Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,096)

Search Parameters:
Keywords = energy price

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2118 KB  
Article
A Hybrid HAR-LSTM-GARCH Model for Forecasting Volatility in Energy Markets
by Wiem Ben Romdhane and Heni Boubaker
J. Risk Financial Manag. 2026, 19(1), 77; https://doi.org/10.3390/jrfm19010077 (registering DOI) - 17 Jan 2026
Abstract
Accurate volatility forecasting in energy markets is paramount for risk management, derivative pricing, and strategic policy planning. Traditional econometric models like the Heterogeneous Auto-regressive (HAR) model effectively capture the long-memory and multi-component nature of volatility but often fail to account for non-linearities and [...] Read more.
Accurate volatility forecasting in energy markets is paramount for risk management, derivative pricing, and strategic policy planning. Traditional econometric models like the Heterogeneous Auto-regressive (HAR) model effectively capture the long-memory and multi-component nature of volatility but often fail to account for non-linearities and complex, unseen dependencies. Deep learning models, particularly Long Short-Term Memory (LSTM) networks, excel at capturing these non-linear patterns but can be data-hungry and prone to overfitting, especially in noisy financial datasets. This paper proposes a novel hybrid model, HAR-LSTM-GARCH, which synergistically combines the strengths of the HAR model, an LSTM network, and a GARCH model to forecast the realized volatility of crude oil futures. The HAR component captures the persistent, multi-scale volatility dynamics, the LSTM network learns the non-linear residual patterns, and the GARCH component models the time-varying volatility of the residuals themselves. Using high-frequency data on Brent Crude futures, we compute daily Realized Volatility (RV). Our empirical results demonstrate that the proposed HAR-LSTM-GARCH model significantly outperforms the benchmark HAR, GARCH(1,1), and standalone LSTM models in both statistical accuracy and economic significance, offering a robust framework for volatility forecasting in the complex energy sector. Full article
(This article belongs to the Special Issue Mathematical Modelling in Economics and Finance)
Show Figures

Figure 1

24 pages, 3395 KB  
Article
Bi-Objective Intraday Coordinated Optimization of a VPP’s Reliability and Cost Based on a Dual-Swarm Particle Swarm Algorithm
by Jun Zhan, Xiaojia Sun, Yang Li, Wenjing Sun, Jiamei Jiang and Yang Gao
Energies 2026, 19(2), 473; https://doi.org/10.3390/en19020473 (registering DOI) - 17 Jan 2026
Abstract
With the increasing penetration of renewable energy, power systems are facing greater uncertainty and volatility, which poses significant challenges for Virtual Power Plant scheduling. Existing research mainly focuses on optimizing economic efficiency but often overlooks system reliability and the impact of forecasting deviations [...] Read more.
With the increasing penetration of renewable energy, power systems are facing greater uncertainty and volatility, which poses significant challenges for Virtual Power Plant scheduling. Existing research mainly focuses on optimizing economic efficiency but often overlooks system reliability and the impact of forecasting deviations on scheduling, leading to suboptimal performance. Thus, this paper presents a reliability-cost bi-objective cooperative optimization model based on a dual-swarm particle swarm algorithm: it introduces positive and negative imbalance price penalty factors to explicitly describe the economic costs of forecast deviations, constructs a reliability evaluation system covering PV, EVs, air-conditioning loads, electrolytic aluminum loads, and energy storage, and solves the multi-objective model via algorithm design of “sub-swarms specializing in single objectives + periodic information exchange”. Simulation results show that the method ensures stable intraday operation of VPPs, achieving 6.8% total cost reduction, 12.5% system reliability improvement, and 14.8% power deviation reduction, verifying its practical value and application prospects. Full article
Show Figures

Figure 1

36 pages, 6336 KB  
Article
A Hybrid Game-Theoretic Economic Scheduling Method for the Distribution Network Based on Grid–Storage–Load Interaction
by Chuxiong Tang and Zhijian Hu
Processes 2026, 14(2), 329; https://doi.org/10.3390/pr14020329 (registering DOI) - 17 Jan 2026
Abstract
Driven by energy transition strategies, distributed resources are being extensively integrated into the distribution network (DN). However, sufficient coordination among these resources remains challenging due to their diverse ownership structures. To address this, a hybrid game-theoretic economic scheduling method for the distribution network [...] Read more.
Driven by energy transition strategies, distributed resources are being extensively integrated into the distribution network (DN). However, sufficient coordination among these resources remains challenging due to their diverse ownership structures. To address this, a hybrid game-theoretic economic scheduling method for the distribution network based on grid–storage–load interaction is proposed. A two-layer game framework, “distribution network–shared energy storage–microgrid alliance (MGA)”, is established to enable coordinated utilization of flexible resources across the grid, storage, and load sides. The upper-layer distribution network determines time-of-use electricity prices to guide the energy strategies of storage and microgrid alliance. The lower-layer agents engage in a two-stage interaction: Stage 1, multiple microgrids (MGs) form an alliance to lease shared energy storage to smooth net-load profiles. The shared energy storage operator (SESO) then utilizes its surplus capacity to assist the distribution network in peak shaving, thereby maximizing its own revenue. Stage 2, the alliance facilitates mutual power support and implements demand response (DR), reducing its energy costs and assisting the system in peak shaving and valley filling. Case analysis demonstrates that, compared to baseline without coordination, the proposed method reduces the distribution network’s electricity procurement cost by 11.28% and lowers the system’s net load peak-to-valley difference rate by 56.53%. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

13 pages, 1377 KB  
Article
Can Vending Machines Promote Healthy Eating? Evidence from a Hospital Intervention
by Urška Rozman, Anja Kac, Miha Lavrič and Sonja Šostar Turk
Nutrients 2026, 18(2), 293; https://doi.org/10.3390/nu18020293 (registering DOI) - 16 Jan 2026
Abstract
Background/Objectives: Vending machines in hospitals offer convenient access to snacks and beverages for employees, visitors, and patients. However, their contents are typically energy-dense and nutritionally poor, which can potentially reinforce unhealthy eating habits. This study aimed to evaluate the impact of introducing healthier [...] Read more.
Background/Objectives: Vending machines in hospitals offer convenient access to snacks and beverages for employees, visitors, and patients. However, their contents are typically energy-dense and nutritionally poor, which can potentially reinforce unhealthy eating habits. This study aimed to evaluate the impact of introducing healthier vending machine options on purchasing behaviour and consumer perceptions in a hospital setting. Methods: An interventional study was conducted at a university clinical centre in Slovenia. Sales data were collected from a standard vending machine and a pilot machine stocked with healthier products over two 14-day periods. Additionally, a consumer survey assessed factors influencing purchasing decisions and opinions on the healthier offerings. Results: The proportion of healthy items purchased increased from 22% to 39% in the pilot vending machine, indicating a positive shift toward healthier choices. However, total sales declined by 18.81%, suggesting consumer hesitation toward the new product mix. Survey results identified price, ingredients, and visual appeal as the primary factors influencing purchase decisions. Conclusions: The introduction of healthier vending machine options can promote better food choices in hospital environments, though challenges remain regarding consumer acceptance and sales performance. Expanding the variety of healthy items and adopting more competitive pricing strategies may enhance uptake. Further long-term research is needed to assess the sustainability of such interventions and their broader impact on hospital food environments. Full article
Show Figures

Figure 1

31 pages, 1225 KB  
Article
Cryptocurrency Expansion, Climate Policy Uncertainty, and Global Structural Breaks: An Empirical Assessment of Environmental and Financial Impacts
by Alper Yilmaz, Nurdan Sevim and Ahmet Ozkul
Sustainability 2026, 18(2), 951; https://doi.org/10.3390/su18020951 (registering DOI) - 16 Jan 2026
Abstract
This study examines the environmental implications of energy-intensive cryptocurrency mining activities within the broader sustainability debate surrounding blockchain technologies. Focusing specifically on Bitcoin’s proof-of-work–based mining process, the analysis investigates the long-run relationship between greenhouse gas emissions, network-specific technical variables, and climate policy uncertainty [...] Read more.
This study examines the environmental implications of energy-intensive cryptocurrency mining activities within the broader sustainability debate surrounding blockchain technologies. Focusing specifically on Bitcoin’s proof-of-work–based mining process, the analysis investigates the long-run relationship between greenhouse gas emissions, network-specific technical variables, and climate policy uncertainty using advanced cointegration and asymmetric causality techniques. The findings reveal a stable long-run association between mining-related activity and emissions, alongside pronounced asymmetries whereby positive shocks amplify environmental pressures more strongly than negative shocks mitigate them. Importantly, these results pertain to the mining process itself rather than to blockchain technology as a whole. While blockchain infrastructures may support sustainable applications in areas such as green finance, transparency, and energy management, the evidence presented here highlights that energy-intensive mining remains a significant environmental concern. Accordingly, the study underscores the need for active regulatory frameworks—such as carbon pricing and the polluter-pays principle—to reconcile the environmental costs of crypto mining with the broader sustainability potential of blockchain-based innovations Full article
(This article belongs to the Special Issue Energy and Environment: Policy, Economics and Modeling)
Show Figures

Figure 1

26 pages, 6946 KB  
Article
Distributionally Robust Optimization for Integrated Energy System with Tiered Carbon Trading: Synergizing CCUS with Hydrogen Blending Combustion
by Mingyao Huang, Meiheriayi Mutailipu, Peng Wang, Jun Huang, Fusheng Xue and Xiaofeng Li
Processes 2026, 14(2), 328; https://doi.org/10.3390/pr14020328 (registering DOI) - 16 Jan 2026
Abstract
In this study, an Integrated Energy System (IES) with hydrogen refinement within a tiered carbon trading mechanism (TCTM) is presented to improve energy efficiency and support decarbonization. To address uncertainties in the IES, a distributionally robust optimization (DRO) approach, employing a fuzzy set [...] Read more.
In this study, an Integrated Energy System (IES) with hydrogen refinement within a tiered carbon trading mechanism (TCTM) is presented to improve energy efficiency and support decarbonization. To address uncertainties in the IES, a distributionally robust optimization (DRO) approach, employing a fuzzy set framework with Kernel Density Estimation (KDE) to construct error distributions and specify output ranges for renewable energy (RE), is proposed. Latin hypercube sampling (LHS) and K-means clustering are, respectively, applied to generate original and representative scenarios. Subsequently, case studies are performed to evaluate advantages of the presented model. The results indicate that hydrogen refinement within the TCTM framework has substantial benefits for the IES. Specifically, the proposed scenario integrates hydrogen blending combustion (HBC) with synthetic methane, demonstrating significant economic and carbon benefits, with cost reductions of 7.3%, 7.1%, and 4.3% and carbon emission reductions of 6%, 3%, and 2.4% compared to scenarios with no hydrogen utilization, HBC only, and synthetic methane only, respectively. In contrast, to exclude carbon trading and include fixed-price trading, the TCTM achieves a 3.5% and 1.1% reduction in carbon emissions, respectively. Finally, a comprehensive sensitivity analysis is performed, examining factors such as the ratio of hydrogen blending, price, and growth rate of carbon trading. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 980 KB  
Article
Optimal Operation of EVs, EBs and BESS Considering EBs-Charging Piles Matching Problem Using a Novel Pricing Strategy Based on ICDLBPM
by Jincheng Liu, Biyu Wang, Hongyu Wang, Taoyong Li, Kai Wu, Yimin Zhao and Jing Liu
Processes 2026, 14(2), 324; https://doi.org/10.3390/pr14020324 - 16 Jan 2026
Abstract
Electric vehicles (EVs), electric buses (EBs), and battery energy storage system (BESS), as both controllable power sources and load, play a great role in providing flexibility for the power grid, especially with the increased renewable energy penetration. However, there is still a lack [...] Read more.
Electric vehicles (EVs), electric buses (EBs), and battery energy storage system (BESS), as both controllable power sources and load, play a great role in providing flexibility for the power grid, especially with the increased renewable energy penetration. However, there is still a lack of studies on EVs’ pricing strategy as well as the EBs-charging piles matching problem. To address these issues, a multi-objective optimal operation model is presented to achieve the lowest load fluctuation level, minimum electricity cost, and maximum discharging benefit. An improved load boundary prediction method (ICDLBPM) and a novel pricing strategy are proposed. In addition, reduction in the number of EBs charging piles would not only impact normal operation of EBs, but also even lead to load flexibility decline. Thus a handling method of the EBs-charging piles matching problem is presented. Several case studies were conducted on a regional distribution network comprising 100 EVs, 30 EBs, and 20 BESS units. The developed model and methodology demonstrate superior performance, improving load smoothness by 45.78% and reducing electricity costs by 19.73%. Furthermore, its effectiveness is also validated in a large-scale system, where it achieves additional reductions of 39.31% in load fluctuation and 62.45% in total electricity cost. Full article
(This article belongs to the Section Energy Systems)
21 pages, 1552 KB  
Article
The Biddings of Energy Storage in Multi-Microgrid Market Based on Stackelberg Game Theory
by Zifen Han, He Sheng, Yufan Liu, Shaofeng Liu, Shangxing Wang and Ke Wang
Energies 2026, 19(2), 433; https://doi.org/10.3390/en19020433 - 15 Jan 2026
Viewed by 29
Abstract
Dual Carbon Goals are driving transformation in China’s power system, where increased renewable energy penetration is accompanied by heightened fluctuations on the generation and load sides. Energy storage and microgrid coordination have emerged as key solutions. However, existing research faces the challenge of [...] Read more.
Dual Carbon Goals are driving transformation in China’s power system, where increased renewable energy penetration is accompanied by heightened fluctuations on the generation and load sides. Energy storage and microgrid coordination have emerged as key solutions. However, existing research faces the challenge of balancing microgrid operations, energy storage services, and the alignment of user demand with stakeholder interests. This paper establishes a tripartite collaborative optimization framework to balance multi-stakeholder interests and enhance system efficiency, assuming fixed energy storage capacity. Centering on a principal-agent game between microgrid operators and consumer aggregators, energy storage service providers are integrated into this dynamic. Microgrid operators set 24-h electricity and heat pricing while adhering to tariff constraints, prompting consumer aggregators to adjust energy consumption and storage strategies accordingly. The KKT conditional method is employed to solve the model, deriving optimal user energy consumption strategies at the lower level while solving marginal pricing equilibrium relationships at the upper level, balancing accuracy with information privacy. The creative contribution of this article lies in the first construction of a tripartite collaborative optimization architecture in which energy storage service providers are embedded in a game of ownership and subordination. It proposes a dynamic coupling mechanism between pricing power, energy consumption decision-making, and energy storage configuration under fixed energy storage capacity constraints, achieving a balance of interests among multiple parties. By building a case study using MATLAB (R2022b), we compare operation costs, benefits, and absorption rates across different scenarios to validate the framework’s effectiveness and provide a reference for engineering applications. Full article
Show Figures

Figure 1

33 pages, 6529 KB  
Article
Resilience-Oriented Energy Management of Networked Microgrids: A Case Study from Lombok, Indonesia
by Mahshid Javidsharifi, Hamoun Pourroshanfekr Arabani, Najmeh Bazmohammadi, Juan C. Vasquez and Josep M. Guerrero
Electronics 2026, 15(2), 387; https://doi.org/10.3390/electronics15020387 - 15 Jan 2026
Viewed by 21
Abstract
Building resilient and sustainable energy systems is a critical challenge for disaster-prone regions in the Global South. This study investigates the energy management of a networked microgrid (NMG) system on Lombok Island, Indonesia, a region frequently exposed to natural disasters (NDs) and characterized [...] Read more.
Building resilient and sustainable energy systems is a critical challenge for disaster-prone regions in the Global South. This study investigates the energy management of a networked microgrid (NMG) system on Lombok Island, Indonesia, a region frequently exposed to natural disasters (NDs) and characterized by vulnerable grid infrastructure. A multi-objective optimization framework is developed to jointly minimize operational costs, load-not-served, and environmental impacts under both normal and abnormal operating conditions. The proposed strategy employs the Multi-objective JAYA (MJAYA) algorithm to coordinate photovoltaic generation, diesel generators, battery energy storage systems, and inter-microgrid power exchanges within a 20 kV distribution network. Using real load, generation, and electricity price data, we evaluate the NMG’s performance under five representative fault scenarios that emulate ND-induced outages, including grid disconnection and loss of inter-microgrid links. Results show that the interconnected NMG structure significantly enhances system resilience, reducing load-not-served from 366.3 kWh in fully isolated operation to only 31.7 kWh when interconnections remain intact. These findings highlight the critical role of cooperative microgrid networks in strengthening community-level energy resilience in vulnerable regions. The proposed framework offers a practical decision-support tool for planners and governments seeking to enhance energy security and advance sustainable development in disaster-affected areas. Full article
Show Figures

Figure 1

38 pages, 7657 KB  
Article
Optimizing Energy Storage Systems with PSO: Improving Economics and Operations of PMGD—A Chilean Case Study
by Juan Tapia-Aguilera, Luis Fernando Grisales-Noreña, Roberto Eduardo Quintal-Palomo, Oscar Danilo Montoya and Daniel Sanin-Villa
Appl. Syst. Innov. 2026, 9(1), 22; https://doi.org/10.3390/asi9010022 - 14 Jan 2026
Viewed by 60
Abstract
This work develops a methodology for operating Battery Energy Storage Systems (BESSs) in distribution networks, connected in parallel with a medium- and small-scale photovoltaic Distributed Generator (PMGD), focusing on a real project located in the O’Higgins region of Chile. The objective is to [...] Read more.
This work develops a methodology for operating Battery Energy Storage Systems (BESSs) in distribution networks, connected in parallel with a medium- and small-scale photovoltaic Distributed Generator (PMGD), focusing on a real project located in the O’Higgins region of Chile. The objective is to increase energy sales by the PMGD while ensuring compliance with operational constraints related to the grid, PMGD, and BESSs, and optimizing renewable energy use. A real distribution network from Compañía General de Electricidad (CGE) comprising 627 nodes was simplified into a validated three-node, two-line equivalent model to reduce computational complexity while maintaining accuracy. A mathematical model was designed to maximize economic benefits through optimal energy dispatch, considering solar generation variability, demand curves, and seasonal energy sales and purchasing prices. An energy management system was proposed based on a master–slave methodology composed of Particle Swarm Optimization (PSO) and an hourly power flow using the successive approximation method. Advanced optimization techniques such as Monte Carlo (MC) and the Genetic Algorithm (GAP) were employed as comparison methods, supported by a statistical analysis evaluating the best and average solutions, repeatability, and processing times to select the most effective optimization approach. Results demonstrate that BESS integration efficiently manages solar generation surpluses, injecting energy during peak demand and high-price periods to maximize revenue, alleviate grid congestion, and improve operational stability, with PSO proving particularly efficient. This work underscores the potential of BESS in PMGD to support a more sustainable and efficient energy matrix in Chile, despite regulatory and technical challenges that warrant further investigation. Full article
(This article belongs to the Section Applied Mathematics)
26 pages, 5028 KB  
Article
Optimal Dispatch of Energy Storage Systems in Flexible Distribution Networks Considering Demand Response
by Yuan Xu, Zhenhua You, Yan Shi, Gang Wang, Yujue Wang and Bo Yang
Energies 2026, 19(2), 407; https://doi.org/10.3390/en19020407 - 14 Jan 2026
Viewed by 92
Abstract
With the advancement of the “dual carbon” goal, the power system is accelerating its transition towards a clean and low-carbon structure, with a continuous increase in the penetration rate of renewable energy generation (REG). However, the volatility and uncertainty of REG output pose [...] Read more.
With the advancement of the “dual carbon” goal, the power system is accelerating its transition towards a clean and low-carbon structure, with a continuous increase in the penetration rate of renewable energy generation (REG). However, the volatility and uncertainty of REG output pose severe challenges to power grid operation. Traditional distribution networks face immense pressure in terms of scheduling flexibility and power supply reliability. Active distribution networks (ADNs), by integrating energy storage systems (ESSs), soft open points (SOPs), and demand response (DR), have become key to enhancing the system’s adaptability to high-penetration renewable energy. This work proposes a DR-aware scheduling strategy for ESS-integrated flexible distribution networks, constructing a bi-level optimization model: the upper-level introduces a price-based DR mechanism, comprehensively considering net load fluctuation, user satisfaction with electricity purchase cost, and power consumption comfort; the lower-level coordinates SOP and ESS scheduling to achieve the dual goals of grid stability and economic efficiency. The non-dominated sorting genetic algorithm III (NSGA-III) is adopted to solve the model, and case verification is conducted on the standard 33-node system. The results show that the proposed method not only improves the economic efficiency of grid operation but also effectively reduces net load fluctuation (peak–valley difference decreases from 2.020 MW to 1.377 MW, a reduction of 31.8%) and enhances voltage stability (voltage deviation drops from 0.254 p.u. to 0.082 p.u., a reduction of 67.7%). This demonstrates the effectiveness of the scheduling strategy in scenarios with renewable energy integration, providing a theoretical basis for the optimal operation of ADNs. Full article
Show Figures

Figure 1

19 pages, 627 KB  
Article
Stress-Testing Slovenian SME Resilience: A Scenario Model Calibrated on South African Evidence
by Klavdij Logožar and Carin Loubser-Strydom
Sustainability 2026, 18(2), 828; https://doi.org/10.3390/su18020828 - 14 Jan 2026
Viewed by 108
Abstract
Small and medium-sized enterprises (SMEs) play a central role in employment and regional economic development, yet they are highly vulnerable to shocks such as pandemics, energy price spikes, and supply chain disruptions. Scenario modelling, stress testing, and digital twins are used to assess [...] Read more.
Small and medium-sized enterprises (SMEs) play a central role in employment and regional economic development, yet they are highly vulnerable to shocks such as pandemics, energy price spikes, and supply chain disruptions. Scenario modelling, stress testing, and digital twins are used to assess resilience, yet most applications focus on large firms in single-country settings. This article develops a model to stress test the resilience of Slovenian SMEs, calibrated with parameters and mechanisms derived from South African SME resilience studies. A system dynamics model with stocks for cash, inventory, and productive capacity is specified and subjected to demand, supply, financial, and compound shock scenarios, with and without resilience measures such as liquidity buffers, customer and supplier diversification, and basic digital planning capabilities. Results indicate non-linear tipping points where small reductions in liquidity sharply increase the likelihood of distress, and show that combinations of liquidity, diversification, and collaborative supply chain practices reduce the depth and duration of output losses. The study demonstrates how evidence from an African context can inform resilience strategies in a small European economy and provides a transparent, portable modelling architecture that can be adapted to other settings. Implications are discussed for SME managers and for policies supporting sustainable, resilient enterprise ecosystems. Full article
(This article belongs to the Special Issue Advancing Innovation and Sustainability in SMEs and Entrepreneurship)
Show Figures

Figure 1

25 pages, 2812 KB  
Article
Field-Scale Techno-Economic Assessment and Real Options Valuation of Carbon Capture Utilization and Storage—Enhanced Oil Recovery Project Under Market Uncertainty
by Chang Liu, Cai-Shuai Li and Xiao-Qiang Zheng
Sustainability 2026, 18(2), 805; https://doi.org/10.3390/su18020805 - 13 Jan 2026
Viewed by 198
Abstract
This study develops a field-based techno-economic model and decision framework for a CO2-enhanced oil recovery and storage project under joint market uncertainty. Historical drilling and completion expenditures calibrate investment cost functions, and three years of production data are fitted with segmented [...] Read more.
This study develops a field-based techno-economic model and decision framework for a CO2-enhanced oil recovery and storage project under joint market uncertainty. Historical drilling and completion expenditures calibrate investment cost functions, and three years of production data are fitted with segmented hyperbolic Arps curves to forecast 20-year oil output. Markov-chain models jointly generate internally consistent pathways for crude oil, ETA, and purchased CO2 prices, which are embedded in a Monte Carlo valuation. The framework outputs probability distributions of NPV and deferral option value; under the mid scenario, their mean values are USD 18.1M and USD 2.0M, respectively. PRCC-based global sensitivity analysis identifies the dominant value drivers as oil price, CO2 price, utilization factor, oil density, pipeline length, and injection volume. Techno-economic boundary maps in the joint oil and CO2 price space then delineate feasible regions and break-even thresholds for key design parameters. Results indicate that CCUS-EOR viability cannot be inferred from oil price or any single cost factor alone, but requires coordinated consideration of subsurface constraints, engineering configuration, and multi-market dynamics, including the value of waiting in unfavorable regimes, contributing to low-carbon development and sustainable energy transition objectives. Full article
Show Figures

Figure 1

22 pages, 2454 KB  
Article
Less Is More: Data-Driven Day-Ahead Electricity Price Forecasting with Short Training Windows
by Vasilis Michalakopoulos, Christoforos Menos-Aikateriniadis, Elissaios Sarmas, Antonis Zakynthinos, Pavlos S. Georgilakis and Dimitris Askounis
Energies 2026, 19(2), 376; https://doi.org/10.3390/en19020376 - 13 Jan 2026
Viewed by 147
Abstract
Volatility in the modern world and electricity Day-Ahead Markets (DAMs) usually makes long-term historical data irrelevant or even detrimental for accurate forecasting. This study directly addresses this challenge by proposing a novel forecasting paradigm centered on extremely short training windows, ranging from 7 [...] Read more.
Volatility in the modern world and electricity Day-Ahead Markets (DAMs) usually makes long-term historical data irrelevant or even detrimental for accurate forecasting. This study directly addresses this challenge by proposing a novel forecasting paradigm centered on extremely short training windows, ranging from 7 to 90 days, to maximize responsiveness to recent market dynamics. This volatility-driven approach intentionally creates a data-scarce environment where the suitability of deep learning models is limited. Building on the hypothesis that shallow machine learning models, and more specifically boosting trees, are better adapted to this reality, we evaluate four models, namely LSTM with feed-forward error correction, XGBoost, LightGBM, and CatBoost, across three European energy markets (Greece, Belgium, Ireland) using feature sets derived from ENTSO-E forecast data. Results consistently demonstrate that LightGBM provides superior forecasting accuracy and robustness, particularly when trained on 45–60 day windows, which strike an optimal balance between temporal relevance and learning depth. Furthermore, a stronger capability in detecting seasonal effects and peak price events is exhibited. These findings validate that a short-window training strategy, combined with computationally efficient shallow models, is a highly effective and practical approach for navigating the volatility and data constraints of modern DAM forecasting. Full article
Show Figures

Figure 1

31 pages, 3343 KB  
Article
GridFM: A Physics-Informed Foundation Model for Multi-Task Energy Forecasting Using Real-Time NYISO Data
by Ali Sayghe, Mohammed Ahmed Mousa, Salem Batiyah, Abdulrahman Husawi and Mansour Almuwallad
Energies 2026, 19(2), 357; https://doi.org/10.3390/en19020357 - 11 Jan 2026
Viewed by 138
Abstract
The rapid integration of renewable energy sources and increasing complexity of modern power grids demand advanced forecasting tools capable of simultaneously predicting multiple interconnected variables. While time series foundation models (TSFMs) have demonstrated remarkable zero-shot forecasting capabilities across diverse domains, their application in [...] Read more.
The rapid integration of renewable energy sources and increasing complexity of modern power grids demand advanced forecasting tools capable of simultaneously predicting multiple interconnected variables. While time series foundation models (TSFMs) have demonstrated remarkable zero-shot forecasting capabilities across diverse domains, their application in power grid operations remains limited due to complex coupling relationships between load, price, emissions, and renewable generation. This paper proposes GridFM, a novel physics-informed foundation model specifically designed for multi-task energy forecasting in power systems. GridFM introduces four key innovations: (1) a FreqMixer adaptation layer that transforms pre-trained foundation model representations to power-grid-specific patterns through frequency domain mixing without modifying base weights; (2) a physics-informed constraint module embedding power balance equations and zonal grid topology using graph neural networks; (3) a multi-task learning framework enabling joint forecasting of load demand, locational-based marginal prices (LBMP), carbon emissions, and renewable generation with uncertainty-weighted loss functions; and (4) an explainability module utilizing SHAP values and attention visualization for interpretable predictions. We validate GridFM using over 10 years of real-time data from the New York Independent System Operator (NYISO) at 5 min resolution, comprising more than 10 million data points across 11 load zones. Comprehensive experiments demonstrate that GridFM achieves state-of-the-art performance with an 18.5% improvement in load forecasting MAPE (achieving 2.14%), a 23.2% improvement in price forecasting (achieving 7.8% MAPE), and a 21.7% improvement in emission prediction compared to existing TSFMs including Chronos, TimesFM, and Moirai-MoE. Ablation studies confirm the contribution of each proposed component. The physics-informed constraints reduce physically inconsistent predictions by 67%, while the multi-task framework improves individual task performance by exploiting inter-variable correlations. The proposed model provides interpretable predictions supporting the Climate Leadership and Community Protection Act (CLCPA) 2030/2040 compliance objectives, enabling grid operators to make informed decisions for sustainable energy transition and carbon reduction strategies. Full article
Show Figures

Figure 1

Back to TopTop