Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (446)

Search Parameters:
Keywords = energy management system (EMS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 - 3 Aug 2025
Viewed by 262
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 229
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

38 pages, 5939 KiB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Viewed by 469
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

53 pages, 1950 KiB  
Article
Redefining Energy Management for Carbon-Neutral Supply Chains in Energy-Intensive Industries: An EU Perspective
by Tadeusz Skoczkowski, Sławomir Bielecki, Marcin Wołowicz and Arkadiusz Węglarz
Energies 2025, 18(15), 3932; https://doi.org/10.3390/en18153932 - 23 Jul 2025
Viewed by 324
Abstract
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth [...] Read more.
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth from fossil energy consumption. This study proposes a redefinition of EM to support carbon-neutral supply chains within the European Union’s EIIs, addressing critical limitations of conventional EM frameworks under increasingly stringent carbon regulations. Using a modified systematic literature review based on PRISMA methodology, complemented by expert insights from EU Member States, this research identifies structural gaps in current EM practices and highlights opportunities for integrating sustainable innovations across the whole industrial value chain. The proposed EM concept is validated through an analysis of 24 EM definitions, over 170 scientific publications, and over 80 EU legal and strategic documents. The framework incorporates advanced digital technologies—including artificial intelligence (AI), the Internet of Things (IoT), and big data analytics—to enable real-time optimisation, predictive control, and greater system adaptability. Going beyond traditional energy efficiency, the redefined EM encompasses the entire energy lifecycle, including use, transformation, storage, and generation. It also incorporates social dimensions, such as corporate social responsibility (CSR) and stakeholder engagement, to cultivate a culture of environmental stewardship within EIIs. This holistic approach provides a strategic management tool for optimising energy use, reducing emissions, and strengthening resilience to regulatory, environmental, and market pressures, thereby promoting more sustainable, inclusive, and transparent supply chain operations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 5057 KiB  
Article
Control and Management of Multi-Agent Systems Using Fuzzy Logic for Microgrids
by Zineb Cabrane, Mohammed Ouassaid, Donghee Choi and Soo Hyoung Lee
Batteries 2025, 11(7), 279; https://doi.org/10.3390/batteries11070279 - 21 Jul 2025
Viewed by 253
Abstract
The existing standalone microgrids (MGs) require good energy management systems (EMSs) to respond to energy needs. The EMS presented in this paper is used for an MG based on PV and wind energy sources. The energy storage system is implemented using three packs [...] Read more.
The existing standalone microgrids (MGs) require good energy management systems (EMSs) to respond to energy needs. The EMS presented in this paper is used for an MG based on PV and wind energy sources. The energy storage system is implemented using three packs of batteries. Power smoothing is carried out via the introduction of supercapacitors (SCs) in parallel to the loads and sources. The distribution of energy of the presented MG is focused on the multi-agent system (MAS) using Fuzzy Logic Supervisor control. The MAS is used in order to leverage autonomous and interacting agents to optimize operations and achieve system objectives. To reduce the stress on batteries and avoid damaging all the batteries together by the charge and discharge cycles, one pack of batteries can usually be used. When this pack of batteries is fully discharged and there is a need for energy, it can be taken from another pack of batteries. The same analysis applies to the charge; when batteries of the first pack are fully charged and there is a surplus of energy, it can be stored in other packs of batteries. Two simulation results are used to demonstrate the efficiency of the EMS control used. These simulation tests are proposed with and without SCs. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

42 pages, 8877 KiB  
Review
Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review
by Bin Huang, Wenbin Yu, Minrui Ma, Xiaoxu Wei and Guangya Wang
Energies 2025, 18(14), 3600; https://doi.org/10.3390/en18143600 - 8 Jul 2025
Viewed by 705
Abstract
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between [...] Read more.
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between the internal combustion engine and the electric motor. While rule-based and optimization methods have formed the foundation of EMS, their performance constraints under dynamic conditions have prompted researchers to explore artificial intelligence (AI)-based solutions. This paper systematically reviews four main AI-based EMS approaches—the knowledge-driven, data-driven, reinforcement learning, and hybrid methods—highlighting their theoretical foundations, core technologies, and key applications. The integration of AI has led to notable benefits, such as improved fuel efficiency, enhanced emission control, and greater system adaptability. However, several challenges remain, including generalization to diverse driving conditions, constraints in real-time implementation, and concerns related to data-driven interpretability. The review identifies emerging trends in hybrid methods, which combine AI and conventional optimization approaches to create more adaptive and effective HEV energy management systems. The paper concludes with a discussion of future research directions, focusing on safety, system resilience, and the role of AI in autonomous decision-making. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Figure 1

25 pages, 1549 KiB  
Article
Optimal Operating Patterns for the Energy Management of PEMFC-Based Micro-CHP Systems in European Single-Family Houses
by Santiago Navarro, Juan Manuel Herrero, Xavier Blasco and Alberto Pajares
Appl. Sci. 2025, 15(13), 7527; https://doi.org/10.3390/app15137527 - 4 Jul 2025
Viewed by 291
Abstract
Commercial proton exchange membrane fuel cell (PEMFC)-based micro-combined heat and power (micro-CHP) systems are operated by rule-based energy management systems (EMSs). These EMSs are easy to implement but do not perform an explicit economic optimization. On the other hand, an optimal EMS can [...] Read more.
Commercial proton exchange membrane fuel cell (PEMFC)-based micro-combined heat and power (micro-CHP) systems are operated by rule-based energy management systems (EMSs). These EMSs are easy to implement but do not perform an explicit economic optimization. On the other hand, an optimal EMS can explicitly incorporate an economic optimization, but its implementation is more complex and may not be viable in practice. In a previous contribution, it was shown that current rule-based EMSs do not fully exploit the economic potential of micro-CHP systems due to their inability to adapt to changing scenarios. This study investigates the economic performance and behavior of an optimal EMS in 46 scenarios within the European framework. This EMS is designed using a model predictive control approach, and it is formulated as a mixed integer linear programming problem. The results reveal that there are only four basic optimal operating patterns, which vary depending on the scenario. This finding enables the design of an EMS that is computationally simpler than the optimal EMS but capable of emulating it and, therefore, is able to adapt effectively to changing scenarios. This new EMS would improve the cost-effectiveness of PEMFC-based micro-CHP systems, reducing their payback period and facilitating their mass market uptake. Full article
(This article belongs to the Special Issue Advancements and Innovations in Hydrogen Energy)
Show Figures

Figure 1

15 pages, 1162 KiB  
Article
An Automated Load Restoration Approach for Improving Load Serving Capabilities in Smart Urban Networks
by Ali Esmaeel Nezhad, Mohammad Sadegh Javadi, Farideh Ghanavati and Toktam Tavakkoli Sabour
Urban Sci. 2025, 9(7), 255; https://doi.org/10.3390/urbansci9070255 - 3 Jul 2025
Viewed by 224
Abstract
In this paper, a very fast and reliable strategy for load restoration utilizing optimal distribution feeder reconfiguration (DFR) is developed. The automated network configuration switches can improve the resilience of a microgrid (MG) equipped with a centralized and coordinated energy management system (EMS). [...] Read more.
In this paper, a very fast and reliable strategy for load restoration utilizing optimal distribution feeder reconfiguration (DFR) is developed. The automated network configuration switches can improve the resilience of a microgrid (MG) equipped with a centralized and coordinated energy management system (EMS). The EMS has the authority to reconfigure the distribution network to fulfil high priority loads in the entire network, at the lowest cost, while maintaining the voltage at desirable bounds. In the case of islanded operation, the EMS is responsible for serving the high priority loads, including the establishment of new MGs, if necessary. This paper discusses the main functionality of the EMS in both grid-connected and islanded operation modes of MGs. The proposed model is developed based on a mixed-integer quadratically constrained program (MIQCP), including an optimal power flow (OPF) problem to minimize the power losses in normal operation and the load shedding in islanded operation, while keeping voltage and capacity constraints. The proposed framework is implemented on a modified IEEE 33-bus test system and the results show that the model is fast and accurate enough to be utilized in real-life situations without a loss of accuracy. Full article
Show Figures

Figure 1

19 pages, 2709 KiB  
Review
Enabling Sustainable Solar Energy Systems Through Electromagnetic Monitoring of Key Components Across Production, Usage, and Recycling: A Review
by Mahdieh Samimi and Hassan Hosseinlaghab
J. Manuf. Mater. Process. 2025, 9(7), 225; https://doi.org/10.3390/jmmp9070225 - 1 Jul 2025
Viewed by 492
Abstract
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and [...] Read more.
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and performance optimization throughout the solar lifecycle. During production, eddy current testing and impedance spectroscopy improve quality control while reducing waste. In operational phases, RFID-based monitoring enables continuous performance tracking and early fault detection of photovoltaic panels. For recycling, electrodynamic separation efficiently recovers materials, supporting circular economies. The analysis demonstrates the unique advantages of EM techniques in non-contact evaluation, real-time monitoring, and material-specific characterization, addressing critical sustainability challenges in photovoltaic systems. By examining capabilities and limitations, we highlight EM monitoring’s transformative potential for sustainable manufacturing, from production quality assurance to end-of-life material recovery. The frequency-based framework provides manufacturers with physics-guided solutions that enhance efficiency while minimizing environmental impact. This comprehensive assessment establishes EM technologies as vital tools for advancing solar energy systems, offering practical monitoring approaches that align with global sustainability goals. The review identifies current challenges and future opportunities in implementing these techniques, emphasizing their role in facilitating the renewable energy transition through improved resource efficiency and lifecycle management. Full article
Show Figures

Figure 1

39 pages, 2307 KiB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Viewed by 320
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

17 pages, 2795 KiB  
Article
Coordinated Control Strategy-Based Energy Management of a Hybrid AC-DC Microgrid Using a Battery–Supercapacitor
by Zineb Cabrane, Donghee Choi and Soo Hyoung Lee
Batteries 2025, 11(7), 245; https://doi.org/10.3390/batteries11070245 - 25 Jun 2025
Cited by 1 | Viewed by 725
Abstract
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with [...] Read more.
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with a hybrid energy storage system (HESS) can create a standalone MG. This paper presents an MG that uses photovoltaic energy as a principal source. An HESS is required, combining batteries and supercapacitors. This MG responds “insure” both alternating current (AC) and direct current (DC) loads. The batteries and supercapacitors have separate parallel connections to the DC bus through bidirectional converters. The DC loads are directly connected to the DC bus where the AC loads use a DC-AC inverter. A control strategy is implemented to manage the fluctuation of solar irradiation and the load variation. This strategy was implemented with a new logic control based on Boolean analysis. The logic analysis was implemented for analyzing binary data by using Boolean functions (‘0’ or ‘1’). The methodology presented in this paper reduces the stress and the faults of analyzing a flowchart and does not require a large concentration. It is used in this paper in order to simplify the control of the EMS. It permits the flowchart to be translated to a real application. This analysis is based on logic functions: “Or” corresponds to the addition and “And” corresponds to the multiplication. The simulation tests were executed at Tau  =  6 s of the low-pass filter and conducted in 60 s. The DC bus voltage was 400 V. It demonstrates that the proposed management strategy can respond to the AC and DC loads. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

17 pages, 1645 KiB  
Article
Residual Inertia Estimation Method for KEPCO Power Systems Using PMU and EMS-Based Frequency Response Analysis
by Namki Choi and Suchul Nam
Processes 2025, 13(7), 2012; https://doi.org/10.3390/pr13072012 - 25 Jun 2025
Viewed by 392
Abstract
An intuitive method for estimating the inertia contribution from residual sources, such as induction motors and inverter-based power electronic facilities, in the Korea Electric Power Corporation (KEPCO) system is proposed. First, the method utilizes synchronized Phasor Measurement Units (PMUs) to obtain the measured [...] Read more.
An intuitive method for estimating the inertia contribution from residual sources, such as induction motors and inverter-based power electronic facilities, in the Korea Electric Power Corporation (KEPCO) system is proposed. First, the method utilizes synchronized Phasor Measurement Units (PMUs) to obtain the measured system Rate of Change of Frequency (RoCoF) following an instantaneous power imbalance. Subsequently, the estimated system RoCoF for the same event is derived from simulations of the full dynamic model of the KEPCO system using Energy Management System (EMS) data. The estimated RoCoF accounts only for the inertia contribution from synchronous generators, as the dynamic model includes only these generators. The residual inertia of the entire power system is then estimated based on the ratio of the estimated RoCoF to the measured RoCoF, using the known inertia contribution from synchronous generators. The effectiveness of the proposed method is validated through dynamic simulations of the KEPCO system and demonstrated using real PMU and EMS data from actual disturbance events. The results illustrate that residual inertia was estimated at approximately 160 GW during daytime and around 67 GW during nighttime, indicating substantial variation in absolute terms. This finding highlights the importance of considering residual inertia contributions, particularly under varying load conditions. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

29 pages, 12629 KiB  
Article
Forecast-Aided Converter-Based Control for Optimal Microgrid Operation in Industrial Energy Management System (EMS): A Case Study in Vietnam
by Yeong-Nam Jeon and Jae-ha Ko
Energies 2025, 18(12), 3202; https://doi.org/10.3390/en18123202 - 18 Jun 2025
Viewed by 390
Abstract
This study proposes a forecast-aided energy management strategy tailored for industrial microgrids operating in Vietnam’s tropical climate. The core novelty lies in the implementation of a converter-based EMS that enables bidirectional DC power exchange between multiple subsystems. To improve forecast accuracy, an artificial [...] Read more.
This study proposes a forecast-aided energy management strategy tailored for industrial microgrids operating in Vietnam’s tropical climate. The core novelty lies in the implementation of a converter-based EMS that enables bidirectional DC power exchange between multiple subsystems. To improve forecast accuracy, an artificial neural network (ANN) is used to model the relationship between electric load and localized meteorological features, including temperature, dew point, humidity, and wind speed. The forecasted load data is then used to optimize charge/discharge schedules for energy storage systems (ESS) using a Particle Swarm Optimization (PSO) algorithm. The strategy is validated using real-site data from a Vietnamese industrial complex, where the proposed method demonstrates enhanced load prediction accuracy, cost-effective ESS operation, and multi-microgrid flexibility under weather variability. This integrated forecasting and control approach offers a scalable and climate-adaptive solution for EMS in emerging industrial regions. Full article
Show Figures

Figure 1

25 pages, 1875 KiB  
Article
Hybrid Powerplant Design and Energy Management for UAVs: Enhancing Autonomy and Reducing Operational Costs
by Javier A. Quintana, Carlos Bordons, Sergio Esteban and Julian Delgado
Energies 2025, 18(12), 3101; https://doi.org/10.3390/en18123101 - 12 Jun 2025
Cited by 1 | Viewed by 491
Abstract
This study presents the design of a hybrid powerplant for unmanned aerial vehicles (UAVs), improving its autonomy compared to power systems based solely on batteries. The powerplant is designed for the Mugin EV-350 aircraft. Using experimental data from electric motors in a wind [...] Read more.
This study presents the design of a hybrid powerplant for unmanned aerial vehicles (UAVs), improving its autonomy compared to power systems based solely on batteries. The powerplant is designed for the Mugin EV-350 aircraft. Using experimental data from electric motors in a wind tunnel and fuel cells, a comparative analysis of different energy management strategies, such as fuzzy logic and passive, is conducted to reduce the operational and maintenance costs. A Python-based software program is developed and utilized for the real-time implementation and simulation of energy management strategies, with data collected in databases. This study integrates experimental data (wind tunnel and fuel cells) with real-time EMS strategies, and simulation-based predictions indicate practical improvements in endurance and cost reduction, as well as an increase in flight autonomy of 50%. Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

21 pages, 3373 KiB  
Article
Research on Intelligent Hierarchical Energy Management for Connected Automated Range-Extended Electric Vehicles Based on Speed Prediction
by Xixu Lai, Hanwu Liu, Yulong Lei, Wencai Sun, Song Wang, Jinmiao Xiang and Ziyu Wang
Energies 2025, 18(12), 3053; https://doi.org/10.3390/en18123053 - 9 Jun 2025
Viewed by 375
Abstract
To address energy management challenges for intelligent connected automated range-extended electric vehicles under vehicle-road cooperative environments, a hierarchical energy management strategy (EMS) based on speed prediction is proposed from the perspective of multi-objective optimization (MOO), with comprehensive system performance being significantly enhanced. Focusing [...] Read more.
To address energy management challenges for intelligent connected automated range-extended electric vehicles under vehicle-road cooperative environments, a hierarchical energy management strategy (EMS) based on speed prediction is proposed from the perspective of multi-objective optimization (MOO), with comprehensive system performance being significantly enhanced. Focusing on connected car-following scenarios, acceleration sequence prediction is performed based on Kalman filtering and preceding vehicle acceleration. A dual-layer optimization strategy is subsequently developed: in the upper layer, optimal speed curves are planned based on road network topology and preceding vehicle trajectories, while in the lower layer, coordinated multi-power source allocation is achieved through EMSMPC-P, a Bayesian-optimized model predictive EMS based on Pontryagin’ s minimum principle (PMP). A MOO model is ultimately formulated to enhance comprehensive system performance. Simulation and bench test results demonstrate that with SoC0 = 0.4, 7.69% and 5.13% improvement in fuel economy is achieved by EMSMPC-P compared to the charge depleting-charge sustaining (CD-CS) method and the charge depleting-blend (CD-Blend) method. Travel time reductions of 62.2% and 58.7% are observed versus CD-CS and CD-Blend. Battery lifespan degradation is mitigated by 16.18% and 5.89% relative to CD-CS and CD-Blend, demonstrating the method’s marked advantages in improving traffic efficiency, safety, battery life maintenance, and fuel economy. This study not only establishes a technical paradigm with theoretical depth and engineering applicability for EMS, but also quantitatively reveals intrinsic mechanisms underlying long-term prediction accuracy enhancement through data analysis, providing critical guidance for future vehicle–road–cloud collaborative system development. Full article
Show Figures

Figure 1

Back to TopTop