Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GZO | Ga:ZnO, gallium doped into zinc oxide |
QD | Quantum dot |
RL | Radio luminescence |
PL | Photo luminescence |
TCSPC | Time-correlated single-photon counting system |
References
- Du, B.; Kang, D.; Zou, S.; Liu, C.; Deng, L.; Ge, F.; Dai, Z.; Cai, H.; Zhu, S. Modeling of the Non-Maxwellian Response of DT Plasmas to Alpha Particle Transport in Inertial Confinement Fusion (ICF) Hotspot. Phys. Plasmas 2024, 31, 012706. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, R.; Singh, S.; Gopal, K. A Numerical Study of Resonant Control of Energy Transfer in Laser–Plasma Interactions for Terahertz Emission. IEEE Trans. Plasma Sci. 2024, 52, 2618–2625. [Google Scholar] [CrossRef]
- Mitrofanov, K.N.; Gritsuk, A.N.; Aleksandrov, V.V.; Branitsky, A.V.; Grabovski, E.V.; Frolov, I.N.; Ryzhakov, V.V. Powerful Source of Soft X-Ray Radiation Based on Z-Pinch of Nested Arrays for Experiments in High-Energy Density Physics. Plasma Phys. Rep. 2024, 50, 697–715. [Google Scholar] [CrossRef]
- Seo, J.; Kim, S.; Jalalvand, A.; Conlin, R.; Rothstein, A.; Abbate, J.; Erickson, K.; Wai, J.; Shousha, R.; Kolemen, E. Avoiding Fusion Plasma Tearing Instability with Deep Reinforcement Learning. Nature 2024, 626, 746–751. [Google Scholar] [CrossRef]
- Vukolov, K.Y.; Andreenko, E.N.; Buzmakov, M.Y.; Neverov, V.S.; Orlovskiy, I.I.; Tolpegina, Y.I.; Fedorov, D.A. Plasma Diagnostics in T-15MD Divertor: Tasks, Problems, and Implementation Possibilities. Plasma Phys. Rep. 2024, 50, 1198–1213. [Google Scholar] [CrossRef]
- Rousso, A.C.; Goldberg, B.M.; Chen, T.Y.; Wu, S.; Dogariu, A.; Miles, R.B.; Kolemen, E.; Ju, Y. Time and Space Resolved Diagnostics for Plasma Thermal-Chemical Instability of Fuel Oxidation in Nanosecond Plasma Discharges. Plasma Sources Sci. Technol. 2020, 29, 105012. [Google Scholar] [CrossRef]
- Fouque, J.; Rusu, T.; Huguet, S.; Branquinho, E.D.C.; Blondeel-Gomes, S.; Rezaï, K.; Madar, O. Ultra-fast Liquid Chromatography Method Coupled with Ultraviolet Detection to Quantify Dimethylsulfoxide, Dimethylformamide and Dimethylacetamide in Short Half-lives Radiopharmaceuticals. J. Label. Compd. Radiopharm. 2021, 64, 440–446. [Google Scholar] [CrossRef]
- Biłko, K.; Alía, R.G.; Francesca, D.D.; Aguiar, Y.; Danzeca, S.; Gilardoni, S.; Girard, S.; Esposito, L.S.; Fraser, M.A.; Mazzola, G.; et al. CERN Super Proton Synchrotron Radiation Environment and Related Radiation Hardness Assurance Implications. IEEE Trans. Nucl. Sci. 2023, 70, 1606–1615. [Google Scholar] [CrossRef]
- Keskin, M.Y.; Demirkoz, M.B.; Culfa, O. A Novel Approach to Space Radiation Tests by Using High Power Laser Plasma Interactions. Plasma Phys. Rep. 2023, 49, 748–758. [Google Scholar] [CrossRef]
- Xia, M.; Niu, G.; Liu, L.; Gao, R.; Jin, T.; Wan, P.; Pan, W.; Zhang, X.; Xie, Z.; Teale, S.; et al. Organic–Inorganic Hybrid Perovskite Scintillators for Mixed Field Radiation Detection. InfoMat 2022, 4, e12325. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Liu, B.; Jin, P.; Gao, R.; Zhou, L.; Wan, P.; Xu, Q.; Ouyang, X. Scintillation Performance of Two-Dimensional Perovskite (BA)2PbBr4 Microcrystals. J. Mater. Chem. C 2021, 9, 17124–17128. [Google Scholar] [CrossRef]
- Yajima, R.; Kamada, K.; Takizawa, Y.; Kutsuzawa, N.; Sasaki, R.; Yoshino, M.; Horiai, T.; Murakami, R.; Kim, K.J.; Kochurikhin, V.V.; et al. Novel Optical-Guiding Crystal Scintillator Composed of an Eu-Doped SrI2 Core and Glass Cladding. Ceram. Int. 2023, 49, 41259–41263. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Hu, C.; Zhu, R.-Y.; Gunthoti, K.; Mocko, M.; Wender, S.; Wang, Z. Radiation Damage in 20-Cm Long LYSO:Ce and BaF2:Y Crystals. IEEE Trans. Nucl. Sci. 2024, 71, 2116–2123. [Google Scholar] [CrossRef]
- Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L. 25 Ps Neutron Detector for Measuring ICF-Target Burn History. Rev. Sci. Instrum. 1995, 66, 933–993. [Google Scholar] [CrossRef]
- Capan, I. Wide-Bandgap Semiconductors for Radiation Detection: A Review. Materials 2024, 17, 1147. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Gao, R.; Liu, B.; Zheng, W.; Zhu, Y.; Ruan, J.; Ouyang, X.; Xu, Q. Nanosecond and Highly Sensitive Scintillator Based on All-Inorganic Perovskite Single Crystals. ACS Appl. Mater. Interfaces 2022, 14, 1489–1495. [Google Scholar] [CrossRef]
- Han, Q.; Wu, W.; Liu, W.; Yang, Q.; Yang, Y. Temperature-Dependent Photoluminescence of CsPbX3 Nanocrystal Films. J. Lumin. 2018, 198, 350–356. [Google Scholar] [CrossRef]
- Lecoq, P. New Approaches to Improve Timing Resolution in Scintillators. IEEE Trans. Nucl. Sci. 2012, 59, 2313–2318. [Google Scholar] [CrossRef]
- Pourdavoud, N.; Wang, S.; Mayer, A.; Hu, T.; Chen, Y.; Marianovich, A.; Kowalsky, W.; Heiderhoff, R.; Scheer, H.; Riedl, T. Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo-Metal Halide Perovskites. Adv. Mater. 2017, 29, 1605003. [Google Scholar] [CrossRef]
- Turtos, R.M.; Gundacker, S.; Omelkov, S.; Mahler, B.; Khan, A.H.; Saaring, J.; Meng, Z.; Vasil’ev, A.; Dujardin, C.; Kirm, M.; et al. On the Use of CdSe Scintillating Nanoplatelets as Time Taggers for High-Energy Gamma Detection. Npj 2D Mater. Appl. 2019, 3, 37. [Google Scholar] [CrossRef]
- Ouyang, X.; Liu, B.; Xiang, X.; Zhu, Z.; Chen, L.; Song, X.; Yuan, D.; Chen, C. Enhancement of the Energy Resolution of CsI(Na) Scintillators by Photonic Crystals Prepared with Dry-Transfer Technique. Opt. Express OE 2020, 28, 33077–33083. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Ouyang, X.; Liu, B.; Chen, L.; Xu, M.; Zhu, Z.; Zhang, Z.; He, S. Enhanced Performance of a Pulsed Neutron Detector by the Plastic Scintillator with a Photonic Crystal. Rev. Sci. Instrum. 2018, 89, 123306. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Z.; Zhu, J.; Wu, S.; Chen, H.; Gu, M.; Cheng, Q.; Chen, H.; Cheng, C.; Wang, Z.; et al. An Approach to Achieve Significantly Faster Luminescence Decay of Thin-Film Scintillator by Surface Plasmons. Appl. Phys. Lett. 2014, 104, 061902. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Chen, L.; Jin, T.; Liu, L.; Ruan, J.; Ouyang, X. Positive Effects of a Perovskite Film on the Radioluminescence Properties of a ZnO:Ga Crystal Scintillator. Materials 2022, 15, 1487. [Google Scholar] [CrossRef]
- He, S.; Zhang, S.; Wang, F.; Chen, L.; Li, Y.; Ruan, J.; Ouyang, X.; Du, X. Enhancement of the Luminescence Intensity of a ZnO:Ga Crystal Scintillator via Coating CsPbBr3 Quantum Dot Films. Opt. Mater. 2024, 148, 114955. [Google Scholar] [CrossRef]
- Chen, D.; Chen, X. Luminescent Perovskite Quantum Dots: Synthesis, Microstructures, Optical Properties and Applications. J. Mater. Chem. C 2019, 7, 1413–1446. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T.; et al. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 2017, 11, 10373–10383. [Google Scholar] [CrossRef]
- Bai, Y.; Hao, M.; Ding, S.; Chen, P.; Wang, L. Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. Adv. Mater. 2022, 34, 2105958. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, J.S.; Lee, T.-W. Strategies to Improve Luminescence Efficiency of Metal-halide Perovskites and Light-emitting Diodes. Adv. Mater. 2019, 31, 1804595. [Google Scholar] [CrossRef]
- Lin, W.; Chen, D.; Zhang, J.; Lin, Z.; Huang, J.; Li, W.; Wang, Y.; Huang, F. Hydrothermal Growth of ZnO Single Crystals with High Carrier Mobility. Cryst. Growth Des. 2009, 9, 4378–4383. [Google Scholar] [CrossRef]
- Zheng, W.; Lin, R.; Zhang, D.; Jia, L.; Ji, X.; Huang, F. Vacuum-Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism. Adv. Opt. Mater. 2018, 6, 1800697. [Google Scholar] [CrossRef]
- Varshni, Y.P. Temperature Dependence of the Energy Gap in Semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Liu, Z.; Shang, Q.; Li, C.; Zhao, L.; Gao, Y.; Li, Q.; Chen, J.; Zhang, S.; Liu, X.; Fu, Y.; et al. Temperature-Dependent Photo-luminescence and Lasing Properties of CsPbBr3 Nanowires. Appl. Phys. Lett. 2019, 114, 10. [Google Scholar] [CrossRef]
- Kaplan, A.; Sajwani, A.; Li, Z.Y.; Palmer, R.E.; Wilcoxon, J.P. Efficient Vacuum Ultraviolet Light Frequency Downconversion by Thin Films of CdSe Quantum Dots. Appl. Phys. Lett. 2006, 88, 17. [Google Scholar] [CrossRef]
- Chen, H.; Guo, A.; Zhu, J.; Cheng, L.; Wang, Q. Tunable Photoluminescence of CsPbBr3 Perovskite Quantum Dots for Their Physical Research. Appl. Surf. Sci. 2019, 465, 656–664. [Google Scholar] [CrossRef]
- Boehme, S.C.; Bodnarchuk, M.I.; Burian, M.; Bertolotti, F.; Cherniukh, I.; Bernasconi, C.; Zhu, C.; Erni, R.; Amenitsch, H.; Naumenko, D.; et al. Strongly Confined CsPbBr3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlattices. ACS Nano 2023, 17, 2089–2100. [Google Scholar] [CrossRef]
- Akazawa, H. Defect Species in Ga-Doped ZnO Films Characterized by Photoluminescence. J. Vac. Sci. Technol. A 2021, 39, 033411. [Google Scholar] [CrossRef]
- Liu, Z.F.; Shan, F.K.; Sohn, J.Y.; Kim, S.C.; Kim, G.Y.; Li, Y.X.; Sohn, J.Y. Photoluminescence of ZnO:Ga Thin Films Fabricated by Pulsed Laser Deposition Technique. J. Electroceram. 2004, 13, 183–187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Zhang, S.; Chen, L.; Li, Y.; Wang, F.; Zhang, N.; Zhao, N.; Ouyang, X. Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications. Materials 2025, 18, 3691. https://doi.org/10.3390/ma18153691
He S, Zhang S, Chen L, Li Y, Wang F, Zhang N, Zhao N, Ouyang X. Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications. Materials. 2025; 18(15):3691. https://doi.org/10.3390/ma18153691
Chicago/Turabian StyleHe, Shiyi, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao, and Xiaoping Ouyang. 2025. "Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications" Materials 18, no. 15: 3691. https://doi.org/10.3390/ma18153691
APA StyleHe, S., Zhang, S., Chen, L., Li, Y., Wang, F., Zhang, N., Zhao, N., & Ouyang, X. (2025). Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications. Materials, 18(15), 3691. https://doi.org/10.3390/ma18153691