Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
Abstract
1. Introduction
2. Materials and Methods
2.1. Antenna Design Methodologies
2.2. Structure and Geometry of the Antenna
- -
- Substrate:
- -
- Effective relative permittivity (εeff):
- Width (Wp) and actual length () of the patch:
2.3. EBG Unit Cell Modeling Methodologies
- : Surface impedance of the EBG structure.
- : Characteristic impedance of free space (approximately 377 Ω).
- : Reactance of the surface impedance ().
- : Defines the phase of the reflected wave.
2.4. EBG Unit Cell Characterizations
2.4.1. Reflection Phase Analysis
2.4.2. Dispersion Diagram
3. Results and Discussion
3.1. Reflection Coefficient (S11), Bandwidth, and VSWR
3.2. Radiation Pattern and Efficiency
3.3. Z Parameter of Proposed Antennas
3.4. Surface Current Distribution
3.5. Experimental Results
3.6. Energy Harvester Circuit
3.7. Comparative Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, Q.; Liu, H. Energy Harvesters and Self-Powered Sensors for Smart Electronics, 2nd Edition. Micromachines 2024, 15, 99. [Google Scholar] [CrossRef]
- Muhammad, S.; Tiang, J.J.; Wong, S.K.; Smida, A.; Ghayoula, R.; Iqbal, A. A dual-band ambient energy harvesting rectenna design for wireless power communications. IEEE Access 2021, 9, 99944–99953. [Google Scholar] [CrossRef]
- Duy, P.N.; Ha-Van, N.; Seo, C. A design of 5.8 GHz rectenna array for wireless energy harvesting applications. In Proceedings of the 2020 IEEE Wireless Power Transfer Conference (WPTC), Seoul, Republic of Korea, 15–19 November 2020. [Google Scholar]
- Khan, S.; Mazhar, T.; Shahzad, T.; Bibi, A.; Ahmad, W.; Khan, M.A.; Saeed, M.M.; Hamam, H. Antenna systems for IoT applications: A review. Discov. Sustain. 2024, 5, 412. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Y.; Yang, L.; Li, Y.; Feng, J.; Shi, Y. Compact dual-band rectenna for RF energy harvest based on a tree-like antenna. IET Microw. Antennas Propag. 2019, 13, 1350–1357. [Google Scholar] [CrossRef]
- Adu-Manu, K.S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-harvesting wireless sensor networks (EH-WSNs) A review. ACM Trans. Sens. Netw. 2018, 14, 10. [Google Scholar] [CrossRef]
- Salama, R.; Al-Turjman, F. Sustainable Energy Production in Smart Cities. Sustainability 2023, 15, 16052. [Google Scholar] [CrossRef]
- Albaihani, Y.; Akram, R.; Almohaimeed, Z.; Almohaimeed, A.; Hajlaoui, E.A. Optimal antenna design for wireless energy harvesting system in ISM band. Results Phys. 2025, 73, 108255. [Google Scholar] [CrossRef]
- Taqdeer, M.M.; Amjad, Q.M.; Zahid, M.; Amin, Y. 2 × 2 Hexagonal Shaped Antenna Array for 5.8 GHz ISM Band Applications. In Proceedings of the 7th International Multi-Topic ICT Conference, Jamshoro, Pakistan, 12 May 2023. [Google Scholar]
- Aliqab, K.; Lavadiya, S.; Alsharari, M.; Armghan, A.; Daher, M.G.; Patel, S.K. Design and Fabrication of a Low-Cost, Multiband and High Gain Square Tooth-Enabled Metamaterial Superstrate Microstrip Patch Antenna. Micromachines 2023, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Tangel, C.; Teşneli, N.B. Teşneli, and Applications, A wideband, thin profile and enhanced gain microstrip patch antenna modified by novel mushroom-like EBG and periodic defected ground structures. J. Electromagn. Waves Appl. 2024, 38, 89–104. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Jiang, R.; Guo, X.; Cheng, J.; Chen, Y. A Review of IoT-Enabled Mobile Healthcare: Technologies, Challenges, and Future Trends. IEEE Internet Things J. 2022, 9, 9478–9502. [Google Scholar] [CrossRef]
- Anitha, V.R.; Palanisamy, S.; Khalaf, O.I.; Algburi, S.; Hamam, H. Design and analysis of SRR based metamaterial loaded circular patch multiband antenna for satellite applications. ICT Express 2024, 10, 836–844. [Google Scholar] [CrossRef]
- Patel, D.M.; Raval, F. Gain improvement of HMSIW Antenna with SRRs. E-Prime-Adv. Electr. Eng. Electron. Energy 2024, 10, 100756. [Google Scholar] [CrossRef]
- Arora, C. Metamaterial Based Multiband Microstrip Patch Antenna with Defective Ground. In Proceedings of the 2024 International Conference on Communication, Control, and Intelligent Systems (CCIS), Mathura, India, 6–7 December 2024. [Google Scholar]
- Nurhayati, N.; Zulkifli, F.Y.; Setijadi, E.; Sukoco, B.E.; Yasin, M.N.M.; De Oliveira, A.M. Bandwidth, gain improvement, and notched-band frequency of SWB Wave Coplanar Vivaldi antenna using CSRR. IEEE Access 2024, 12, 16926–16938. [Google Scholar] [CrossRef]
- Olan-Nuñez, K.N.; Murphy-Arteaga, R.S. Murphy-Arteaga, Dual-Band Antenna on 3D-Printed Substrate for 2.4/5.8 GHz ISM-Band Applications. Electronics 2023, 12, 2368. [Google Scholar] [CrossRef]
- Pande, S.V.; Patil, D.P. Miniaturization of antenna using metamaterial loaded with CSRR for wireless applications. Bull. Electr. Eng. Inform. 2024, 13, 973–985. [Google Scholar] [CrossRef]
- Akgol, O.; Altintas, O.; Unal, E.; Karaaslan, M.; Karadag, F. Linear to left-and right-hand circular polarization conversion by using a metasurface structure. Int. J. Microw. Wirel. Technol. 2018, 10, 133–138. [Google Scholar] [CrossRef]
- Ramli, N.H.; Lokman, M.A.F.; Bahari, N.; Zahid, L.; Yob, R.C.; Mat, M.H.; Jamlos, M.A.; Alzubaidi, L.H.; Hussein, A.H.A. Left-Handed Metamaterial Wearable Antenna at 5G Frequency Range for Wireless Body Area Network. In Proceedings of the 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, India, 4–5 December 2023. [Google Scholar]
- Rana, S.; Jain, P. Utilizing characteristics mode analysis for designing a miniaturised high-gain metasurface antenna with wideband circular polarization and reduced scattering. J. Electromagn. Waves Appl. 2024, 38, 842–859. [Google Scholar] [CrossRef]
- Ash-Shiddiq, H.A.; Ryanu, H.H.; Nur, L.O. Wearable Antenna Dual Band With Electromagnetic Band Gap (Ebg) Structure For Health Applications. J. Comput. Eng. Prog. Appl. Technol. 2023, 2, 42. [Google Scholar] [CrossRef]
- Almohaimeed, A.M.; Hajlaoui, E.A.; Almohaimeed, Z.M. Single Band EBG Antenna for Wireless Power Transfer Applications. Comput. Syst. Sci. Eng. 2023, 44, 1409–1417. [Google Scholar] [CrossRef]
- Jain, S.; Purohit, G.; Ghosh, S.; Saha, C. Design and Analysis of 4x4 EBG Backed Miniaturized Disc-shaped Wearable RFID Tag Antenna for Biomedical Communications. In Proceedings of the 2024 IEEE Space, Aerospace and Defence Conference (SPACE), Bangalore, India, 22–23 July 2024. [Google Scholar]
- Amalraj, T.; Savarimuthu, R. Design and Analysis of Microstrip Patch Antenna Using Periodic EBG Structure for C-Band Applications. Wirel. Pers. Commun. 2019, 109, 2077–2094. [Google Scholar] [CrossRef]
- Sultana, S.; Basak, R. Performance Evaluation of Meander Line Implantable Antenna integrated with EBG Based Ground for Anatomical Realistic Model. AIUB J. Sci. Eng. (AJSE) 2019, 18, 1–10. [Google Scholar] [CrossRef]
- Laskar, M.I.; Basu, B.; Nandi, A. A multiband slot antenna with groundless EBG structure for wearable WLAN/WiMAX applications. Int. J. Electron. 2024, 111, 1920–1935. [Google Scholar] [CrossRef]
- Khemchandra, A.; Pinku, R. Electromagnetic Band Gap-Based Circular Ring-Shaped Wearable Antenna With Improved Gain For Internet of Things Applications in 5-G Sub-6 GHz. In Proceedings of the 2024 ITU Kaleidoscope: Innovation and Digital Transformation for a Sustainable World (ITU K), New Delhi, India, 21–23 October 2024. [Google Scholar]
- Sufian, M.A.; Abbas, A.; Choi, D.; Lee, J.; Hussain, N.; Kim, N. Quad-Port MIMO Antenna Design with Low SAR for 3.5 GHz 5G and 5.8 GHz ISM Bands. In Proceedings of the 2024 IEEE Joint International Symposium on Electromagnetic Compatibility, Signal & Power Integrity: EMC Japan/Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Japan/APEMC Okinawa), Ginowan, Okinawa, Japan, 20–24 May 2024. [Google Scholar]
- Alnaiemy, Y.; Nagy, L. Further Investigation of The Feasibility of Using EBG Structure-Based Microstrip Antenna for Gain Enhancement. In Proceedings of the 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Virtual Conference, 18–20 November 2020. [Google Scholar]
- Keshwani, V.R.; Bhavarthe, P.P.; Rathod, S.S. Compact Embedded Dual Band EBG Structure with Low SAR for Wearable Antenna Application. Prog. Electromagn. Res. M 2022, 113, 199–211. [Google Scholar] [CrossRef]
- Goswami, P.K. A Reconfigurable Compact Size Fractal Antenna for UWB RF Energy Harvesting. Int. J. Microw. Opt. Technol. 2018, 13, 415–423. [Google Scholar]
- Abdalla, M.A.; Al-Mohamadi, A.A.; Mohamed, I.S. A miniaturized dual band EBG unit cell for UWB antennas with high selective notching. Int. J. Microw. Wirel. Technol. 2019, 11, 1035–1043. [Google Scholar] [CrossRef]
- Abdulhameed, M.K.; Isa, M.S.B.M.; Zakaria, Z.; Ibrahim, I.M.; Mohsen, M.K.; Attiah, M.L.; Dinar, A.M. Enhanced performance of compact 2 × 2 antenna array with electromagnetic band-gap. Microw. Opt. Technol. Lett. 2019, 62, 875–886. [Google Scholar] [CrossRef]
- Elabd, R.H.; Al-Gburi, A.J. Super-compact 28/38 GHz 4-port MIMO antenna using metamaterial-inspired EBG structure with SAR analysis for 5G cellular devices. J. Infrared Millim. Terahertz Waves 2024, 45, 35–65. [Google Scholar] [CrossRef]
- Gibson, W.C. The Method of Moments in Electromagnetics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021. [Google Scholar]
- Hasan, A.A.; Kvasnikov, A.A.; Klyukin, D.V.; Ivanov, A.A.; Demakov, A.V.; Mochalov, D.M.; Kuksenko, S.P. On modeling antennas using mom-based algorithms: Wire-grid versus surface triangulation. Algorithms 2023, 16, 200. [Google Scholar] [CrossRef]
- Szabó, B.; Babuška, I. Finite Element Analysis: Method, Verification and Validation; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- David, D.S.K.; Jeong, Y.; Wu, Y.C.; Ham, S. An Analytical Antenna Modeling of Electromagnetic Wave Propagation in Inhomogeneous Media Using FDTD: A Comprehensive Study. Sensors 2023, 23, 3896. [Google Scholar] [CrossRef] [PubMed]
- Alquaydheb, I.N.; Alfawaz, S.; Avval, A.G.; Ghayouraneh, S.; El-Ghazaly, S. Choke ring circular waveguide antenna analysis and design using geometrical theory of diffraction. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022. [Google Scholar]
- Shariff, B.G.P.; Pathan, S.; Mane, P.R.; Ali, T. Characteristic mode analysis based highly flexible antenna for millimeter wave wireless applications. J. Infrared Millim. Terahertz Waves 2024, 45, 1–26. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, J.; Li, Z.; Song, J. A Fast Computing Technology of Three-dimensional Multilevel Fast Multipole Algorithm Based on Deep Learning. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024. [Google Scholar]
- Ashyap, A.Y.I.; Bin Dahlan, S.H.; Abidin, Z.Z.; Abbasi, M.I.; Kamarudin, M.R.; Majid, H.A.; Dahri, M.H.; Jamaluddin, M.H.; Alomainy, A. An Overview of Electromagnetic Band-Gap Integrated Wearable Antennas. IEEE Access 2020, 8, 7641–7658. [Google Scholar] [CrossRef]
- Mohamadzade, B.; Afsahi, M. Mutual Coupling Reduction and Gain Enhancement in Patch Array Antenna Using a Planar Compact Electromagnetic Band Gap (EBG) Structures. IET Microw. Antennas Propag. 2017, 11, 1719–1725. [Google Scholar] [CrossRef]
- Hossain, M.B.; Faruque, M.R.; Islam, S.S.; Islam, M.T. Modified double dumbbell-shaped split-ring resonator-based negative permittivity metamaterial for satellite communications with high effective medium ratio. Sci. Rep. 2021, 11, 19331. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Khan, Q.U. Review of Metasurfaces Through Unit Cell Design and Numerical Extraction of Parameters and Their Applications in Antennas. IEEE Access 2022, 10, 112368–112391. [Google Scholar] [CrossRef]
- Atif, A.; Majid, A.; Zahid, M.; Amin, Y. Circular Slotted Triangular Patch Antenna for 5.8 GHz ISM Band Applications. Eng. Proc. 2023, 46, 10. [Google Scholar]
- Guneser, M.T.; Seker, C.; Guler, M.I.; Fitriyani, N.L.; Syafrudin, M. Efficient 5.8 GHz Microstrip Antennas for Intelligent Transportation Systems: Design, Fabrication, and Performance Analysis. Mathematics 2024, 12, 1202. [Google Scholar] [CrossRef]
- Raut, H.; Kingsly, S.; Subbaraj, S.; Malekar, R. EBG-Based Low Profile Corrugated Antenna for 5G Applications in Sub-6 GHz Spectrum. Prog. Electromagn. Res. Lett. 2025, 125, 51–57. [Google Scholar] [CrossRef]
Parameters (mm) | Dimensions (mm) | Parameters (mm) | Dimensions (mm) |
---|---|---|---|
Substrate length (Ls) | 40 | Substrate width (Ws) | 36 |
Patch length () | 11.8 | Patch width () | 10.8 |
Feed length (Lf) | 15 | Feed width (Wf) | 4.8 |
Inset length (y0) | 5 | Inset width (x0) | 1.4 |
EBG cell length (LEBG) | 4 | EBG cell width (WEBG) | 4 |
Edge patch radius (R1) | 5 | Edge patch radius (R2) | 0.5 |
Parameter | Conventional Antenna (Without EBG) | EBG-Based Antenna | Trend | % Change |
---|---|---|---|---|
S11 (dB) | −22.7 | −27.9 | ↑ | 22.9% |
VSWR | 1.157 | 1.08 | ↑ | 6.7% |
Bandwidth (10 dB) | 215MHz | 188 MHz | ↓ | 12.6% |
Gain (dBi) | 6.83 | 7.9 | ↑ | 15.6% |
Directivity (dBi) | 7.24 | 8.04 | ↑ | 11.0% |
Efficiency (η) | 90.9 | 95.5 | ↑ | 5% |
Ref. (Year) | S11 (dB) | VSWR | BW (MHz) | G (dBi) | D (dBi) | Efficiency (η) | Size (mm3) | |
---|---|---|---|---|---|---|---|---|
[47] (2023) | −24 | N/A | 180 | 1.49 | N/A | N/A | Fr-4 (4.4) | 25.5 × 22.5 × 1.6 |
[22] (2023) | −17.49 | 1.31 | 900 | 5.21 | N/A | N/A | Delinova 2000 (1.6) | 54 × 66 × 0.5 |
[48] (2024) | −23.68 | 1.140 | 550 | 3.93 | N/A | 76.5% | Fr-4 (4.3) | 35 × 50 × 1.6 |
[49] (2025) | −31.3 | N/A | 230 | 3.48 | N/A | N/A | Fr-4 (4.4) | 14 × 14 × 1.5 |
Proposed | −27.9 | 1.08 | 188 | 7.9 | 8.04 | 95.5 | Roger R5880 (2.2) | 36 × 40 × 1.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albaihani, Y.; Akram, R.; Almohaimeed, A.M.; Almohaimeed, Z.M.; Buhari, L.O.; Shaban, M. Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors. Sensors 2025, 25, 4777. https://doi.org/10.3390/s25154777
Albaihani Y, Akram R, Almohaimeed AM, Almohaimeed ZM, Buhari LO, Shaban M. Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors. Sensors. 2025; 25(15):4777. https://doi.org/10.3390/s25154777
Chicago/Turabian StyleAlbaihani, Yahya, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari, and Mahmoud Shaban. 2025. "Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors" Sensors 25, no. 15: 4777. https://doi.org/10.3390/s25154777
APA StyleAlbaihani, Y., Akram, R., Almohaimeed, A. M., Almohaimeed, Z. M., Buhari, L. O., & Shaban, M. (2025). Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors. Sensors, 25(15), 4777. https://doi.org/10.3390/s25154777