Preparation and Electrochemical Performance of Zinc-Doped Copper Fluoride
Abstract
1. Introduction
2. Experimental Methods
2.1. Material Preparation
2.2. Battery Assembly
2.3. Material and Battery Testing
3. Results and Analysis
3.1. Theoretical Investigation of Zn-Doped CuF2
3.2. The Influence of Zn Doping on the Structure and Morphology of CuF2
3.3. The Impact of Zn Doping on the Electrochemical Properties of CuF2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Majeed, M.; Hussain, A.; Hussain, G.; Majeed, M.U.; Ashfaq, M.Z.; Iqbal, R.; Saleem, A. Interfacial Engineering of Polymer Solid-State Lithium Battery Electrolytes and Li-Metal Anode: Current Status and Future Directions. Small 2024, 20, 2406357. [Google Scholar] [CrossRef] [PubMed]
- Jalees, S.; Hussain, A.; Iqbal, R.; Raza, W.; Ahmad, A.; Saleem, A.; Majeed, M.K.; Faheem, M.; Ahmad, N.; Ur Rehman, L.N.; et al. Functional PBI membrane based on polyimide covalent organic framework for durable lithium metal battery. J. Energy Storage 2024, 101, 113985. [Google Scholar] [CrossRef]
- Saleem, A.; Iqbal, R.; Majeed, M.K.; Hussain, A.; Akbar, A.R.; Hussain, Z.; Zabar, J.; Rauf, Z.; Shaw, L.L. Boosting lithium-ion conductivity of polymer electrolyte by selective introduction of covalent organic frameworks for safe lithium metal batteries. Nano Energy 2024, 128, 109848. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, L.; Chen, S.; Li, Q.; He, Z.; Cai, Z.; Cao, L.; Yuan, Z.; Liu, J. Self-Templated Formation of Hollow Yolk-Like Spheres Iron Fluoride as Cathode Material for High-Performance Li-Ion Batteries. J. Electrochem. Soc. 2019, 166, A2074–A2082. [Google Scholar] [CrossRef]
- Lin, J.; Chen, S.; Zhu, L.; Yuan, Z.; Liu, J. Soft-template fabrication of hierarchical nanoparticle iron fluoride as high-capacity cathode materials for Li-ion batteries. Electrochim. Acta 2020, 364, 137293. [Google Scholar] [CrossRef]
- Badway, F.; Mansour, A.N.; Pereira, N.; Al-Sharab, J.F.; Cosandey, F.; Plitz, I.; Amatucci, G.G. Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem. Mater. A Publ. Am. Chem. Soc. 2007, 19, 4129–4141. [Google Scholar] [CrossRef]
- Liu, X.M.; Wang, X.Y.; Wu, W.; Wang, X.; Wang, G.B.; Yang, S.Y. Effects of MoO3 encapsulating on performances of CuF2 cathode material for application of lithium primary batteries. Chin. J. Nonferrous Met. 2010, 20, 288–292. [Google Scholar]
- Thieu, D.T.; Fawey, M.H.; Bhatia, H.; Diemant, T.; Chakravadhanula, V.S.K.; Behm, R.J.; Kübel, C.; Fichtner, M. CuF2 as Reversible Cathode for Fluoride Ion Batteries. Adv. Funct. Mater. 2017, 27, 1701051. [Google Scholar] [CrossRef]
- Hua, X.; Eggeman, A.S.; Castillo-Martínez, E.; Robert, R.; Geddes, H.S.; Lu, Z.; Pickard, C.J.; Meng, W.; Wiaderek, K.M.; Pereira, N.; et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat. Mater. 2021, 20, 841–850. [Google Scholar] [CrossRef]
- Hu, Q.; Yu, Z.; Tian, L.; Zhao, Y.; Liu, H.; Lai, C.; Yuan, Z. Porous anhydrous CuF2 with a micro-nano-hierarchical structure as high-performance cathode material for Li-ion battery. J. Mater. Sci. 2023, 58, 10120–10130. [Google Scholar] [CrossRef]
- Hu, Q.; Yu, Z.; Tian, L.; Zhao, Y.; Liu, H.; Lai, C.; Yuan, Z. Porous CuF2 integrated with a three-dimensional conductive network of CNTs as cathode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2023, 34, 1076. [Google Scholar] [CrossRef]
- Ji, E.; Huang, J.; Yu, Z.; Hu, Q.; Liu, H.; Lai, C.; Yuan, Z. Electrochemical characterization of CuF2/CNTs cathode materials prepared by a coprecipitation method. Funct. Mater. Lett. 2022, 15, 2251036. [Google Scholar] [CrossRef]
- Xu, H.; Yu, Z.; Tian, L.; Du, S.; Zhao, Y.; Cheng, J.; Liu, H.; Yuan, Z. Porous CuF2 derived from MOFs as cathode materials for Li-ion batteries. Funct. Mater. Lett. 2025, 18, 2551026. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Li, X.; Xu, Y.; Wu, D.; Sakthivel, T.; Guo, Z.; Zhao, X.; Dai, Z. Asymmetric tacticity navigates the localized metal spin state for sustainable alkaline/sea water oxidation. Sci. Adv. 2025, 11, ads0861. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, P.; Wu, S.Q.; Wen, Y.H.; Zhu, Z.Z.; Yang, Y. First-principles studies on the structural and electronic properties of Li-ion battery cathode material CuF2. Solid State Commun. 2012, 152, 1703–1706. [Google Scholar] [CrossRef]
- Krahl, T.; Wnkelmann, F.; Martin, A.; Pinna, N.; Kemnitz, E. Novel Synthesis of Anhydrous and Hydroxylated CuF2 Nanoparticles and Their Potential for Lithium Ion Batteries. Chem. A Eur. J. 2018, 24, 7177–7187. [Google Scholar] [CrossRef]
- Omenya, F.; Zagarella, N.; Rana, J.; Zhang, H.; Siu, C.; Zhou, H.; Wen, B.; Chernova, N.A.; Piper, L.F.J.; Zhou, G.; et al. Intrinsic challenges to the electrochemical reversibility of the high energy density copper (II) fluoride cathode material. ACS Appl. Energy Mater. 2019, 2, 5243–5253. [Google Scholar] [CrossRef]
- Wang, F.; Kim, S.; Seo, D.; Kang, K.; Wang, L.; Su, D.; Vajo, J.J.; Wang, J.; Graetz, J. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat. Commun. 2015, 6, 6668. [Google Scholar]
- Ding, J.; Zhou, X.; Luo, C.; Wang, X.; Yao, H.; Fu, H.; Yang, J.; Tang, J. First-principles calculations and experimental study of Al-doped Fe1-xAlxF3·0.33H2O/C cathodes for Li-ion batteries. Ionics 2022, 28, 3127–3137. [Google Scholar] [CrossRef]
- Villa, C.; Kim, S.; Lu, Y.; Dravid, V.P.; Wu, J. Cu-substituted NiF2 as a cathode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 11, 647–654. [Google Scholar] [CrossRef]
- Tang, C.; Gao, Y.; Zhu, K.; Cao, D. Preparation of high performance MnO2 cathode for lithium primary battery through uniform particle size and crystal modulation. J. Power Sources 2025, 633, 236368. [Google Scholar] [CrossRef]
- Rivera-Lugo, Y.; Félix-Navarro, R.; Trujillo-Navarrete, B.; Reynoso-Soto, E.A.; Silva-Carrillo, C.; Cruz-Gutiérrez, C.A.; Quiroga-González, E.; Calva-Yáñez, J.C. Flower-like δ-MnO2 as cathode material of Li-ion batteries of high charge-discharge rates. Fuel 2021, 287, 119463. [Google Scholar] [CrossRef]
- Liu, W.; Ma, S.; Li, Y.; Wan, B.; Wu, C.; Ma, S.; Guo, R.; Pei, H.; Xie, J. Electrochemical impedance spectroscopy analysis for lithium carbon fluorides primary battery. J. Energy Storage 2023, 68, 107699. [Google Scholar] [CrossRef]
- Hua, X.; Robert, R.; Du, L.S.; Wiaderek, K.M.; Leskes, M.; Chapman, K.W.; Chupas, P.J.; Grey, C.P. Comprehensive Study of the CuF2 Conversion Reaction Mechanism in a Lithium Ion Battery. J. Phys. Chem. C 2014, 118, 15169–15184. [Google Scholar] [CrossRef]
- Hua, X.; Robert, R.; Grey, C.; Wang, F.; Graetz, J. Study of the Conversion Reaction Mechanism of Carbon Copper Fluoride Nanocomposites as Cathode Materials in Li-ion Batteries. ECS Meet. Abstr. 2011, 26, 326–336. [Google Scholar] [CrossRef]
Pure CuF2 | 5% Zn | |||
---|---|---|---|---|
Bond | P | L | P | L |
Zn-F | - | - | 0.19 | 2.042 |
Cu-F1 | 0.22 | 1.946 | 0.24 | 1.925 |
Cu-F2 | 0.21 | 1.954 | 0.23 | 1.933 |
No. | Cathodes | Current | Voltage(V) | Capacity (mAh/g) | References |
---|---|---|---|---|---|
1 | CuF2 | 0.1 C | 2.7 | 413 | [17] |
2 | CuF2/MoO3 | 0.1 C | 2.5 | 483 | [8] |
3 | Cu0.5Fe0.5F2 | 5 mAg −1 | 2.55 | 475 | [18] |
4 | Cu0.5Fe0.5F2 | 0.02 C | 2.65 | 485 | [19] |
5 | Fe0.92Al0.08F3·0.33H2O/C | 40 mA g−1 | 3.0 | 200 | [20] |
6 | Cu0.1Ni0.9F2 | C/10 | 1.75 | 548 | [21] |
7 | MnO2 | 0.1 C | 2.9 | 245.7 | [22] |
8 | MnO2 | 20 mA g−1 | 2.8 | 235.5 | [23] |
9 | Zn0.15Cu0.85F2 | 0.1 C | 2.75 | 528.6 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, P.; Liu, P.; Yu, Z. Preparation and Electrochemical Performance of Zinc-Doped Copper Fluoride. Energies 2025, 18, 3752. https://doi.org/10.3390/en18143752
Dou P, Liu P, Yu Z. Preparation and Electrochemical Performance of Zinc-Doped Copper Fluoride. Energies. 2025; 18(14):3752. https://doi.org/10.3390/en18143752
Chicago/Turabian StyleDou, Peng, Pengcheng Liu, and Zhiyong Yu. 2025. "Preparation and Electrochemical Performance of Zinc-Doped Copper Fluoride" Energies 18, no. 14: 3752. https://doi.org/10.3390/en18143752
APA StyleDou, P., Liu, P., & Yu, Z. (2025). Preparation and Electrochemical Performance of Zinc-Doped Copper Fluoride. Energies, 18(14), 3752. https://doi.org/10.3390/en18143752