Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
Abstract
1. Introduction
2. Methodology
3. Synthetic Approaches for MNb2O6 Nanomaterials
3.1. Chemical Transport Method
3.2. Solid-State Reaction
3.3. Solvothermal and Hydrothermal Methods
3.4. Electrospinning
4. Structural Features of MNb2O6 Nanomaterials
5. Morphological Features of MNb2O6 Nanomaterials
6. Optical Properties of MNb2O6 Compounds
7. Photocatalytic Performance of MNb2O6 Compounds
7.1. Visible-Light-Active Niobates: MnNb2O6, CuNb2O6, and NiNb2O6
7.2. CoNb2O6: Emerging Potential Through Heterostructure Engineering
7.3. Limited Exploration: ZnNb2O6, MgNb2O6, and FeNb2O6
8. Influence of Specific Surface Area on the Photocatalytic Performance of MNb2O6 Nanomaterials
9. Research Gaps in Advancing MNb2O6-Based Photocatalysts
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S.Z. Earth-Abundant Cocatalysts for Semiconductor-Based Photocatalytic Water Splitting. Chem. Soc. Rev. 2014, 43, 7787–7812. [Google Scholar] [CrossRef]
- Nath, F.; Mahmood, M.N.; Ofosu, E.; Khanal, A. Enhanced Geothermal Systems: A Critical Review of Recent Advancements and Future Potential for Clean Energy Production. Geoenergy Sci. Eng. 2024, 243, 213370. [Google Scholar] [CrossRef]
- Center for Sustainable Systems Geothermal Energy Geothermal Resource and Potential. 2024, pp. 1–2. Available online: https://css.umich.edu/sites/default/files/2022-09/Geothermal%20Energy_CSS10-10.pdf (accessed on 23 July 2025).
- Zuffi, C.; Manfrida, G.; Asdrubali, F.; Talluri, L. Life Cycle Assessment of Geothermal Power Plants: A Comparison with Other Energy Conversion Technologies. Geothermics 2022, 104, 102434. [Google Scholar] [CrossRef]
- Nkinyam, C.M.; Ujah, C.O.; Asadu, C.O.; Kallon, D.V.V. Exploring Geothermal Energy as a Sustainable Source of Energy: A Systemic Review. Unconv. Resour. 2025, 6, 10014. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, T. Numerical Analysis of Optimal Design and Operation of Solar-Assisted Geothermal Heat Pump System. J. Build. Eng. 2025, 111, 113340. [Google Scholar] [CrossRef]
- Jafari, T.; Moharreri, E.; Amin, A.; Miao, R.; Song, W.; Suib, S. Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef]
- Gupta, N.M. Factors Affecting the Efficiency of a Water Splitting Photocatalyst: A Perspective. Renew. Sustain. Energy Rev. 2017, 71, 585–601. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from Photo-Catalytic Water Splitting Process: A Review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Idris, M.G.; Hafeez, H.Y.; Mohammed, J.; Mohammed, Y.; Suleiman, A.B.; Ndikilar, C.E. Recent Developments on Metal Oxide-Based Photocatalysts for Effective Solar Fuel (Hydrogen) Production via Photocatalytic Water-Splitting. J. Alloy. Compd. Commun. 2025, 7, 100080. [Google Scholar] [CrossRef]
- Yusuf, M.; Rosha, P.; Qureshi, F.; Ali, F.M.; Ibrahim, H. Recent Avenues in the Photocatalytic Splitting of Water for Eco-Friendly Hydrogen Production. Sustain. Mater. Technol. 2025, 43, e01332. [Google Scholar] [CrossRef]
- Islam, A.; Malek, A.; Islam, M.T.; Nipa, F.Y.; Raihan, O.; Mahmud, H.; Uddin, M.E.; Ibrahim, M.L.; Abdulkareem-Alsultan, G.; Mondal, A.H.; et al. Next Frontier in Photocatalytic Hydrogen Production through CdS Heterojunctions. Int. J. Hydrogen Energy 2025, 101, 173–211. [Google Scholar] [CrossRef]
- Ao, T.; Jafry, A.T.; Abbas, N. Sustainability and Scalability of Photoelectrochemical and Photocatalytic Water Splitting by Using Perovskite Materials for Hydrogen Production. Electrochem. Commun. 2025, 177, 107948. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Chong, W.-K.; Pan, Z.; Wang, Q. Novel Materials and Techniques for Photocatalytic Water Splitting Developed by Professor Kazunari Domen. Chin. J. Catal. 2025, 68, 1–50. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. A Critical Review on Graphitic Carbon Nitride (g-C3N4)-Based Materials: Preparation, Modification and Environmental Application. Coord. Chem. Rev. 2022, 453, 214338. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, Z.; Qiu, B.; Xing, M.; Zhang, J. Emerging Cocatalysts on G-C3N4 for Photocatalytic Hydrogen Evolution. Small 2021, 17, 2101070. [Google Scholar] [CrossRef]
- Ismael, M. A Review on Graphitic Carbon Nitride (g-C3N4) Based Nanocomposites: Synthesis, Categories, and Their Application in Photocatalysis. J. Alloys Compd. 2020, 846, 156446. [Google Scholar] [CrossRef]
- Alwin, E.; Kočí, K.; Wojcieszak, R.; Zieliński, M.; Edelmannová, M.; Pietrowski, M. Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability. Materials 2020, 13, 2756. [Google Scholar] [CrossRef]
- Muhmood, T.; Ahmad, I.; Haider, Z.; Haider, S.K.; Shahzadi, N.; Aftab, A.; Ahmed, S.; Ahmad, F. Graphene-like Graphitic Carbon Nitride (g-C3N4) as a Semiconductor Photocatalyst: Properties, Classification, and Defects Engineering Approaches. Mater. Today Sustain. 2024, 25, 100633. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, K.; Yuan, C.; Lv, H.; Yin, H.; Fei, Q.; Xiao, D.; Zhang, Y.; Lau, W. In-Situ Formation of SrTiO3/Ti3C2 MXene Schottky Heterojunction for Efficient Photocatalytic Hydrogen Evolution. J. Colloid Interface Sci. 2024, 653, 482–492. [Google Scholar] [CrossRef]
- Vempuluru, N.R.; Kwon, H.; Parnapalle, R.; Urupalli, B.; Munnelli, N.; Lee, Y.; Marappan, S.; Mohan, S.; Murikinati, M.K.; Muthukonda Venkatakrishnan, S.; et al. ZnS/ZnSe Heterojunction Photocatalyst for Augmented Hydrogen Production: Experimental and Theoretical Insights. Int. J. Hydrogen Energy 2024, 51, 524–539. [Google Scholar] [CrossRef]
- Avcıoğlu, C.; Avcıoğlu, S.; Bekheet, M.F.; Gurlo, A. Solar Hydrogen Generation Using Niobium-Based Photocatalysts: Design Strategies, Progress, and Challenges. Mater. Today Energy 2022, 24, 100936. [Google Scholar] [CrossRef]
- Genco, A.; García-López, E.I.; Megna, B.; Ania, C.; Marcì, G. Nb2O5 Based Photocatalysts for Efficient Generation of H2 by Photoreforming of Aqueous Solutions of Ethanol. Catal. Today 2025, 447, 115147. [Google Scholar] [CrossRef]
- Maitlo, H.A.; Anand, B.; KimK, H. TiO2-Based Photocatalytic Generation of Hydrogen from Water and Wastewater. Appl. Energy 2024, 361, 122932. [Google Scholar] [CrossRef]
- Mohd Amin, N.A.A.; Zaid, H.F.M. A Review of Hydrogen Production Using TIO2-Based Photocatalyst in Tandem Solar Cell. Int. J. Hydrogen Energy 2024, 77, 166–183. [Google Scholar] [CrossRef]
- Abdelfattah, I.; El-Shamy, A.M. A Comparative Study for Optimizing Photocatalytic Activity of TiO2-Based Composites with ZrO2, ZnO, Ta2O5, SnO, Fe2O3, and CuO Additives. Sci. Rep. 2024, 14, 27175. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, X.; Aishanjiang, K.; Fu, Y.; Le, J.; Wu, H. Boosting the Photocatalytic Performance of Cu2O for Hydrogen Generation by Au Nanostructures and RGO Nanosheets. RSC Adv. 2022, 12, 31415–31423. [Google Scholar] [CrossRef]
- Lu, X.; Wang, G.; Xie, S.; Shi, J.; Li, W.; Tong, Y.; Li, Y. Efficient Photocatalytic Hydrogen Evolution over Hydrogenated ZnO Nanorod Arrays. Chem. Commun. 2012, 48, 7717–7719. [Google Scholar] [CrossRef]
- Haroonabadi, L.; Sharifnia, S. Efficient Photocatalytic Water Splitting of BiFeO3–BaTiO3 as a Perovskite Based n-n Heterojunction toward H2 Evolution without Using Sacrificial Agent. Int. J. Hydrogen Energy 2024, 82, 1263–1274. [Google Scholar] [CrossRef]
- Boulahouache, A.; Benlembarek, M.; Salhi, N.; Djaballah, A.M.; Rabia, C.; Trari, M. Preparation, Characterization and Electronic Properties of LaFeO3 Perovskite as Photocatalyst for Hydrogen Production. Int. J. Hydrogen Energy 2023, 48, 14650–14658. [Google Scholar] [CrossRef]
- Jia, X.; Liu, X.; Zhang, R.; Xie, A.; Li, Y.; Yu, X.; Yu, M.; Li, Y.; Shi, Z.; Xing, Y. Fe-Doped Perovskite-like Oxide KCuTa3O9 for Photocatalytic Hydrogen Evolution under Visible Light Irradiation. J. Alloys Compd. 2023, 960, 170635. [Google Scholar] [CrossRef]
- Sano, K.; Ishida, T.; Shimada, T.; Tachibana, H.; Takashima, M.; Ohtani, B.; Takagi, S.; Inoue, H. Photocatalytic Hydrogen Evolution from a Transparent Aqueous Dispersion of Quantum-Sized SnO2 Nanoparticles: Effect of Electron Trap Density within One Particle. J. Phys. Chem. C 2024, 128, 13596–13605. [Google Scholar] [CrossRef]
- Xochiquetzalli, G.B.; Leticia, H.P.M.; Vicente, M.M.J.; Pazdel, A.V.; Rubén, M.C.; Elena, M.R.M. The Role of WOx Species as a Shape-Control Agent in TiO2-WO3 Heterojunctions for Hydrogen Photocatalytic Production. Tungsten 2025, 7, 284–297. [Google Scholar] [CrossRef]
- Joda, N.N.; Edelmannová, M.F.; Pavliňák, D.; Santana, V.T.; Chennam, P.K.; Rihova, M.; Kočí, K.; Macak, J.M. Centrifugally Spun Hematite Fe2O3 Hollow Fibers: Efficient Photocatalyst for H2 Generation and CO2 Reduction. Appl. Surf. Sci. 2025, 686, 162132. [Google Scholar] [CrossRef]
- Ganesan, M.; Chinnuraj, I.P.; Rajendran, R.; Rojviroon, T.; Rojviroon, O.; Thangavelu, P.; Sirivithayapakorn, S. Synergistic Enhancement for Photocatalytic and Antibacterial Properties of Vanadium Pentoxide (V2O5) Nanocomposite Supported on Multi-Walled Carbon Nanotubes. J. Clust. Sci. 2025, 36, 75. [Google Scholar] [CrossRef]
- Pan, H. Principles on Design and Fabrication of Nanomaterials as Photocatalysts for Water-Splitting. Renew. Sustain. Energy Rev. 2016, 57, 584–601. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I.; Zamfirescu, C. A Review on Selected Heterogeneous Photocatalysts for Hydrogen Production. Int. J. Energy Res. 2014, 38, 1903–1920. [Google Scholar] [CrossRef]
- Corredor, J.; Rivero, M.J.; Rangel, C.M.; Gloaguen, F.; Ortiz, I. Comprehensive Review and Future Perspectives on the Photocatalytic Hydrogen Production. J. Chem. Technol. Biotechnol. 2019, 94, 3049–3063. [Google Scholar] [CrossRef]
- Gupta, A.; Likozar, B.; Jana, R.; Chanu, W.C.; Singh, M.K. A Review of Hydrogen Production Processes by Photocatalytic Water Splitting—From Atomistic Catalysis Design to Optimal Reactor Engineering. Int. J. Hydrogen Energy 2022, 47, 33282–33307. [Google Scholar] [CrossRef]
- Emmenegger, F.; Petermann, A. Transport Reactions and Crystal Growth of Transition Metal Niobates. J. Cryst. Growth 1968, 2, 33–39. [Google Scholar] [CrossRef]
- Prabhakaran, D.; Wondre, F.R.; Boothroyd, A.T. Preparation of Large Single Crystals of ANb2O6 (A = Ni, Co, Fe, Mn) by the Floating-Zone Method. J. Cryst. Growth 2003, 250, 72–76. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lim, A.S.; Kwon, Y.M.; Cho, K.Y.; Yoon, S. Copper, Zinc, and Manganese Niobates (CuNb2O6, ZnNb2O6, and MnNb2O6): Structural Characteristics, Li+ Storage Properties, and Working Mechanisms. Inorg. Chem. Front. 2020, 7, 3176–3183. [Google Scholar] [CrossRef]
- Chun, Y.; Yue, M.; Jiang, P.; Chen, S.; Gao, W.; Cong, R.; Yang, T. Optimizing the Performance of Photocatalytic H2 Generation for ZnNb2O6 Synthesized by a Two-Step Hydrothermal Method. RSC Adv. 2018, 8, 13857–13864. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.H.; Bae, S.; Kim, M.H.; Yoon, S. Synthesis of Highly Crystalline Single-Phase CoNb2O6 Nanofibers at Low Temperature and Their Structural Characterizations. Cryst. Growth Des. 2023, 23, 4395–4400. [Google Scholar] [CrossRef]
- Nandi, M.; Prabhakaran, D.; Mandal, P. Spin-Charge-Lattice Coupling in Quasi-One-Dimensional Ising Spin Chain CoNb2O6. J. Phys. Condens. Matter 2019, 31, 195802. [Google Scholar] [CrossRef]
- Liang, J.; Guan, S.; Xing, J.; Peng, Z.; Fu, X. Network-like FeNb2O6 Nanostructures on Flexible Carbon Cloth as a Binder-Free Electrode for Aqueous Supercapacitors. J. Alloys Compd. 2022, 896, 162986. [Google Scholar] [CrossRef]
- Peña, J.P.; Bouvier, P.; Isnard, O. Structural Properties and Raman Spectra of Columbite-Type NiNb2O6 Synthesized under High Pressure. J. Solid State Chem. 2020, 291, 121607. [Google Scholar] [CrossRef]
- Luo, W.; Wang, S.; Zheng, S.; Li, J.; Wang, M.; Wen, Y.; Li, L.; Zhou, J. Dielectric Response of ANb2O6 (A = Zn, Co, Mn, Ni) Columbite Niobates: From Microwave to Terahertz. J. Adv. Ceram. 2024, 13, 1189–1197. [Google Scholar] [CrossRef]
- Husson, E.; Repelin, Y.; Dao, N.Q.; Brusset, H. Normal Coordinate Analysis of the MNb2O6 Series of Columbite Structure (M=Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd). J. Chem. Phys. 1977, 67, 1157. [Google Scholar] [CrossRef]
- Basavaraju, N.; Prashantha, S.C.; Surendra, B.S.; Shashi Shekhar, T.R.; Anil Kumar, M.R.; Ravikumar, C.R.; Raghavendra, N.; Shashidhara, T.S. Structural and Optical Properties of MgNb2O6 NPs: Its Potential Application in Photocatalytic and Pharmaceutical Industries as Sensor. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100581. [Google Scholar] [CrossRef]
- Kormányos, A.; Thomas, A.; Huda, M.N.; Sarker, P.; Liu, J.P.; Poudyal, N.; Janáky, C.; Rajeshwar, K. Solution Combustion Synthesis, Characterization, and Photoelectrochemistry of CuNb2O6 and ZnNb2O6 Nanoparticles. J. Phys. Chem. C 2016, 120, 16024–16034. [Google Scholar] [CrossRef]
- Ravi, P.; Reddy, S.L.; Sreedhar, A.; Noh, J.S. An S-Scheme Heterojunction Formed Using Orthorhombic NiNb2O6 and Discrete TiO2 Nanospheres Enhances the Rate of Photocatalytic Hydrogen Evolution from Aqueous Glycerol Solution. Int. J. Hydrogen Energy 2025, 98, 1326–1340. [Google Scholar] [CrossRef]
- Ahmad, N.; Kuo, C.F.J.; Mustaqeem, M.; Sangili, A.; Huang, C.C.; Chang, H.T. Synthesis of Novel Type-II MnNb2O6/g-C3N4 Mott-Schottky Heterojunction Photocatalyst: Excellent Photocatalytic Performance and Degradation Mechanism of Fluoroquinolone-Based Antibiotics. Chemosphere 2023, 321, 138027. [Google Scholar] [CrossRef]
- Bo, X.; Wan, X.; Pu, Y. First-Principles Study of Exchange Interactions of NiNb2O6 and FeNb2O6. Comput. Mater. Sci. 2024, 244, 113237. [Google Scholar] [CrossRef]
- Bi, X.; Wu, N.; Zhang, C.; Bai, P.; Chai, Z.; Wang, X. Synergetic Effect of Heterojunction and Doping of Silver on ZnNb2O6 for Superior Visible-Light Photocatalytic Activity and Recyclability. Solid State Sci. 2018, 84, 86–94. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Li, H.; Li, Y.; Du, Y.; Yang, Y.; Jia, X. Surface Activation of MnNb2O6 Nanosheets by Oxalic Acid for Enhanced Photocatalysis. Appl. Surf. Sci. 2017, 403, 314–325. [Google Scholar] [CrossRef]
- Balamurugan, C.; Maheswari, A.R.; Lee, D.W. Structural, Optical, and Selective Ethanol Sensing Properties of p-Type Semiconducting CoNb2O6 Nanopowder. Sens. Actuators B Chem. 2014, 205, 289–297. [Google Scholar] [CrossRef]
- Karmakar, S.; Garg, A.B.; Sahu, M.; Tripathi, A.; Mukherjee, G.D.; Thapa, R.; Behera, D. Pressure-Induced Octahedral Tilting Distortion and Structural Phase Transition in Columbite Structured NiNb2O6. J. Appl. Phys. 2020, 128, 215902. [Google Scholar] [CrossRef]
- Naveed-Ul-Haq, M. Gul-e-Ali Elastic, Electronic, and Magnetic Properties of MNb2O6 (M = Mn, Fe, Co, Ni) in the Orthorhombic Pbcn Structure, a Computational Study. Mater. Today Commun. 2023, 37, 107075. [Google Scholar] [CrossRef]
- Ravi, P.; Sreedhar, A.; Noh, J.S. S-Scheme TiO2/CuNb2O6 Nanocomposite Photocatalyst with Enhanced H2 Evolution Activity from Aqueous Glycerol Solution. ACS Appl. Energy Mater. 2023, 6, 6051–6063. [Google Scholar] [CrossRef]
- Satiya, K.M.D.; Jones, B.M.F.; Velusamy, A.; Selvakumar, K.; Shree, G.N.; Nagarajan, E.R. Enhanced Visible Light Driven of Novel 2D/2D CoNb2O6/g-C3N5 Type-II Heterojunction for Boosting Photocatalytic Degradation of Cefuroxime: Performance and Mechanistic Insights. J. Water Process Eng. 2025, 72, 107628. [Google Scholar] [CrossRef]
- Thalthodi, M.S.; Sasikumar, R.; Padmanathan, N. Anion Intercalation-Type Pseudocapacitance in Trirutile CoNb2O6 Microspheres and Their Electrocatalytic Activity for Water Splitting Reactions. Inorg. Chem. Commun. 2025, 178, 114602. [Google Scholar] [CrossRef]
- Kamimura, S.; Abe, S.; Tsubota, T.; Ohno, T. Solar-Driven H2 Evolution over CuNb2O6: Effect of Two Polymorphs (Monoclinic and Orthorhombic) on Optical Property and Photocatalytic Activity. J. Photochem. Photobiol. A Chem. 2018, 356, 263–271. [Google Scholar] [CrossRef]
Compound | Space Group | a (Å) | b (Å) | c (Å) | Notes on Structure |
---|---|---|---|---|---|
MgNb2O6 (columbite) | Pbcn | 14.1875 | 5.7001 | 5.0331 | NbO6 octahedra form edge-sharing 1D chains along the c-axis; MgO6 connects via corners (ui.adsabs.harvard.edu) |
FeNb2O6 (columbite) | Pbcn | ~14.281 | 5.7366 | 5.1234 | Details from single-crystal studies; demonstrates full orthorhombic symmetry |
NiNb2O6 (columbite) | Pbcn | 14.032 | 5.687 | 5.033 | Prepared as single crystals; consistent with columbite-type structure |
ZnNb2O6 (columbite) | Pbcn | 14.208 | 5.726 | 5.040 | In line with earlier findings, edge-sharing NbO6 chains are evident |
MnNb2O6 | Pbcn | 14.39 | 5.74 | 5.09 | Powder, orthorhombic columbite; a = 0.5766 nm, b = 1.4439 nm, c = 0.5085 nm (V = 0.4234 nm3) (akjournals.com) |
CoNb2O6 | Pbcn | ~14.18 | ~5.72 | ~5.04 | Orthorhombic columbite phase confirmed |
CuNb2O6 | Pbcn | 14.10 | 5.70 | 5.03 | Analogous orthorhombic parameters expected; comparable to other MNb2O6 columbites |
Compound | Morphology | Synthesis Method | Key Features & Observations | Reference |
---|---|---|---|---|
MnNb2O6 | Nanoparticles | Solvothermal | Uniform dispersion, high surface area; enhances visible-light absorption and H2 evolution | [42] |
CuNb2O6 | Nanoparticles | Solvothermal | Small particle size; suitable bandgap for photocatalysis | [42] |
ZnNb2O6 | Nanorods | Hydrothermal | Rod-like morphology improves charge transport and light harvesting | [43] |
CoNb2O6 | Nanofibers | Electrospinning + Annealing | 1D structure enhances electron mobility; hierarchical fibrous network improves separation | [44] |
FeNb2O6 | Micro-/nanoparticles | Solid-state/Sol–gel | Limited reports on photocatalytic water splitting; morphology less controlled | [46] |
NiNb2O6 | Crystals, bulk powder | Solid-state/Floating Zone | Mostly studied for magnetic/dielectric properties; photocatalytic morphology underexplored | [40] |
MgNb2O6 | Irregular particles | Solid-state | Rarely explored for photocatalysis; lack of controlled morphology studies | [50] |
Compound | Experimental Band Gap (eV) | Theoretical Band Gap (eV) | Synthesis Method | Key References |
---|---|---|---|---|
MnNb2O6 | 2.3–2.7 | 2.5–2.8 | Solid-state reaction | [53] |
CuNb2O6 | 1.9–2.1 | 2.0–2.2 | Sol–gel method | [51] |
CoNb2O6 | ~2.4 | 2.3–2.5 | Hydrothermal method + annealing | [44] |
NiNb2O6 | 2.2–2.5 | 2.4–2.7 | Solid-state reaction | [54] |
ZnNb2O6 | 3.6–3.8 | 3.7–3.9 | Hydrothermal method | [55] |
MgNb2O6 | ~3.9 | 4.0–4.2 | Sol–gel auto-combustion | [50] |
FeNb2O6 | ~4.0 | 4.0–4.2 | Solid-state reaction | [54] |
Compound | Conductivity Type | Reasoning/Evidence |
---|---|---|
MgNb2O6 | Likely n-type | Analogous dielectric niobates tend to be n-type due to oxygen vacancies (pmc.ncbi.nlm.nih.gov, reddit.com); Mg has no open d-orbitals. |
FeNb2O6 | Likely n-type | Transition-metal niobates often show n-type behavior from oxygen-vacancy donors. |
NiNb2O6 | Likely n-type | Similar logic: oxygen deficiencies act as electron donors in Nb–O systems. |
ZnNb2O6 | Predominantly n-type | Widely used as a dielectric; typical oxide defects (e.g., O-vacancies) lead to n-type conduction. |
MnNb2O6 | Likely n-type, possibly p-type | No direct measurement. Structurally similar oxides are n-type, but Mn d-states could allow minority hole conduction. |
CoNb2O6 | Likely n-type, possible mixed behavior | No direct data. Cobalt oxides can sometimes be p-type, but niobate structure suggests n-type dominance. |
CuNb2O6 | Potentially p-type, possibly ambipolar | Cu2+ often introduces hole carriers; certain copper niobates show p-type or bipolar conductivity (needs experimental confirmation). |
Compound | Crystal Structure (Space Group) | Morphology | Synthesis Method | Surface Area (m2/g) | H2 Evolution Rate (μmol h−1 g−1) | Reference |
---|---|---|---|---|---|---|
MnNb2O6 | Orthorhombic (Pbcn) | Rod-like nanoparticles | Hydrothermal | ~28.3 | Not reported | [53] |
CuNb2O6 | Orthorhombic (Pbcn) | Plate-like microstructures | Sol-gel | ~91 | ~21,000 | [60,63] |
CoNb2O6 | Orthorhombic | Nanofibers in composites | Electrospinning + Calcination | ~12.7 | ~190 (in heterojunction) | [62] |
MgNb2O6 | Orthorhombic | Irregular granules | Solid-state reaction | Not reported | Not reported | [50] |
FeNb2O6 | Monoclinic | Agglomerated particles | Solid-state reaction | ~5.1 | Not reported | [54] |
NiNb2O6 | Monoclinic | Dense particles | Solid-state reaction | ~96 | 16,000 | [52] |
ZnNb2O6 | Orthorhombic | Porous, nanoscale aggregates | Hydrothermal | ~18.9 | 23 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi, P.; Noh, J.-S. Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting. Materials 2025, 18, 3516. https://doi.org/10.3390/ma18153516
Ravi P, Noh J-S. Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting. Materials. 2025; 18(15):3516. https://doi.org/10.3390/ma18153516
Chicago/Turabian StyleRavi, Parnapalle, and Jin-Seo Noh. 2025. "Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting" Materials 18, no. 15: 3516. https://doi.org/10.3390/ma18153516
APA StyleRavi, P., & Noh, J.-S. (2025). Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting. Materials, 18(15), 3516. https://doi.org/10.3390/ma18153516