Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,137)

Search Parameters:
Keywords = energy bandgap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1346 KiB  
Article
Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
by Shiyi He, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao and Xiaoping Ouyang
Materials 2025, 18(15), 3691; https://doi.org/10.3390/ma18153691 - 6 Aug 2025
Abstract
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low [...] Read more.
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low luminous intensity and significant self-absorption. Therefore, an enhanced method was proposed to tune the wavelength of materials via coating perovskite quantum dot (QD) films. Three-layer samples based on GZO were primarily investigated and characterized. Radioluminescence (RL) spectra from each face of the samples, as well as their decay times, were obtained. Lower temperatures further enhanced the luminous intensity of the samples. Its overall luminous intensity increased by 2.7 times at 60 K compared to room temperature. The changes in the RL processes caused by perovskite QD and low temperatures were discussed using the light tuning and transporting model. In addition, an experiment under a pico-second electron beam was conducted to verify their pulse response and decay time. Accordingly, the samples were successfully applied in beam state monitoring of nanosecond pulsed proton beams, which indicates that GZO wafer coating with perovskite QD films has broad application prospects in pulsed radiation detection. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 - 3 Aug 2025
Viewed by 321
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

21 pages, 11260 KiB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 257
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

17 pages, 2996 KiB  
Article
Two Novel Low-Bandgap Copolymers Based on Indacenodithiophene/Indacenodithienothiophene and Benzothiadiazole Dicarboxylic Imide: Structural Design and DFT/TD-DFT Investigation
by Bakhet A. Alqurashy, Ary R. Murad, Wael H. Alsaedi, Bader M. Altayeb, Shaaban A. Elroby and Abdesslem Jedidi
Polymers 2025, 17(15), 2050; https://doi.org/10.3390/polym17152050 - 27 Jul 2025
Viewed by 375
Abstract
In the present study, two novel donor–acceptor (D–A) conjugated copolymers, PIDTBDI and PIDTTBDI, were successfully synthesized via Stille coupling polymerization. These alternating copolymers incorporate indacenodithiophene and indacenodithienothiophene as donor units, coupled with benzothiadiazole dicarboxylic imide as the electron-deficient acceptor unit. The influence of [...] Read more.
In the present study, two novel donor–acceptor (D–A) conjugated copolymers, PIDTBDI and PIDTTBDI, were successfully synthesized via Stille coupling polymerization. These alternating copolymers incorporate indacenodithiophene and indacenodithienothiophene as donor units, coupled with benzothiadiazole dicarboxylic imide as the electron-deficient acceptor unit. The influence of extended conjugation on the structural, optical, thermal, and electrochemical properties of the copolymers was systematically investigated and confirmed by density functional theory (DFT). XRD analysis confirmed that both polymers are amorphous. Thermogravimetric analysis revealed that both materials possess excellent thermal stability, with decomposition temperatures exceeding 270 °C. The theoretical and experimental values of the energy gap confirmed the thermal stability of the studied polymers. The molecular weight was determined to be 10,673 Da for PIDTBDI and 7149 Da for PIDTTBDI. Despite the variation in molecular weight, both copolymers exhibited comparable optical and electrochemical bandgaps of approximately 1.57 and 1.69 eV, respectively. Electrochemical measurements showed that PIDTBDI has a HOMO energy level of −5.30 eV and a LUMO level of −3.61 eV, while PIDTTBDI displays HOMO and LUMO levels of −5.28 eV and −3.59 eV, respectively. These results indicate that minor structural differences can considerably affect the electronic characteristics of the polymers, thus altering their overall efficacy in solar cell applications. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Figure 1

20 pages, 4256 KiB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 229
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

25 pages, 6493 KiB  
Article
Research on Vibration Reduction Characteristics and Optimization of an Embedded Symmetric Distribution Multi-Level Acoustic Black Hole Floating Raft Isolation System
by Xipeng Luo, Xiao Wang, Qiyuan Fan, Jun Wang, Yuanyuan Shi, Jiaqi Liu and Yizhe Huang
Symmetry 2025, 17(8), 1196; https://doi.org/10.3390/sym17081196 - 26 Jul 2025
Viewed by 198
Abstract
The subject of ship structural dynamics has faced new technological obstacles due to scientific and technological advancements, and one of the main concerns in related sectors is how to effectively reduce the vibration levels of different ships. This article focuses on the application [...] Read more.
The subject of ship structural dynamics has faced new technological obstacles due to scientific and technological advancements, and one of the main concerns in related sectors is how to effectively reduce the vibration levels of different ships. This article focuses on the application scenarios of ship floating raft isolation systems, establishing a wave propagation model for acoustic black hole (ABH) structures based on the idea of the ABH effect. Then, a transfer matrix model for serially connected ABH structures is derived, which serves as a basis for subsequent structural designs. Second, the finite element method is used to study the energy distribution and vibration characteristics of a symmetrically distributed periodic non-uniform multi-level ABH structure. Meanwhile, it examines its bandgap distribution under a one-dimensional periodic arrangement and then investigates the vibration properties of non-uniform multi-level ABH thin-plate constructions with different periods from the perspective of engineering applications. Moreover, parameter optimization studies of non-uniform multi-level ABH structures with finite periods are carried out with an emphasis on engineering applications. The first step is to use the design space to determine the range of values for the parameters that need to be optimized. The hyper Latin cubic sampling method is then employed to select samples, and the EI criterion and PSO optimization algorithm are applied to add new samples to improve the Kriging surrogate model’s accuracy. When the optimal structural parameters have been determined, they are applied to the raft rib plate to verify the isolation effect of the non-uniform multi-level ABH structure by analyzing the vibration level difference at specific raft positions before and after embedding it. Full article
Show Figures

Figure 1

22 pages, 5670 KiB  
Article
Tailoring TiO2/TiN Bi-Layer Interfaces via Nitrogen Diffusion and Gold Functionalization for Advanced Photocatalysis
by Jelena P. Georgijević, Tijana Stamenković, Tijana Đorđević, Danilo Kisić, Vladimir Rajić and Dejan Pjević
Catalysts 2025, 15(8), 701; https://doi.org/10.3390/catal15080701 - 23 Jul 2025
Viewed by 457
Abstract
100 nm thick TiO2/TiN bilayers with varying thickness ratios were deposited via reactive sputtering of a Ti target in controlled oxygen and nitrogen atmospheres. Post-deposition annealing in air at 600 °C was performed to induce nitrogen diffusion through the oxygen-deficient TiO [...] Read more.
100 nm thick TiO2/TiN bilayers with varying thickness ratios were deposited via reactive sputtering of a Ti target in controlled oxygen and nitrogen atmospheres. Post-deposition annealing in air at 600 °C was performed to induce nitrogen diffusion through the oxygen-deficient TiO2 layer. The resulting changes in morphology and chemical environment were investigated in detail using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. Detailed TEM and XPS analyses have confirmed nitrogen diffusion across the TiO2 layer, with surface nitrogen concentration and the ratio of interstitial to substitutional nitrogen dependent on the TiO2/TiN mass ratio. Optical studies demonstrated modifications in optical constants and a reduction of the effective bandgap from 3.2 eV to 2.6 eV due to new energy states introduced by nitrogen doping. Changes in surface free energy induced by nitrogen incorporation showed a correlation to nitrogen doping sites on the surface, which had positive effects on overall photocatalytic activity. Photocatalytic activity, assessed through methylene blue degradation, showed enhancement attributed to nitrogen doping. Additionally, deposition of a 5 nm gold layer on the annealed sample enabled investigation of synergistic effects between nitrogen doping and gold incorporation, resulting in further improved photocatalytic performance. These findings establish the TiO2/TiN bilayer as a versatile platform for supporting thin gold films with enhanced photocatalytic properties. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

13 pages, 7300 KiB  
Article
Strain and Layer Modulations of Optical Absorbance and Complex Photoconductivity of Two-Dimensional InSe: A Study Based on GW0+BSE Calculations
by Chuanghua Yang, Yuan Jiang, Wendeng Huang and Feng Pan
Crystals 2025, 15(7), 666; https://doi.org/10.3390/cryst15070666 - 21 Jul 2025
Viewed by 268
Abstract
Since the definitions of the two-dimensional (2D) optical absorption coefficient and photoconductivity are independent of the thickness of 2D materials, they are more suitable than the dielectric function to describe the optical properties of 2D materials. Based on the many-body GW method and [...] Read more.
Since the definitions of the two-dimensional (2D) optical absorption coefficient and photoconductivity are independent of the thickness of 2D materials, they are more suitable than the dielectric function to describe the optical properties of 2D materials. Based on the many-body GW method and the Bethe–Salpeter equation, we calculated the quasiparticle electronic structure, optical absorbance, and complex photoconductivity of 2D InSe from a single layer (1L) to three layers (3L). The calculation results show that the energy difference between the direct and indirect band gaps in 1L, 2L, and 3L InSe is so small that strain can readily tune its electronic structure. The 2D optical absorbance results calculated taking into account exciton effects show that light absorption increases rapidly near the band gap. Strain modulation of 1L InSe shows that it transforms from an indirect bandgap semiconductor to a direct bandgap semiconductor in the biaxial compressive strain range of −1.66 to −3.60%. The biaxial compressive strain causes a slight blueshift in the energy positions of the first and second absorption peaks in monolayer InSe while inducing a measurable redshift in the energy positions of the third and fourth absorption peaks. Full article
Show Figures

Figure 1

14 pages, 5463 KiB  
Article
First-Principles Study of Topological Nodal Line Semimetal I229-Ge48 via Cluster Assembly
by Liwei Liu, Xin Wang, Nan Wang, Yaru Chen, Shumin Wang, Caizhi Hua, Tielei Song, Zhifeng Liu and Xin Cui
Nanomaterials 2025, 15(14), 1109; https://doi.org/10.3390/nano15141109 - 17 Jul 2025
Viewed by 322
Abstract
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed [...] Read more.
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed via bottom-up cluster assembly that exhibits a unique porous spherical Fermi surface and strain-tunable topological robustness. First-principles calculations reveal that I229-Ge48 is a topological nodal line semimetal with exceptional mechanical anisotropy (Young’s modulus ratio: 2.27) and ductility (B/G = 2.21, ν = 0.30). Remarkably, the topological property persists under spin-orbit coupling (SOC) and tensile strain, while compressive strain induces a semiconductor transition (bandgap: 0.29 eV). Furthermore, I229-Ge48 demonstrates strong visible-light absorption (105 cm−1) and a strong strain-modulated infrared response, surpassing conventional Ge allotropes. These findings establish I229-Ge48 as a multifunctional platform for strain-engineered nanoelectronics and optoelectronic devices. Full article
Show Figures

Figure 1

14 pages, 4141 KiB  
Article
Preparation and Electrochemical Performance of Zinc-Doped Copper Fluoride
by Peng Dou, Pengcheng Liu and Zhiyong Yu
Energies 2025, 18(14), 3752; https://doi.org/10.3390/en18143752 - 15 Jul 2025
Viewed by 213
Abstract
To enhance the specific energy and rate performance of lithium primary batteries, the development of advanced cathode materials with superior electrochemical properties is essential. Fluorides, composed of light fluorine elements and multivalent cations, exhibit multi-electron reaction characteristics, possess a high theoretical voltage, and [...] Read more.
To enhance the specific energy and rate performance of lithium primary batteries, the development of advanced cathode materials with superior electrochemical properties is essential. Fluorides, composed of light fluorine elements and multivalent cations, exhibit multi-electron reaction characteristics, possess a high theoretical voltage, and demonstrate high discharge-specific energy. However, owing to fluorine’s high electronegativity, which leads to the formation of strong ionic bonds with other elements, most fluorides exhibit poor electronic conductivity, thereby constraining their electrochemical performance when used as cathode materials. Copper fluoride (CuF2) exhibits a high theoretical specific capacity and discharge voltage but is constrained by its large bandgap, poor electronic conductivity, and difficulties in synthesizing anhydrous CuF2 materials, which significantly limit its electrochemical activity. In this study, zinc (Zn) was chosen as a dopant for copper fluoride. By combining theoretical calculations with experimental validation, the impacts of Zn doping on the structural stability and electrochemical performance of copper fluoride were comprehensively analyzed. The resultant highly active Zn-doped copper fluoride achieved a discharge specific capacity of 528.6 mAh/g at 0.1 C and 489.1 mAh/g at 1 C, showcasing superior discharge-specific energy and good rate performance. This material holds great potential as a promising cathode candidate for lithium batteries, providing both high specific energy and power density. Full article
Show Figures

Figure 1

17 pages, 2783 KiB  
Article
Hydrostatic-Pressure Modulation of Band Structure and Elastic Anisotropy in Wurtzite BN, AlN, GaN and InN: A First-Principles DFT Study
by Ilyass Ez-zejjari, Haddou El Ghazi, Walid Belaid, Redouane En-nadir, Hassan Abboudi and Ahmed Sali
Crystals 2025, 15(7), 648; https://doi.org/10.3390/cryst15070648 - 15 Jul 2025
Viewed by 375
Abstract
III-Nitride semiconductors (BN, AlN, GaN, and InN) exhibit exceptional electronic and mechanical properties that render them indispensable for high-performance optoelectronic, power, and high-frequency device applications. This study implements first-principles Density Functional Theory (DFT) calculations to elucidate the influence of hydrostatic pressure on the [...] Read more.
III-Nitride semiconductors (BN, AlN, GaN, and InN) exhibit exceptional electronic and mechanical properties that render them indispensable for high-performance optoelectronic, power, and high-frequency device applications. This study implements first-principles Density Functional Theory (DFT) calculations to elucidate the influence of hydrostatic pressure on the electronic, elastic, and mechanical properties of these materials in the wurtzite crystallographic configuration. Our computational analysis demonstrates that the bandgap energy exhibits a positive pressure coefficient for GaN, AlN, and InN, while BN manifests a negative pressure coefficient consistent with its indirect-bandgap characteristics. The elastic constants and derived mechanical properties reveal material-specific responses to applied pressure, with BN maintaining superior stiffness across the pressure range investigated, while InN exhibits the highest ductility among the studied compounds. GaN and AlN demonstrate intermediate mechanical robustness, positioning them as optimal candidates for pressure-sensitive applications. Furthermore, the observed nonlinear trends in elastic moduli under pressure reveal anisotropic mechanical responses during compression, a phenomenon critical for the rational design of strain-engineered devices. The computational results provide quantitative insights into the pressure-dependent behavior of III-N semiconductors, facilitating their strategic implementation and optimization for high-performance applications in extreme environmental conditions, including high-power electronics, deep-space exploration systems, and high-pressure optoelectronic devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

34 pages, 1638 KiB  
Review
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Viewed by 703
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy [...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

23 pages, 4276 KiB  
Article
First-Principles Insights into Mo and Chalcogen Dopant Positions in Anatase, TiO2
by W. A. Chapa Pamodani Wanniarachchi, Ponniah Vajeeston, Talal Rahman and Dhayalan Velauthapillai
Computation 2025, 13(7), 170; https://doi.org/10.3390/computation13070170 - 14 Jul 2025
Viewed by 254
Abstract
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where [...] Read more.
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where the dopants are farther apart. The incorporation of Mo into anatase TiO2 resulted in a significant bandgap reduction, lowering it from 3.22 eV (pure TiO2) to range of 2.52–0.68 eV, depending on the specific doping model. The introduction of Mo-4d states below the conduction band led to a shift in the Fermi level from the top of the valence band to the bottom of the conduction band, confirming the n-type doping characteristics of Mo in TiO2. Chalcogen doping introduced isolated electronic states from Te-5p, S-3p, and Se-4p located above the valence band maximum, further reducing the bandgap. Among the examined configurations, Mo–S co-doping in Model 1 exhibited most optimal structural stability structure with the fewer impurity states, enhancing photocatalytic efficiency by reducing charge recombination. With the exception of Mo–Te co-doping, all co-doped systems demonstrated strong oxidation power under visible light, making Mo-S and Mo-Se co-doped TiO2 promising candidates for oxidation-driven photocatalysis. However, their limited reduction ability suggests they may be less suitable for water-splitting applications. The study also revealed that dopant positioning significantly influences charge transfer and optoelectronic properties. Model 1 favored localized electron density and weaker magnetization, while Model 2 exhibited delocalized charge density and stronger magnetization. These findings underscore the critical role of dopant arrangement in optimizing TiO2-based photocatalysts for solar energy applications. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

12 pages, 3178 KiB  
Article
Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping
by Ali Farooq, Wen Xu, Jie Zhang, Hua Wen, Qiujin Wang, Xingjia Cheng, Yiming Xiao, Lan Ding, Altayeb Alshiply Abdalfrag Hamdalnile, Haowen Li and Francois M. Peeters
Physics 2025, 7(3), 27; https://doi.org/10.3390/physics7030027 - 14 Jul 2025
Viewed by 341
Abstract
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of [...] Read more.
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of ML MoS2 placed on a sapphire substrate, where the pump photon energy is larger than the bandgap of ML MoS2. The pump laser source is provided by a compact semiconductor laser with a 445 nm wavelength. Through the measurement of THz time-domain spectroscopy, we obtain the complex optical conductivity for ML MoS2, which are found to be fitted exceptionally well with the Drude–Smith formula. Therefore, we expect that the reduction in conductivity in ML MoS2 is mainly due to the effect of electronic backscattering or localization in the presence of the substrate. Meanwhile, one can optically determine the key electronic parameters of ML MoS2, such as the electron density ne, the intra-band electronic relaxation time τ, and the photon-induced electronic localization factor c. The dependence of these parameters upon CW laser pump intensity is examined here at room temperature. We find that 445 nm CW laser pumping results in the larger ne, shorter τ, and stronger c in ML MoS2 indicating that laser excitation has a significant impact on the optoelectronic properties of ML MoS2. The origin of the effects obtained is analyzed on the basis of solid-state optics. This study provides a unique and tractable technique for investigating photo-excited carriers in ML MoS2. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

17 pages, 4195 KiB  
Article
Rapid Synthesis of Highly Crystalline ZnO Nanostructures: Comparative Evaluation of Two Alternative Routes
by Emely V. Ruiz-Duarte, Juan P. Molina-Jiménez, Duber A. Avila, Cesar O. Torres and Sindi D. Horta-Piñeres
Crystals 2025, 15(7), 640; https://doi.org/10.3390/cryst15070640 - 11 Jul 2025
Viewed by 299
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the rapid synthesis of highly crystalline ZnO nanostructures using two alternative routes: (1) direct thermal decomposition of zinc acetate and (2) a physical-green route assisted by Mangifera indica extract. Both routes were subjected to identical calcination thermal conditions (400 °C for 2 h), allowing for an objective comparison of their effects on structural, vibrational, morphological, and optical characteristics. X-ray diffraction analyses confirmed the formation of a pure hexagonal wurtzite phase in both samples, highlighting a higher crystallinity index (91.6%) and a larger crystallite size (35 nm) in the sample synthesized using the physical-green route. Raman and FTIR spectra supported these findings, revealing greater structural order. Electron microscopy showed significant morphological differences, and UV-Vis analysis showed a red shift in the absorption peak, associated with a decrease in the optical bandgap (from 3.34 eV to 2.97 eV). These results demonstrate that the physical-green route promotes significant improvements in the structural and functional properties of ZnO, without requiring changes in processing temperature or the use of additional chemicals. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

Back to TopTop