursting, and Reynolds stresses. The results demonstrate that submerged vegetation fundamentally alters the flow structure by increasing flow resistance, modifying the velocity inflection points, and reshaping turbulence characteristics. Vegetation height was found to delay the manifestation of curvature-induced effects, with taller vegetation shifting the maximum longitudinal velocity to the vegetation canopy top further downstream compared to shorter vegetation. The presence and distribution of vegetation significantly impacted secondary flow patterns, altering the direction of cross-stream circulation in fully vegetated regions. TKE peaked near the vegetation canopy, and its vertical distribution was strongly influenced by the bend, causing the maximum TKE to descend to the mid-canopy level. Spectral analysis revealed an altered energy cascade in vegetated regions and interfaces, with a steeper dissipation rate. Turbulent bursting events showed a more balanced contribution among quadrants with higher vegetation density. Furthermore, Reynolds stress analysis highlighted intensified momentum transport at the vegetation–non-vegetation interface, which was further amplified by the channel curvature, particularly when vegetation was located on the concave bank. These findings provide valuable insights into the complex hydrodynamics of vegetated meandering channels, contributing to improved river management, ecological restoration strategies, and predictive modeling. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics, 2nd Edition)
Show Figures

Figure 1

14 pages, 2388 KB  
Article
High-Resolution Caustic Beam Shaping via Polarization Transformation Through Highly Anisotropic Scattering Media
by Yu-Han Zhou, Guang-Ze Li, Lu-Hong Zhang, Ning-Chen Cao, Li-Ming Zhu, Xiao-Bo Hu, Yan Wu, Khian-Hooi Chew and Rui-Pin Chen
Optics 2025, 6(4), 66; https://doi.org/10.3390/opt6040066 - 11 Dec 2025
Viewed by 534
Abstract
Manipulating complex light fields through highly anisotropic scattering medium (HASM) remains a fundamental challenge due to the intricate underlying physics and broad application potential. We introduce a unified theoretical and experimental framework for generating and controlling arbitrarily polarized curved caustic beams using an [...] Read more.
Manipulating complex light fields through highly anisotropic scattering medium (HASM) remains a fundamental challenge due to the intricate underlying physics and broad application potential. We introduce a unified theoretical and experimental framework for generating and controlling arbitrarily polarized curved caustic beams using an extended polarization transfer matrix (EPTM) for the first time, enabling intuitive polarization transformation through HASM. The EPTM is experimentally measured via a four-step phase-shifting technique, and its submatrices are independently modulated with tailored caustic phase profiles. This strategy facilitates the creation of diverse high-resolution caustic beams, including Gaussian and vortex types with tunable energy distribution, polarization states, and vorticity. The achievement of polarization transformation through HASM by our approach offers versatile manipulation over optical field properties such as multiple high-resolution caustic beams, angular momentum flux, and polarization, paving the way for enhanced functionality in advanced optical systems. Full article
Show Figures

Figure 1

30 pages, 1509 KB  
Review
A Review on Theoretical and Computational Fluid Dynamics Modeling of Coupled Heat and Mass Transfer in Fixed Beds of Adsorbing Porous Media
by Mohamad Najib Nadamani, Mostafa Safdari Shadloo and Talib Dbouk
Energies 2025, 18(24), 6418; https://doi.org/10.3390/en18246418 - 8 Dec 2025
Viewed by 463
Abstract
Heat exchangers–adsorbers (HEX-As) are emerging as innovative technologies in many applications (CO2 capture, gas purification and separation, thermal energy storage, etc). This review addresses the theoretical challenges within computational fluid dynamics (CFD) in modeling and simulating coupled heat and mass transfer within [...] Read more.
Heat exchangers–adsorbers (HEX-As) are emerging as innovative technologies in many applications (CO2 capture, gas purification and separation, thermal energy storage, etc). This review addresses the theoretical challenges within computational fluid dynamics (CFD) in modeling and simulating coupled heat and mass transfer within gas separation by using adsorbing porous media in fixed beds. Conservation equations of mass, momentum, and energy from different studies (1D, 2D-CFD, and 3D-CFD models) are presented and discussed with an emphasis on their ability to predict the complex multi-physics multi-scale heat and mass transfer phenomena involved, such as the adsorption kinematics, the thermal front propagation, and the multi-component fluid flow dynamics inside the beds. For the fist time, we show that mathematical theoretical modeling in CFD has been differently developed and applied by many authors in the literature in order to model the same physical phenomena. This sheds light on the present challenges and bottlenecks in theoretical and computational fluid dynamics when it comes to complex coupled heat and mass transfer in multi-component gas dynamics in porous media. This review make it easier for readers to understand the different models that exist in the literature for modeling and simulating HEX-As. It also opens questions on how accurately one can model multi-functional heat exchangers–adsorbers using CFD, e.g., physics multi-scale extrapolation from nano- to meso- and then to macro-scale behavior. Full article
Show Figures

Figure 1

22 pages, 3238 KB  
Article
Chaos in 3D and 4D Thermodynamic Models
by Bo Wang, Xin Wu and Fuyao Liu
Universe 2025, 11(11), 373; https://doi.org/10.3390/universe11110373 - 10 Nov 2025
Viewed by 351
Abstract
Recently, Aydiner considered dark matter (DM) and dark energy (DE) as two open, non-equilibrium thermodynamic systems, which have heat changes and particle number changes but have no volume changes. These systems are described by nonlinear coupled equations for the description of mutual and [...] Read more.
Recently, Aydiner considered dark matter (DM) and dark energy (DE) as two open, non-equilibrium thermodynamic systems, which have heat changes and particle number changes but have no volume changes. These systems are described by nonlinear coupled equations for the description of mutual and self-interactions and satisfy the energy conservation of thermodynamics. Based on this idea, two three-dimensional (3D) models and a four-dimensional (4D) model are produced. Due to the conservation of the energy–momentum tensor of the sum of the DM and DE energy densities, the continuity equations of both energy densities are also included together in these 3D and 4D thermodynamic models. For the parameters satisfying some conditions, one of the 3D models has two marginal stable non-hyperbolic equilibrium points with a negative real root and a pair of conjugate purely imaginary roots. The marginal stability is highly sensitive to nonlinear terms and parameter noise. Another of the 3D models has unstable saddle-focus equilibrium points, which have a negative real root corresponding to a 1D stable manifold and two conjugate complex roots with positive real parts corresponding to a 2D manifold of unstable spiral. At these equilibria, no energy exchange occurs between the two energy densities, and both energy components reach equilibrium. When some perturbations from the nonlinear terms or parameter noise are given, the DM and DE energy densities are far from equilibrium and continue to exchange each other until they reach equilibrium. The energy exchanges between them may exhibit chaotic behavior like chaotic attractors. However, hyperchaos is not easily found. The 4D model also has unstable saddle-focus equilibrium points and can allow for the onset of chaotic attractors and hyperchaos. In fact, the chaotic dynamics of the 3D and 4D models are caused because of the coupled interactions of particle and thermodynamic systems between DM and DE. Under both the self-interactions and the mutual interactions, the energy exchanges are far from and close to the equilibrium. These interactions cause the energy exchanges to become random, irregular and unpredictable. Full article
Show Figures

Figure 1

24 pages, 12895 KB  
Review
Hydrodynamic Interactions of Turbulent Jets with Surface Waves or Rigid Vegetation: A Review
by Michele Mossa
Water 2025, 17(21), 3163; https://doi.org/10.3390/w17213163 - 5 Nov 2025
Viewed by 513
Abstract
Thisreview provides a comprehensive synthesis of recent theoretical and experimental advances on turbulent plane jets interacting with surface waves or rigid vegetation. In wave-affected conditions, a unified mathematical framework based on velocity decomposition and the integral balances of momentum and energy reveals the [...] Read more.
Thisreview provides a comprehensive synthesis of recent theoretical and experimental advances on turbulent plane jets interacting with surface waves or rigid vegetation. In wave-affected conditions, a unified mathematical framework based on velocity decomposition and the integral balances of momentum and energy reveals the fundamental scaling laws governing jet spreading and momentum exchange. The analysis demonstrates that wave-induced shear alters classical entrainment mechanisms, leading to modified power-law relationships for jet width and centerline velocity, consistent with laboratory and numerical evidence. In obstructed environments, such as canopies of rigid or flexible vegetation, distributed drag induces a transition from entrainment to detrainment. The resulting momentum loss is captured analytically by incorporating drag-induced dissipation into the Reynolds-averaged momentum equations, yielding exponential decay of jet momentum and reduced mixing efficiency. Together, these models elucidate how environmental forcing—dynamic (waves) and structural (vegetation)—controls the evolution of turbulent jets in natural and engineered aquatic systems. The review highlights key scaling relationships, theoretical developments, and experimental findings, offering a coherent basis for future studies on mixing, dispersion, and transport in complex coastal and vegetated flows. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 1323 KB  
Article
Spin Tetrad Formalism of Circular Polarization States in Relativistic Jets
by Ronald Gamble
Universe 2025, 11(11), 364; https://doi.org/10.3390/universe11110364 - 4 Nov 2025
Viewed by 562
Abstract
Relativistic jets from active galactic nuclei (AGN) have been a topic of peak interest in the high-energy astrophysics community for their uniquely dynamic nature and incredible radiative power emanating from supermassive black holes and similarly accreting compact dense objects. An overall consensus on [...] Read more.
Relativistic jets from active galactic nuclei (AGN) have been a topic of peak interest in the high-energy astrophysics community for their uniquely dynamic nature and incredible radiative power emanating from supermassive black holes and similarly accreting compact dense objects. An overall consensus on relativistic jet formation states that accelerated outflow at high Lorentz factors are generated by a complex relationship between the accretion disk of the system and the frame-dragging effects of the rotating massive central object. This paper will provide a basis for which circular polarization states, defined using a spin tetrad formalism, contribute to a description for the angular momentum flux in the jet emanating from the central engine. A representation of the Kerr spacetime is used in formulating the spin tetrad forms. A discussion on unresolved problems in jet formation and how we can use multi-method observations with polarimetry of AGN to direct future theoretical descriptions will also be given. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

16 pages, 2200 KB  
Article
Coupling Dynamics and Regulation Mechanisms of Natural Wind, Traffic Wind, and Mechanical Wind in Extra-Long Tunnels
by Yongli Yin, Xiang Lei, Changbin Guo, Kai Kang, Hongbi Li, Jian Wang, Wei Xiang, Bo Guang and Jiaxing Lu
Processes 2025, 13(11), 3512; https://doi.org/10.3390/pr13113512 - 1 Nov 2025
Viewed by 371
Abstract
This study systematically investigates the velocity characteristics and coupling mechanisms of tunnel flow fields under the interactions of natural wind, traffic wind, mechanical ventilation, and structural factors (such as transverse passages and relative positions between vehicles and fans). Using CFD simulations combined with [...] Read more.
This study systematically investigates the velocity characteristics and coupling mechanisms of tunnel flow fields under the interactions of natural wind, traffic wind, mechanical ventilation, and structural factors (such as transverse passages and relative positions between vehicles and fans). Using CFD simulations combined with turbulence model analyses, the flow behaviors under different coupling scenarios are explored. The results show that: (1) Under natural wind conditions, transverse passages act as key pressure boundaries, reshaping the longitudinal wind speed distribution into a segmented structure of “disturbance zones (near passages) and stable zones (mid-regions)”, with disturbances near passages showing “amplitude enhancement and range contraction” as natural wind speed increases. (2) The coupling of natural wind and traffic wind (induced by moving vehicles) generates complex turbulent structures; vehicle motion forms typical flow patterns including stagnation zones, high-speed bypass flows, and wake vortices, while natural wind modulates the wake structure through momentum exchange, affecting pollutant dispersion. (3) When natural wind, traffic wind, and mechanical ventilation are coupled, the flow field is dominated by momentum superposition and competition; adjusting fan output can regulate coupling ranges and turbulence intensity, balancing energy efficiency and safety. (4) The relative positions of vehicles and fans significantly affect flow stability: forward positioning leads to synergistic momentum superposition with high stability, while reverse positioning induces strong turbulence, compressing jet effectiveness and increasing energy dissipation. This study reveals the intrinsic laws of tunnel flow field evolution under multi-factor coupling, providing theoretical support for optimizing tunnel ventilation system design and dynamic operation strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

89 pages, 1746 KB  
Article
Quantum Field Theory of 3+1 Dimensional BTZ Gravity: Graviton Self-Energy, Axion Interactions, and Dark Matter in the Ultrahyperfunction Framework
by Hameeda Mir, Angelo Plastino, Behnam Pourhassan and Mario Carlos Rocca
Axioms 2025, 14(11), 810; https://doi.org/10.3390/axioms14110810 - 31 Oct 2025
Viewed by 768
Abstract
We present a comprehensive quantum field theoretical analysis of graviton self-energy and mass generation in 3+1 dimensional BTZ black hole spacetime, incorporating axion interactions within the framework of dark matter theory. Using a novel mathematical approach based on ultrahyperfunctions, generalizations of Schwartz tempered [...] Read more.
We present a comprehensive quantum field theoretical analysis of graviton self-energy and mass generation in 3+1 dimensional BTZ black hole spacetime, incorporating axion interactions within the framework of dark matter theory. Using a novel mathematical approach based on ultrahyperfunctions, generalizations of Schwartz tempered distributions to the complex plane, we derive exact quantum relativistic expressions for graviton and axion self-energies without requiring ad hoc regularization procedures. Our approach extends the Gupta–Feynman quantization framework to BTZ gravity while introducing a new constraint that eliminates unitarity violations inherent in previous formulations, thereby avoiding the need for ghost fields. Through systematic application of generalized Feynman parameters, we evaluate both bradyonic and tachyonic graviton modes, revealing distinct quantum correction patterns that depend critically on momentum, energy, and mass parameters. Key findings include (1) natural graviton mass generation through cosmological constant interactions, yielding m2=2|Λ|/κ(1κ); (2) qualitatively different quantum behaviors between bradyonic and tachyonic modes, with bradyonic corrections reaching amplitudes 6 times larger than their tachyonic counterparts; (3) the discovery of momentum-dependent quantum dissipation effects that provide natural ultraviolet regulation; and (4) the first explicit analytical expressions and graphical representations for 17 distinct graviton self-energy contributions. The ultrahyperfunction formalism proves essential for handling the non-renormalizable nature of the theory, providing mathematically rigorous treatment of highly singular integrals while maintaining Lorentz invariance. Our results suggest observable consequences in gravitational wave propagation through frequency-dependent dispersive effects and modifications to black hole thermodynamics, potentially bridging theoretical quantum gravity with experimental constraints. Full article
Show Figures

Figure 1

23 pages, 4494 KB  
Article
Investigating the Regulatory Mechanism of the Baffle Geometric Parameters on the Lubrication Transmission of High-Speed Gears
by Yunfeng Tan, Qihan Li, Lin Li and Dapeng Tan
Appl. Sci. 2025, 15(20), 11080; https://doi.org/10.3390/app152011080 - 16 Oct 2025
Cited by 2 | Viewed by 424
Abstract
Under extreme operating conditions, the internal lubricating flow field of high-speed gear transmission systems exhibits a transient oil–gas multiphase flow, predominantly governed by cavitation-induced phase transitions and turbulent shear. This phenomenon involves complex mechanisms of nonlinear multi-physical coupling and energy dissipation. Traditional lubrication [...] Read more.
Under extreme operating conditions, the internal lubricating flow field of high-speed gear transmission systems exhibits a transient oil–gas multiphase flow, predominantly governed by cavitation-induced phase transitions and turbulent shear. This phenomenon involves complex mechanisms of nonlinear multi-physical coupling and energy dissipation. Traditional lubrication theories and single-phase flow simplified models show significant limitations in capturing microsecond-scale flow features, dynamic interface evolution, and turbulence modulation mechanisms. To address these challenges, this study developed a cross-scale coupled numerical framework based on the Lattice Boltzmann method and large eddy simulation (LBM-LES). By incorporating an adaptive time relaxation algorithm, the framework effectively enhances the computational accuracy and stability for high-speed rotational flow fields, enabling the precise characterization of lubricant splashing, distribution, and its interaction with air. The research systematically reveals the spatiotemporal evolution characteristics of the internal flow field within the gearbox and focuses on analyzing the nonlinear regulatory effect of baffle geometric parameters on the system’s energy transport and dissipation characteristics. Numerical results indicate that the baffle structure significantly influences the spatial distribution of the vorticity field and turbulence intensity by reconstructing the shear layer topology. Low-profile baffles optimize the energy transfer pathway, effectively reducing the flow enthalpy, whereas excessively tall baffles induce strong secondary recirculation flows, exacerbating vortex-induced energy losses. Simultaneously, appropriately increasing the spacing between double baffles helps enhance global lubricant transport efficiency and suppresses unsteady dissipation caused by localized momentum accumulation. Furthermore, the geometrically optimized double-baffle configuration can achieve synergistic improvements in lubrication performance, oil film stability, and system energy efficiency by guiding the main shear flow and mitigating localized high-momentum impacts. This study provides crucial theoretical foundations and design guidelines for developing the next generation of theory-driven, energy-efficient lubrication design strategies for gear transmissions. Full article
Show Figures

Figure 1

38 pages, 18471 KB  
Article
Bend–Twist Coupling for Small Wind Turbines: A Blade Design Methodology to Enhance Power Generation
by Juan Pablo Vanegas-Alzate, María Antonia Restrepo-Madrigal, José Luis Torres-Madroñero, César Nieto-Londoño, Germán Alberto Barragán de los Rios, Jorge Mario Tamayo-Avendaño, Julián Sierra-Pérez, Joham Alvarez-Montoya and Daniel Restrepo-Montoya
Energies 2025, 18(20), 5353; https://doi.org/10.3390/en18205353 - 11 Oct 2025
Viewed by 1013
Abstract
Small-scale wind turbines (SWTs) represent a promising solution for the energy transition and the decentralization of electricity generation in non-interconnected areas. Conventional strategies to improve SWT performance often rely on active pitch control, which, while effective at rated conditions, is too costly and [...] Read more.
Small-scale wind turbines (SWTs) represent a promising solution for the energy transition and the decentralization of electricity generation in non-interconnected areas. Conventional strategies to improve SWT performance often rely on active pitch control, which, while effective at rated conditions, is too costly and complex for small systems. An alternative is passive pitch control through bend–twist coupling in the blade structure, which enables self-regulation and improved power generation. This work proposes a novel blade design methodology for a 5 kW SWT that integrates passive bend–twist coupling with conventional pitch adjustment, thereby creating a hybrid passive–active control strategy. The methodology encompasses the definition of aerodynamic blade geometry, laminate optimization via genetic algorithms combined with finite element analysis, and experimental characterization of composite materials. Aerodynamic–structural interactions are studied using one-way fluid–structure simulations, with responses analyzed through the blade element momentum method to assess turbine performance. The results indicate that the proposed design enhances power generation by about 4%. The study’s originality lies in integrating optimization, structural tailoring, and material testing, offering one of the first demonstrations of combined passive–active pitch control in SWTs, and providing a cost-effective route to improve efficiency and reliability in decentralized renewable energy systems. Full article
Show Figures

Figure 1

12 pages, 541 KB  
Article
Integral Cross Sections and Transport Properties for Electron–Radon Scattering over a Wide Energy Range (0–1000 eV) and a Reduced Electric Field Range (0.01–1000 Td)
by Gregory J. Boyle, Dale L. Muccignat, Joshua R. Machacek and Robert P. McEachran
Atoms 2025, 13(10), 82; https://doi.org/10.3390/atoms13100082 - 23 Sep 2025
Viewed by 615
Abstract
We report calculations for electron–radon scattering using a complex relativistic optical potential method. The energy range of this study is 0–1000 eV, with results for the elastic (total, momentum-transfer and viscosity-transfer) cross section, summed discrete electronic-state integral excitation cross sections and electron-impact ionization [...] Read more.
We report calculations for electron–radon scattering using a complex relativistic optical potential method. The energy range of this study is 0–1000 eV, with results for the elastic (total, momentum-transfer and viscosity-transfer) cross section, summed discrete electronic-state integral excitation cross sections and electron-impact ionization cross sections presented. Here, we obtain our cross sections from a single theoretical relativistic calculation. Since radon is a heavy element, a relativistic treatment is very desirable. The electron transport coefficients are subsequently calculated for reduced electric fields ranging from 0.01 to 1000 Td, using a multi-term solution of Boltzmann’s equation. Full article
Show Figures

Figure 1

16 pages, 9259 KB  
Article
Computational Analysis of Two Micro-Vortex Generator Configurations for Supersonic Boundary Layer Flow Control
by Yong Yang, Caixia Chen, Yonghua Yan and Mai Al Shaaban
Processes 2025, 13(9), 2818; https://doi.org/10.3390/pr13092818 - 3 Sep 2025
Viewed by 849
Abstract
The increasing demand for effective flow control in supersonic boundary layers, particularly for mitigating shock-wave boundary-layer interactions, underscores the need to explore optimized micro-vortex generator (MVG) configurations. This study investigates the aerodynamic performance of two different MVG configurations: a two-MVG setup with a [...] Read more.
The increasing demand for effective flow control in supersonic boundary layers, particularly for mitigating shock-wave boundary-layer interactions, underscores the need to explore optimized micro-vortex generator (MVG) configurations. This study investigates the aerodynamic performance of two different MVG configurations: a two-MVG setup with a pair of close parallel-positioned MVGs and a three-MVG arrangement that includes an additional upstream unit. Both are examined within a Mach 2.5 flow regime, aiming to improve mixing and energize the boundary layer. Large Eddy Simulations (LES) were performed using high-order numerical schemes. A newly developed vortex identification method was utilized to characterize vortex structures, while turbulent kinetic energy (TKE) metrics were integrated to quantify turbulence. Findings reveal that the two-MVG configuration produces regular, symmetric vortex pairs with limited interaction. This results in a steady increase in TKE and a thickened momentum boundary layer—indicative of notable energy loss. In contrast, the three-MVG setup generates more intricate and interactive vortex formations that significantly elevate TKE levels, rapidly expand the turbulent region, and reduce energy loss downstream. The peak TKE occurs before tapering slightly. Instantaneous flow analysis further highlights chaotic, hairpin-dominated vortex structures in the three-MVG case, compared to the more orderly ones observed in the two-MVG case. Overall, the three-MVG configuration demonstrates superior mixing and boundary-layer energization potential, albeit with greater structural complexity. Full article
(This article belongs to the Special Issue Transport Processes in Single- and Multi-Phase Flow Systems)
Show Figures

Figure 1

16 pages, 1515 KB  
Article
Fe 3d Orbital Evolution in Ferrocene Ionization: Insights from ΔSCF, EOES, and Orbital Momentum Distribution
by Feng Wang and Vladislay Vasilyev
Molecules 2025, 30(17), 3541; https://doi.org/10.3390/molecules30173541 - 29 Aug 2025
Viewed by 1132
Abstract
The ionization of ferrocene (Fc) remains an active topic of interest due to its complex, ulti-electron character. Accurate prediction of its first ionization potential (IP) requires methods that go beyond single-particle approximations, as Koopmans’ theorem, Janak’s theorem, and the outer valence Green function [...] Read more.
The ionization of ferrocene (Fc) remains an active topic of interest due to its complex, ulti-electron character. Accurate prediction of its first ionization potential (IP) requires methods that go beyond single-particle approximations, as Koopmans’ theorem, Janak’s theorem, and the outer valence Green function (OVGF) approach prove inadequate. Using the ΔSCF method, the first IP of Fc was calculated to be ~6.9 ± 0.1 eV, which is in close agreement with experimental values (6.72–6.99 eV). To benchmark computational accuracy, 42 models were evaluated using the CCSD, CCSD(T), and B3LYP methods with Pople and Dunning basis sets, including Fe-specific modifications to better capture 3d electron behavior. The results underscore the importance of proper treatment of Fe 3d orbitals, with B3LYP/m6-31G(d) offering the best compromise between accuracy and computational efficiency. Notably, the singly occupied molecular orbital (SOMO) in Fc+ is identified as the 8a1’ orbital, which is dominated by its Fe 3d character. This orbital, although not the α-HOMO in Fc+, becomes the LUMO upon ionization. Analysis of the excess orbital energy spectrum (EOES) reveals substantial energy shifts upon ionization, particularly in Fe-centered orbitals spanning both the core and valence regions. Theoretical momentum distribution (TMD) analysis of the 8a1’ orbital further quantifies orbital differences before and after ionization, providing complementary insights in momentum space. Finally, energy decomposition analysis (EDA) shows that while most interaction energy components become less stabilizing upon ionization, steric and Pauli terms contribute a small stabilizing effect. Full article
Show Figures

Figure 1

23 pages, 7315 KB  
Article
Nonlinear Narrowband Active Noise Control for Tractors Based on a Momentum-Enhanced Volterra Filter
by Tao Zhang, Zhixuan Guan, Shuai Zhang, Kai Song and Boyan Huang
Agriculture 2025, 15(15), 1655; https://doi.org/10.3390/agriculture15151655 - 1 Aug 2025
Viewed by 798
Abstract
Nonlinear narrowband low-frequency noise generated during tractors’ operation significantly affects operators’ comfort and working efficiency. Traditional linear active noise control algorithms often struggle to effectively suppress such complex acoustic disturbances. To address this challenge, this paper proposes a momentum-enhanced Volterra filter-based active noise [...] Read more.
Nonlinear narrowband low-frequency noise generated during tractors’ operation significantly affects operators’ comfort and working efficiency. Traditional linear active noise control algorithms often struggle to effectively suppress such complex acoustic disturbances. To address this challenge, this paper proposes a momentum-enhanced Volterra filter-based active noise control (ANC) algorithm that improves both the modeling capability of nonlinear acoustic paths and the convergence performance of the system. The proposed approach integrates the nonlinear representation power of the Volterra filter with a momentum optimization mechanism to enhance convergence speed while maintaining robust steady-state accuracy. Simulations are conducted under second- and third-order nonlinear primary paths, followed by performance validation using multi-tone signals and real in-cabin tractor noise recordings. The results demonstrate that the proposed algorithm achieves superior performance, reducing the NMSE to approximately −35 dB and attenuating residual noise energy by 3–5 dB in the 200–800 Hz range, compared to FXLMS and VFXLMS algorithms. The findings highlight the algorithm’s potential for practical implementation in nonlinear and narrowband active noise control scenarios within complex mechanical environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop